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Abstract: The emergence of cloud computing, big data analytics, and machine learning has catalysed
the use of remote sensing technologies to enable more timely management of sustainability indicators,
given the uncertainty of future climate conditions. Here, we examine the potential of “regenerative
agriculture”, as an adaptive grazing management strategy to minimise bare ground exposure while
improving pasture productivity. High-intensity sheep grazing treatments were conducted in small
fields (less than 1 ha) for short durations (typically less than 1 day). Paddocks were subsequently
spelled to allow pasture biomass recovery (treatments comprising 3, 6, 9, 12, and 15 months), with
each compared with controls characterised by lighter stocking rates for longer periods (2000 DSE/ha).
Pastures were composed of wallaby grass (Austrodanthonia species), kangaroo grass (Themeda triandra),
Phalaris (Phalaris aquatica), and cocksfoot (Dactylis glomerata), and were destructively sampled to
estimate total standing dry matter (TSDM), standing green biomass, standing dry biomass and
trampled biomass. We invoked a machine learning model forced with Sentinel-2 imagery to quantify
TSDM, standing green and dry biomass. Faced with La Nina conditions, regenerative grazing did not
significantly impact pasture productivity, with all treatments showing similar TSDM, green biomass
and recovery. However, regenerative treatments significantly impacted litterfall and trampled
material, with high-intensity grazing treatments trampling more biomass, increasing litter, enhancing
surface organic matter and decomposition rates thereof. Pasture digestibility and sward uniformity
were greatest for treatments with minimal spelling (3 months), whereas both standing senescent
and trampled material were greater for the 15-month spelling treatment. TSDM prognostics from
machine learning were lower than measured TSDM, although predictions from the machine learning
approach closely matched observed spatiotemporal variability within and across treatments. The
root mean square error between the measured and modelled TSDM was 903 kg DM/ha, which was
less than the variability measured in the field. We conclude that regenerative grazing with short
recovery periods (3–6 months) was more conducive to increasing pasture production under high
rainfall conditions, and we speculate that – in this environment - high-intensity grazing with 3-month
spelling is likely to improve soil organic carbon through increased litterfall and trampling. Our study
paves the way for using machine learning with satellite imagery to quantify pasture biomass at small
scales, enabling the management of pastures within small fields from afar.

Keywords: machine learning; satellite imagery; regenerative grazing; grassland biomass; total
standing dry matter; digital agriculture; grassland management; climate change; land degradation;
long-term monitoring

Land 2023, 12, 1142. https://doi.org/10.3390/land12061142 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land12061142
https://doi.org/10.3390/land12061142
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0001-7464-6304
https://orcid.org/0000-0001-5284-6428
https://orcid.org/0000-0003-3301-7063
https://orcid.org/0000-0001-7425-452X
https://doi.org/10.3390/land12061142
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land12061142?type=check_update&version=4


Land 2023, 12, 1142 2 of 25

1. Introduction

Grasslands comprise key terrestrial ecosystems, providing feed and habitat for do-
mesticated livestock and wildlife globally [1–3]. Grasslands allow significant carbon se-
questration [4,5] in addition to existing carbon stocks they prevent from entering the atmo-
sphere [6,7]. The resilience of grasslands to extreme drought and future climate requires
an innovative agroecosystem approach that promotes functional biological drivers (such
as soil microbial activities) and adaptive grazing management [8,9]. One such adaptive
technique is using regenerative grazing principles [8,10] to stimulate ecosystem functions
through short, intense grazing, adjustable stocking rate, and multi-paddock-system at the
farm level (1–100 ha) with long rest periods allowing pasture biomass and land to recover.
Residual biomass from trampling effects associated with regenerative grazing plays a
significant role in reducing bare ground, enabling soil health (through soil microbial func-
tionality), litter conversion, soil aggregation and porosity, and carbon sequestration [8,11].
Stimulation of organic microbial activities through residual biomass and trampling effects
of grazing livestock contrasts with conventional farming systems in developed nations
(through the use of irrigation, synthetic fertilizers, etc.) [8]. In practice, evidence of regener-
ative grazing impacts on pasture biomass, litterfall, and decomposition tend to be based on
anecdotal rather than quantitative evidence [11–13]. Since the current information is not
experimentally driven, available monitoring tools have not been tested to understand their
usefulness to end-users. Due to large land areas and the dynamic and spatially variable
nature of grazing [14,15], physical monitoring of grassland conditions is often cumbersome,
particularly where land areas are remote, large, and/or geographically challenging. The
rise of satellite imagery, cloud computing, big data analytics, and machine learning have
paved the way for innovative opportunities for land managers to remotely monitor crop,
pasture, or grassland biomass from afar [16].

Conventional methods for monitoring pasture biomass and livestock utilisation (i.e.,
ground-based measurement and proximal sensing) are limited in terms of scope, and
both spatial and temporal extent [17]. Previous research in Australia [18], the United
Kingdom [19], New Zealand [20], and the United States [21] has reported limitations of
ground sampling approaches (i.e., visual, rising plate meter, and destructive method by
clipping) in quantifying the spatial variability of pasture biomass. By contrast, remote
sensing provides timely spatiotemporal information that can predict the availability of feed
prior to grazing [19], allowing for feed budgeting. However, in most cases, remote sensing
of pasture biomass is not process-driven (i.e., based on vegetation indices); often the use
of such reflectance indices at small field scales (e.g., less than 50 ha) is constrained by the
resolution of the satellite imagery [19,22] and accurate calibration [23]. Remote sensing that
considers process-based retrieval of pasture biomass and other biophysical variables may
invoke site-specific modelling and machine-learning techniques [24]. Although some suc-
cesses have been reported, physical-based techniques such as radiative transfer modelling
and light use efficiency modelling can be prohibitive as they may require a set of para-
metric rules for different study locations [25–27]. However, machine learning techniques
including artificial neural networks (ANN) [16], random forest (RF) [28], and support
vector machine (SVM) [21] are not site-specific and can be used to retrieve pasture biomass
estimates [22]. ANN [16] was used to estimate pasture biomass leveraging multitemporal
Sentinel-2 data collected over dairy farms in Tasmania [16]. The study showed that the
accuracy of ANN improved when meteorological variables were included in the model;
indeed, much process-based modelling is based primarily on longitudinal measurements
of climate at a given site [2,23,29]. However, process-based applications are required as
an operational service to support farm management—what is often known as a decision
support system (DSS) [16,17,30,31]—and are often limited by the accuracy of site-specific
soil characterisation [32,33].

Previous estimates of pasture biomass at the field (paddock) scale with machine learn-
ing algorithms have used standing green vegetation as a proxy to quantify the actual
biomass from the normalised difference vegetation index (NDVI) [21,28,34,35]. Information
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derived from NDVI can provide sufficient information about active photosynthetic [36]
vegetation, whereas non-green senescent pasture species or dormant vegetation are of-
ten much more difficult to quantify due to their low reflectance in the near-infrared [37].
To successfully realise improved land-use sustainability through more timely, accurate
biologically-intelligent monitoring of pasture sustainability indicators, more robust ap-
proaches are urgently needed [30,38–40]. This would also allow livestock farmers to better
predict feed on offer (for total green and non-green forage) enabling planning of their
stocking rate to maximise liveweight production while maximising environmental steward-
ship [32,33]. While a range of commercial technologies exists, outputs from many of these
applications are site-specific and others have not been validated. This raises questions as to
how well such applications predict pasture biomass outside their zone of calibration.

The launch of the European Space Agency’s Sentinel-2 satellites has enhanced the
development of “agricultural technology” or “Ag-tech” companies offering products aimed
at quantifying land surface conditions. One such company—“Cibo Labs” (https://www.
cibolabs.com.au/; accessed on 1 December 2022)—uses a predictive time series machine
learning approach to derive spectral information from Sentinel-2 data about local properties
at the field scale. Cibo Labs uses pasture cuts to train and validate the total standing dry
matter (TSDM) model. Several thousand fields from farms across Australia are used to
train a deep neural network (DNN). Cibo Labs uses the dropout regularisation method
to reduce overfitting and computational costs, hence improving the generalisation of
the DNN [41]. This is achieved by randomly dropping units (i.e., hidden and visible
layers) to improve the neural network’s performance during training. Hitherto the present
study, Cibo Labs validated total standing dry matter (TSDM) estimates using 2000 field
measured samples collected over two years from across eastern and northern Australia.
Thirty-three percent of field sites were used to train a three-layer, multilayer perceptron
regression model (MPRM) using a 50% dropout and a maximum norm constraint [42–44].
The remainder of the field samples were used for validation. The model was trained with
100 iterations (~16,000 epochs) before reaching a termination criterion characterised by a
median prediction error of 295 ± 8 kg DM/ha.

While such predictive accuracy was within the variability of measured data, the study
was primarily conducted using measurements taken from low-latitude environments (the
Northern part of Australia). Additionally, previous investigations of Cibo Labs’ utility did
not consider regenerative grazing principles implemented at the farm level. Therefore, it
remains to be seen how well Cibo Labs performs in mid-latitude environments such as the
island state of Tasmania, where cloud cover in winter and spring is frequent [45], as well
as examine if the tool can support regenerative grazing at the farm level. Clouds reduce
spatial and temporal coverage by reducing target clarity and increasing the time between
clear useable images [16,46]. In the present study, we used a destructive sampling method
to measure the total standing dry matter (kg DM/ha), equivalent to standing green and
standing dry before and after grazing, with 3, 6, 9, 12, and 15 months of biomass regrowth.
We applied regenerative grazing to the smaller plots of similar size (<1 ha), while three
plots of size 10–50 ha were used as controls (i.e., business-as-usual grazing). Our hypothesis
was that the treatment plots or disturbance caused by the high stocking density would
account for the TSDM variability. The key aim was to examine the effects of regenerative
grazing on TSDM productivity in the plots and whether Sentinel-2 imagery and the Cibo
Labs model could estimate the TSDM at the plot level. This was conducted by comparing
Cibo Labs estimates of TSDM with destructively sampled pasture biomass for a site in
south-eastern Tasmania subject to sheep grazing treatments.

Our objectives were to thus provide insight into: (1) the effects of regenerative grazing
on TSDM productivity, consumption, and trampling and (2) the usefulness of Sentinel-2
imagery and accuracy of the Cibo Labs model to estimate TSDM on effects of regenerative
grazing at the farm level.

https://www.cibolabs.com.au/
https://www.cibolabs.com.au/
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2. Materials and Methods
2.1. Study Site

The location for this study was south-eastern Tasmania, Australia. We worked on a
case study farm (42◦30′ S, 147◦59′ E) north of the town of Triabunna called ‘Okehampton’.
The average annual rainfall at this location is 648 mm while the average annual minimum
and maximum temperature are 7 ◦C and 17 ◦C, respectively [47]. Okehampton consists of
52 paddocks of sizes ranging from 1–138 ha covering an estimated area of 1446 ha (Figure 1).
The botanical composition of fields comprises a mixture of native and sown pastures with
mostly annual and perennial ryegrass (wallaby grass (Austrodanthonia species), kanga-
roo grass (Themeda triandra), Phalaris (Phalaris aquatic) and cocksfoot spear grass (Dactylis
glomerata) [48]. The absence of irrigation and synthetic fertilizers on this site and the goal
to stimulate pasture growth to improve livestock production, demand that agronomic
systems implemented be sustainable, profitable, inclusive, and enduring—especially given
the uncertainty of future climate conditions in this region [29,49]. The farm has a history of
sheep grazing but the field layouts have evolved over time to accommodate inclusive, in-
tensive grazing management, conservation of biodiversity, and environmental stewardship,
including protection of endangered grass species and implementation of cultural burning
practices informed by the local indigenous people (Pakana Services).
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while treatment plots have similar sizes from 0.2–0.4 ha]. The first six plots were located on a 
paddock called “Bougainville” located on a hill. Land use data in (a) was obtained from the 
Australian Government, Department of Agriculture, Fisheries and Forestry, land use and 
management (accessed on 10 October 2022). 
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Twelve paddocks nominated by the case study farmer were used for the field 

sampling campaign. Biomass samples were collected by a local consultant from December 
2021 through November 2022. Grazing was conducted for 1 day in the treatment plots 
(early morning to late evening). The control has “business-as-usual” grazing (Table 1). 
Pasture biomass fractions were generally quantified before grazing. Three plots [Vault 
control (VC), lower Bougainville (LB), and upper Bougainville (UB)] were used as controls 
following grazing regimes that were business-as-usual. These plots were grazed for 
longer periods (weeks) at lower stocking rates (2000 DSE/ha) than the intensive treatments 
(i.e., the other seven paddocks) and allowed less time between subsequent grazing 
compared with intensively grazed paddocks. Control paddocks were larger in size 
compared with treatment plots. Treatment plots were stocked at the same rate while 
following adjusted stocking density (Table 1) and grazed for one day on consecutive days 
within the same week to minimise potential confounding effects of weather impacts on 
pasture growth, then rested for three, six, nine or twelve months before re-grazing. 
Treatment plots were conducted based on ‘regenerative’ principles that conduct short, 
intense grazing, with long rest periods allowing pastures to recover [50]. In contrast, 

Figure 1. Study site (a) land use for Tasmania, (b) farm property, comprising 52 paddocks, and
(c) subplots used for field sampling, [three larger plots (10 ha, 14 ha and 54 ha) were used as
controls, while treatment plots had sizes of 0.2–0.4 ha]. The first six plots were located on a paddock
called “Bougainville” on a hill. Land use data in (a) was obtained from the Australian Government,
Department of Agriculture, Fisheries and Forestry, land use and management (accessed 10 October
2022).
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2.2. Regenerative Grazing Data Collection

Twelve paddocks nominated by the case study farmer were used for the field sampling
campaign. Biomass samples were collected by a local consultant from December 2021
through November 2022. Grazing was conducted for 1 day in the treatment plots (early
morning to late evening). The control has “business-as-usual” grazing (Table 1). Pasture
biomass fractions were generally quantified before grazing. Three plots [Vault control (VC),
lower Bougainville (LB), and upper Bougainville (UB)] were used as controls following
grazing regimes that were business-as-usual. These plots were grazed for longer periods
(weeks) at lower stocking rates (2000 DSE/ha) than the intensive treatments (i.e., the
other seven paddocks) and allowed less time between subsequent grazing compared
with intensively grazed paddocks. Control paddocks were larger in size compared with
treatment plots. Treatment plots were stocked at the same rate while following adjusted
stocking density (Table 1) and grazed for one day on consecutive days within the same
week to minimise potential confounding effects of weather impacts on pasture growth,
then rested for three, six, nine or twelve months before re-grazing. Treatment plots were
conducted based on ‘regenerative’ principles that conduct short, intense grazing, with long
rest periods allowing pastures to recover [50]. In contrast, control paddocks were grazed at
lighter stocking rates (Equation (1)), for longer durations, and allowed less time to recover
(Table 1). Henceforth, the business-as-usual plots would be called BAU.

Stocking rate (DSE/ha) = grazing area per dry sheep equivalent for a
nominated period

(1)

From Equation (1), if the stocking rate of BAU plots is 2000 (DSE/ha), then the stocking
rate for the treatment plots is 1/4 of ha = 8000 DSE/ha.

Pasture biomass was harvested to the ground level from five locations (quadrats) that
were predetermined within each plot (from plot points with red layouts in Figure 1) using
a battery-operated shearing handpiece and a 0.25 m2 quadrat (a square of 0.5 × 0.5 m).
Standing biomass (green and dry) was cut prior to grazing while standing residuals (green
and dry) and trampled biomass (green and dry) were taken post grazing, in a location
immediately adjacent to the pre-grazing biomass harvest. Biomass was quickly placed
in sealed, labelled plastic bags and transported to a 4 ◦C room in the laboratory where
each bag was weighed after dung was excluded. The biomass was mixed, and using a
quartering method, subsampled for separation and drying. Sub-samples of green and
dry biomass were separated and then dried in a 60 ◦C oven for at least 48 h, before being
weighed using a Mettler scale. This process was repeated for post-grazing biomass in some
of the paddocks that were grazed. To account for the high volume of trampled biomass
(i.e., biomass lying on the surface disturbed by the high density of sheep) this component
was measured separately from the standing biomass (Table 1). Total standing dry matter
(TSDM) was computed by the summation of green and dry biomass without trampled
components. To determine actual biomass utilised during a post-grazing event, we used
Equations (2) and (3) for total trampled dry matter (TTDM), as shown in Figure 2.

total standing dry matter (TSDM) − trampled residual = Biomass consumed (2)

trampled green dry matter + trampled senesced dry matter =
Total trampled dry matter (TTDM)

(3)

Since the sampled biomass collected from the five locations was completed only once
in each plot following a predetermined layout (plot points in Figure 1), we computed the
mean for these locations to account for sampling error and tested if the treatment plots
and grazing days have a significant effect on biomass using statistical analysis (ANOVA
and general linear model). We developed a time series analysis for the treatment plots
(including BAU) and compared them with statistical outcomes.

The experiment was for twelve months, from December 2021 to November 2022,
where the effects of short, intense grazing compared with the conventional grazing (control)
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on plot treatments for their drought resilience were observed. Hence, the experiment
covered the four seasonal variations (summer, winter, autumn, and spring) in the study
area. Summer is from December to February; autumn is from April to May; winter is from
June to August; spring is from September to November [46].

Table 1. Experimental treatments and business-as-usual plots (controls). All plots were sampled and
grazed in phase 1. Trampled residual was collected only post-grazing. Bougainville plots 1, 2, 3, and
4 were conducted with different treatments to Vault treatments. At the outset, Bougainville plots
2 and 4 were subjected to intense grazing, similar to the Vault treatments, whereas Bougainville 1
and 3 plots were grazed in accordance with BAU. After phase 1, all four plots were closed grazed no
further. Asterisk (*) DSE represents “dry sheep equivalent”, a standardised grazing unit representing
one dry, non-lactating 45 kg castrated male (wether) consuming 7.6 MJ/day.

Treatments Plot

Phase 1 Phase 2 Phase 3 Phase 4

Size (ha) December 2021 &
January 2022 April 2022 July 2022 November

2022

Grazing Pre Post Pre Pre Pre

Trampled after
post-grazing 4 V4

Stocking rate
(DSE/ha) * 8000 6000 8800 8800

BAU &
Regenerative Bougainville (B1) 0.4 4 4

Regenerative Bougainville (B2) 0.2 4 4

BAU &
Regenerative Bougainville (B3) 0.3 4 4

Regenerative Bougainville (B4) 0.2 4 4

Control Upper Bougainville
(UB) 54 Business as usual

Control Lower Bougainville
(LB) 10 Business as usual

R
egenerative

Vault 1 [12 months] 0.3 4 4 4

Vault 2 [9 months] 0.3 4 4 4

Vault 3 [6 months] 0.3 4 4 4

Vault 4 [3 months] 0.3 4 4 4 4 4

Vault 5 [15 months] 0.3 4 4

Control Vault Control 14 Business as usual

The method was developed by the authors.
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Figure 2. Pasture biomass categories enumerated using destructive harvests at Okehampton, Tas-
mania, Australia. We measured (a) standing green biomass and (b) standing dry biomass prior to
grazing; post-grazing we also measured (c) trampled green biomass and (d) trampled dry biomass.
Photographs (a) and (b) were taken in autumn, (c) in winter and (d) in summer. We refer to destruc-
tive sampling data herein as ‘measured’ data. Total standing dry matter (TSDM) was computed as
the summation of green and dry standing biomass.
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2.3. Remote Sensing

Estimates of TSDM were derived using the ‘PastureKey’ app within Cibo Labs, which
is produced using 10 m resolution Sentinel-2 imagery provided by the European Space
Agency (ESA). Only cloud-free pixels of Sentinel-2 imagery are used by Cibo Labs, and
the application produces TSDM estimates for cloud-free paddocks every 5 days (Sentinel
2 revisit time). Cloudy pixels are detected and masked with the ‘Fmask’ algorithm [51].
Ten bands (b2, b3, b4, b5, b6, b7, b8, b8A, b11 and b12) of Sentinel-2 imagery were used
to derive TSDM products. Using a predictive machine learning approach driven by deep
neural networks (DNN), measured data are trained to predict TSDM within and across
the paddock for every satellite revisit across a property. Cibo Labs uses Sentinel-2 bands
from several thousand paddocks and dates of satellite imagery acquisition to train a three-
layer, multilayer perceptron neural network regression model using a 20–50% dropout
regularisation method. The dropout regularisation method addresses the problem of
overfitting [41].

Pasture estimates in near real-time are available from the PastureKey application
within Cibo Labs. Hereafter, the PastureKey application would be referred to as Cibo Labs
for convenience. The multilayer perceptron model can learn in real-time, complementing
the delivery of products to end-users in cloud optimised GeoTiff (COG) format. Estimates
of pasture biomass are available on demand or in a batch mode through a high-performance
computing (HPC) environment.

2.4. Comparing Measured Pasture Biomass with Satellite Estimates

On the account that Sentinel-2 could retrieve total standing green and dry matter from
the plot with a size less than 1 ha, pasture estimates from Cibo Labs were evaluated by
comparison with corresponding measured values for each time point (in each case using
the most proximal Sentinel-2 imagery). Comparisons of measured against estimated data
were assessed using, time series trendline and error bar, root mean square error, and R2

following [15,29,52].

3. Results
3.1. The Effects of Regenerative Grazing on Pasture Productivity, Consumption and Trampling

In all treatments and BAU plots, pasture biomass removal through intensive and con-
ventional (control) grazing typically shows biomass loss between pre-grazing (December
2021–January 2022) and post-grazing (January–February) in phase 1 (Figure 3). This is also
observed in phase 4, where Vault 2 and Vault 4 plots went through a post-grazing regime
(Figure 3). The actual biomass consumed in the one-day grazing for all treatments is shown
in Figure 3. As shown in Figure 3, the actual biomass utilised (see Equation (2)) through
grazing is low compared to the trampled biomass (see Equation (3)) for all treatment plots
(BAU inclusive). Therefore, trampling has a more significant effect on the TSDM than the
actual grazing (i.e., consumption).



Land 2023, 12, 1142 9 of 25
Land 2023, 12, x FOR PEER REVIEW 10 of 27 
 

 
Figure 3. Effects of grazing treatments on total standing dry matter (TSDM), computed as the sum 
of standing green DM, standing dry DM and trampled residual. The coloured small, dotted points 
show measurements obtained from five quadrats in each treatment plot; the large dot shows the 
mean for each plot. 

All treatments, including BAU plots, show similar temporal variability and trends of 
total standing biomass (Figure 4). A similar trend is observed in standing green DM and 
standing dry DM (Figures 5 and 6). This indicates that the grazing intervals and the resting 
periods (3, 6, 9, 12, and 15 months) did not significantly influence biomass recovery or 
productivity in the experiment. For instance, after the first three months of rest in phase 
1, where all treatment plots were grazed, pastures did not recover to the biomass level at 
the start of the experiment, likely due to seasonal variations in rainfall and temperature 
(Figure 5). However, following the consecutive increase in rainfall and temperature in 
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Figure 3. Effects of grazing treatment on total standing dry matter (TSDM), computed as the sum of
standing green DM, standing dry DM and trampled residual. Small dot points show measurements
obtained from five quadrats in each treatment plot; large dots show means for each plot.

All treatments, including BAU plots, show similar temporal variability and trends of
total standing biomass (Figure 4). A similar trend is observed in standing green DM and
standing dry DM (Figures 5 and 6). This indicates that the grazing intervals and the resting
periods (3, 6, 9, 12, and 15 months) did not significantly influence biomass recovery or
productivity in the experiment. For instance, after the first three months of rest in phase 1,
where all treatment plots were grazed, pastures did not recover to the biomass level at
the start of the experiment, likely due to seasonal variations in rainfall and temperature
(Figure 5). However, following the consecutive increase in rainfall and temperature in
winter through spring, total standing biomass increased, as observed in the Vaults and
Bougainville 3 and 4 treatments (Figure 5). For example, the treatment plot (Vault 1) grazed
only once (i.e., 12 months of rest) was similar to the Vault 4 plot, which was grazed every
three months. In the same way, the Vault 5 plot that has not been grazed (i.e., 15 months of
rest) is similar to the plot that was grazed every three months (Vault 4). In similar manner,
the Vault 4 treatment is similar to the Bougainville 2–4 plots that were left ungrazed after
phase 1 (Figures 3 and 4). Only Bougainville 3 plot exceeded Vault 4 treatment in the TSDM
during spring by 3000 kg DM/ha. Therefore, biomass removal and recovery through
regenerative grazing or conventional method does not influence Vaults and Bougainville
treatments (Figure 3).
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During spring, the TSDM in the Bougainville 1–4 plots varied due to rainfall, as shown
in Figures 3 and 4. The Bougainville 3 plot had more available TSDM than the Vault 5
treatment, as seen in Figure 4. Since the Bougainville plots are situated on a sloping hill, it
is uncertain if their location played a role in the significant biomass growth observed in
Bougainville 2–4 during spring, as depicted in Figure 4. The Bougainville 1 plot had the
lowest TSDM volume.

ANOVA and generalized linear models showed no significant association between
plots and pasture biomass productivity (TSDM). However, there were significant differences
when the date of grazing was used as an effect of treatment. Generally, the ANOVA test
shows the effect of grazing date is statistically significant (p < 0.001) to the TSDM, while
the post hoc Dunnett test does not show the level of interaction. Analysing the effects
of dates of treatments and TSDM further with interaction using the GML model shows
strong evidence of significant difference (p < 0.05) on 27 January 2022 by an estimated
−11,076 kg DM/ha compared to other grazing dates. The treatment plots associated with
the 27 January grazing event include Bougainville 2, Bougainville 4, Vault 1, Vault 2, Vault
3, Vault 4, and Vault 5. In contrast, there is no statistical evidence that the BAU (Lower
Bougainville, Upper Bougainville, and Vault Control) is significantly different (p > 0.1) from
variability in biomass. Therefore, we conclude that the effect of regenerative treatments (i.e.,
short, intense grazing, and rest periods) in the plots did not affect TSDM productivity and
consumption. Only the trampling effect (surface disturbed by the high density of sheep)
associated with the 27 January 2022 post-grazing event in phase 1 for Vaults (1, 2, 3, 4, and
5) and Bougainville 2 and 4 plots explained the variability in biomass. We conclude that
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regenerative grazing did not have an effect on pasture biomass productivity in the wet year
of 2022. All treatment plots have similar results.

In summary, the Vault 4 plot with three months grazing interval has the highest
volume of standing green DM compared with Vault 5 with 15 months of resting interval
(Figure 5). The Vault 5 plot with 15 months of resting interval has the highest standing dry
matter compared to other treatment plots as there was no grazing in this period (Figure 6).

3.2. Satellite Estimate of Pasture Biomass

Cibo Labs (PastureKey application) utilises Sentinel-2 imagery to estimate TSDM,
standing green DM, and standing dry DM in all the treatment plots, pre- and post-grazing
(Figures 7 and 8). The matchup of Sentinel-2 imagery with the measured biomass measure-
ments ranges from 2 to 40 days. In the summer (5 December 2021 to 13 January 2022), six
plots (Upper Bougainville, Vault 1 to 5) had a lag of 40 days between Sentinel-2 imagery
and the measured data. A two-day difference was experienced in autumn (between 3 and 5
July 2022).
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Figure 7. Measured and modelled TSDM data at Okehampton, Triabunna, Tasmania. Trampled
material is vegetation pushed against the ground surface by grazing that was measured in phase 1
(Table 1) post-grazing. Broken lines represent measured TSDM; blue solid line represents Cibo
Labs modelled TSDM. Bougainville 1 and 3 treatment plots were grazed as BAU at the start of the
experiment before subsequently being closed to grazing. Error bars represent standard error of
the mean.
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Figure 8. Measured standing green and dry pasture biomass compared with the Cibo Labs simulated
values. Broken lines represent measured green DM and dry DM, while blue solid line represents
Cibo Labs estimated green DM and dry DM. Error bars represent standard error of the mean.

Cibo Labs accounted for the variability in the TSDM in the treatment plots (be-
tween and within) but underestimated this value, compared with the measured TSDM
(Figure 9). There are instances (phases 1–4) where the satellite estimated TSDM values
closely (Bougainville 1, 2, and 4 and Vaults 1, 3, and 4) matched the measured points.
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For all the treatment plots excluding Upper Bougainville and Lower Bougainville which
went through conventional grazing (control), the Cibo Labs passes through one or more
error bars, indicating it is within an acceptable variability of the measured biomass. The
plot (Vault 4) which went through repeated grazing treatment every three months is more
closely associated with the measured variability than Vault 1 which was grazed only once,
or Vault 5 with 15 months of rest (Figure 7). The Vault 5 treatment plot has the highest
variance.
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The measured TSDM collected for the post-grazing event in Vault 5 on 27 January
2022 shows the total trampled residual (trampled green DM and trampled dry DM) was
zero which implies that biomass in this plot was lying on the surface due to the effect of the
high-density of sheep (Figure 7). In this treatment, the biomass utilised was 355 kg DM/ha
for one day of grazing [Total standing dry matter (TSDM) before grazing − Total trampled
dry matter (TTDM) after grazing, (11,076–10,721 = 355 kg DM/ha]. The unutilised trampled
residual (green and dry) that was measured, 10,721 kg DM/ha has a corresponding estimate
of 1004 kg DM/ha from the Cibo Labs. It, therefore, implies that although Cibo Labs
underestimates the TSDM, it can account for the trampled residual that is of high volume.

Sentinel-2 imagery integrated with the Cibo labs model has a better capability of
estimating standing green DM than standing dry DM (Figure 8). Although estimates are
within the variability of the measured data points, in phase 1 (except Vaults 1 and 2 and
Bougainville 1 and 2) and phase 2 of the experiment, Cibo Lab overestimated standing green
DM (Figure 8). No clear relationship exists between the measured and estimates (Figure 7)
for the 7 November 2022 (phase 4), similar to Figure 7. There is no correlation between the
measured standing dry DM and Cibo Labs estimates. Cibo Labs underestimated standing
dry DM—estimates are barely above ground level (Figure 8).

The correlation between the measured standing biomass and Cibo Labs estimates and
their respective linear regression plots with R2, mean absolute error (MAE) and root mean
squared error (RMSE) are shown in Figures 9–12.
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square error was 880 kg DM/ha.
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Figure 12. Spatiotemporal variability in pasture biomass across Okehampton. Smaller plots (ex-
panded) represent regenerative grazing treatments, while the larger plots were conventional (business-
as-usual) grazing treatments. Vaults plots 1 to 5 are shown in the lower-left expanded view, while
Bougainville plots 1 to 4 plots are at the upper-right expanded view.
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3.3. Spatial Maps Derived from Sentinel—2 Imagery and Cibo Labs Model

Cibo Labs derived Sentinel-2 maps for the treatment plots at Okehampton, Triabunna,
Tasmania show spatiotemporal changes and the variability (within and across) in pasture
biomass levels in all the treatment plots including control for pre-grazing and post-grazing
activities such as the time series plot discussed in Figure 7. Cloud-free Sentinel-2 imagery
to quantify the available pasture biomass against the ground measurement collected on 13
January 2022 before grazing the fields (paddocks) was on 5 December 2021. This makes a lag
of 40 days between the available cloud-free satellite imagery and the ground measurement.
All treatment plots started with more pasture biomass before grazing. All fields were
grazed in phase 1 and left to rest for three months. All fields were grazed in phase 1
and left to rest for three months. After rest, the ground measurement collected on 26
April indicates the treatment plots have not recovered in autumn (proximal Sentinel-2
imagery available on 24 July). However, satellite imagery available on 3rd July against the
measured pasture biomass collected on 5th July shows the plots (Vault and Bougainville)
show increasing TSDM during winter. The map indicates Bougainville 1 (bottom) is the
least-performing treatment plot with reference to phase 3 of the experiment. The maps
correspond to Figures 3 and 4 and the modelling time series in Figure 7. As shown earlier
(Figures 3 and 4), the map confirmed that Bougainville 1 is the least-performing plot.

4. Discussion
4.1. The Effects of Regenerative Grazing on Pasture Biomass Productivity, Consumption
and Trampling

This study examined the effect of regenerative grazing treatments (i.e., short, intense
grazing and rest periods) with smaller plots (less than 1 ha) on pasture productivity,
consumption, and trampling. In the treatment plots examined, regenerative grazing did
not influence pasture biomass productivity in the wet year of 2022. All treatment plots,
including the ones used for conventional grazing (control), have similar results (Figures 3–6).
ANOVA and generalized linear models (GLM) showed no significant association between
treatment plots and pasture biomass productivity (TSDM). However, there were significant
differences when the date of grazing was used as an effect of treatment (Section 3.1). GLM
model shows a strong statistical significance exists only with the treatment plots (i.e., Vault
1, Vault 2, Vault 3, Vault 4, Vault 5, Bougainville 2, and Bougainville 4) associated with the
post-grazing event of 27 January 2022 (Section 3.1). Therefore, this study concluded that
the variability in the TSDM can only be explained by the treatment plots associated with
the post-grazing regime in phase 1 of the experiment. The time series charts in Figures 3–6
confirm that although all treatment plots exhibited similar results, Vaults 4 and 5 showed
significant variability with pasture biomass productivity. Similarly, the Bougainville 2, 3,
and 4 plots benefited from rainfall to produce more biomass in the spring [53].

The effect of resting interval (3, 6, 9, 12, and 15 months) for TSDM to recover in the plots
did not contribute to biomass variability (Figures 3 and 4). The main effect of treatment
in the plots is associated with the high stocking rate, which resulted in a high volume of
trampling residual (i.e., 27 January 2022). This implies that the actual biomass utilised
(i.e., TSDM minus trampling residual) for grazing in the treatment plots was significantly
low (Figure 3). In all treatment plots (including the BAU), the recovery or productivity of
TSDM from summer through spring due to increasing rainfall followed a similar pattern
(Figure 4). This showed that the influence of weather contributed to biomass recovery in a
similar way, thereby confounding the effect of other treatments. For example, there was no
significant difference between the Vault 4 treatment, which was grazed every three months,
and Vault 5 with 15 months of rest. Similarly, there was no significant difference between
Vault 1 treatment with 12 months grazing plan and the Vault 4 plot (Figures 3 and 4).

The present study has shown that although grazing through an intensive or conven-
tional approach reduces pasture biomass [13], intensively grazed paddocks/fields through
a regenerative strategy provide pastures with adaptive management for quick biomass
recovery and reduction in bare ground. The plot (Vault 4) subjected to three months of
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resting interval utilised residual biomass from the trampling effects of grazing and opti-
mum weather conditions to produce the highest volume of standing green DM over other
treatment plots (Figure 5). Therefore, we conclude that Vault 4 is the treatment plot with the
best pasture biomass productivity. In contrast, the Vault 5 treatment plot with 15 months of
resting interval produced the highest standing dry DM compared to other plots (Figure 6).
The pasture biomass produced is actively senescing from a lack of utilisation.

We emphasise that the impact of favourable weather confounded the effect of treat-
ments on pasture biomass variability or biomass recovery. Hence, the resilience of pasture
biomass to drought could not be established. A longer resting interval is not recommended
in a situation such as this with good weather conditions. An earlier study under a simu-
lated environment of rainfall and other treatment variables considered a 30-day resting
period insufficient to recover soil samples from trampling caused by intensive grazing
rotation [54]. Although this and few other studies approached regenerative grazing in the
sense of soil recovery [54–57], the same principle as the strategy employed here (pasture
biomass utilisation) is used to stimulate microbial activities and soil functions. However,
this study is the first to use an approach where the experiment conditions followed natural
processes with no farm inputs (fertilizer, irrigation etc.) and a simulated environment.
Our results indicate that post-grazing data provides an incentive to determine the effect of
trampling, which according to the analysis in this study, is limited. Trampling residual data
provides information about the actual biomass utilised by the grazing livestock, which in
turn gives insight into liveweight gain [54]. Furthermore, the actual biomass utilised for
grazing is negligible compared to the trampled residual. Therefore, to minimise biomass
wastage through trampling while achieving regenerative grazing sustainability [8], future
work will focus on adjusting the stocking density to accommodate more grazing days (3
to 5 days). This is because, in practice, one day of grazing may be infeasible [54] with
limited land resources and logistical constraints. In addition, having 3 to 5 days of ad-
justable stocking rate instead of 1-day grazing would support a more effective intensive
rotational grazing regime within a multi-paddock system. Future research opportunities
exist in understanding the resting period that will be sustainable to recover pasture from
the trampling effect.

4.2. Satellite Estimates of Pasture Biomass

In this study, we examined the usefulness and accuracy of PastureKey, an application
from the Cibo Labs, and derived from 10 m resolution Sentinel-2 imagery estimates of total
standing dry matter to support regenerative grazing at the farm level. The usefulness of
the tool was examined with respect to capturing TSDM (standing green DM and standing
dry DM) variability in the treatment and business-usual plots, similar to the one obtained
by the destructive sampling approach. The accuracy of the Cibo Labs (used instead of
PastureKey for convenience) was then examined by performing regression analysis on the
interacting variables (standing green DM, standing dry DM, and total standing dry matter)
with the sampled biomass.

Satellite estimates derived from the Cibo Labs model are within the sampled biomass’s
variability for all treatment plots except the control (Figure 7). There is a closer correlation
and high variability in TSDM with the Vault 4 plot, which has three months of resting
interval and grazing treatment than other treatment plots. The standard error bars show
that the measure of variability with the sampled biomass (Figure 7) correlates with the post-
grazing event of 27 January 2022 for treatment plots Vault 3, Vault 4, Vault 5, Bougainville
2, and Bougainville 4, similar to the statistical (GML model) result obtained in Section 3.1.
Therefore, Cibo Labs derived from Sentinel-2 imagery can monitor the spatiotemporal
variability associated with TSDM for all post-grazing events and the plot (Vault 4) with
a regular regenerative grazing plan at the farm level. The Vault 5 plot with the 15-month
resting interval has the highest degree of uncertainty compared with other plots. In
addition, our findings reveal that Sentinel-2 imagery can account for the trampled residual
as in Vault 5, where the TSDM is zero against the trampled biomass (high volume of lying
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biomass) for the post-grazing event on 27 January (Figure 7). The total trampled residual
in this plot was 11,072 kg DM/ha compared to 1004 kg DM/ha of Cibo Labs estimated as
TSDM. While the Cibo Labs Sentinel-2-derived model could provide useful information
about regenerative grazing for the treatment plots the plots used for conventional grazing
(BAU) (Lower Bougainville, Upper Bougainville, and Vault Control) are challenging to
estimate (Figure 7).

Regarding the accuracy of the Cibo Labs estimates, the model underestimated the
total TSDM in all treatment plots with MAE of 745 kg DM/ha and RMSE of 903 kg DM/ha
(Figures 7 and 9) and overestimated the standing green DM (Figures 8 and 10). In addition,
the model significantly underestimated the standing dry DM. (Figures 8, 11 and 12). The
overestimation of the standing green DM and underestimation of the standing dry DM by
the Cibo Lab model reveals that the model calibration is too sensitive to green vegetation
and less to dry vegetation. In spring, when biomass growth reached optimum, the model
underestimated TSDM in all plots but performed better in the Bougainville plots. The
performance of the Cibo Lab model in Bougainville 2, 3, and 4 plots in spring is associated
with the slopy hill, which influences the vegetation growth, distribution, and variations
in biomass and productivity [58]. In the same way, the underestimation of TSDM in all
plots in spring was caused by environmental conditions [16,59] (excess rainfall and soil
type), which were not considered during model calibration. In general, the confounding
influence of rainfall discussed in Sections 3.1 and 4.1 hardly substantiated any variability
in the treatment plots [60]. The fact that there was no statistical interaction between the
treatment plots themselves and TSDM except with the grazing dates where we found
strong evidence of significant difference with 27 January 2022, shows that there would
have been a better correlation between satellite estimates and measured biomass with more
post-grazing events. However, the time series charts (Figures 7 and 8) show Sentinel-2
imagery and predictive machine learning model can provide estimates of pasture biomass
in monitoring regenerative grazing at the farm level. Such estimates are available as a
spatial map providing management decisions per plot as an indication of available pasture
biomass. Previous work has demonstrated the capability of machine learning to derive
pasture estimates from Sentinel-2 imagery at the farm level [16,28], though not applied to
regenerative grazing schemes.

4.3. The Feasibility of Using Sentinel-2 Imagery to Estimate Total Standing Dry Matter

Here, we demonstrated that Sentinel-2 imagery could be used to retrieve TSDM,
standing green DM, and standing dry DM through a simple but powerful predictive
machine learning to support regenerative grazing that considers a regular grazing and
recovery period. To the best of our knowledge, this study is the first to examine this
approach at the farm level. However, cloud constraints are one of the major limitations to
model performance accuracy in this study. Tasmania is considered a medium-high latitude
environment [45]. Despite using smaller fields of less than 1 ha, clouds over Tasmania
hindered the consistent availability of Sentinel-2 imagery to feed the predictive machine-
learning model used in this study. The lag effect between the available Sentinel-2 imagery
and the sampling date ranges from 2 to 40 days (Figure 12). Earlier work supports the
argument that time lag effects between field sampling and data from the satellite are a
potential source of error to model performance [61–63].

Although the model could retrieve TSDM through inherent Sentinel-2 SWIR band
inclusion [19], the association between Cibo Labs TSDM and standing dry DM shows a
weak relationship (Figures 11 and 12). Summer is characterised by a high concentration of
senescence (Figures 7, 8 and 12) intermixed with green vegetation. Hence, it is challenging
to distinguish senesced from healthy vegetation despite the high spatial resolution of
Sentinel-2 satellite [64].

A future optimisation study on estimating TSDM with a similar predictive machine
learning model will consider more robust ground/field samples that will complement
observation satellite data to improve accuracy. In the present study, the number of data
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available was limited to the summer of 2021 through the spring of 2022 on one farm. The
review of [22] suggests that the accuracy of machine learning approaches in estimating
aboveground biomass depends on the data source, the number of ground/field samples,
pasture species composition, and addressing the errors associated with the algorithms.
The improvement of pasture biomass prediction with the ANN algorithm from a similar
study on five farms in Tasmania was based on the inclusion of more input parameters
(meteorological data) to achieve 0.60 [16]. Sentinel-1 imagery, a synthetic aperture radar,
may help address cloud constraints and saturation of optical instruments in cases where
limited field datasets are available to estimate pasture biomass [65]. In addition, the
frequency of Sentinel-2 imagery can be enhanced by interpolating a daily revisit high
resolution of Planet Lab to account for missing data [64,66].

5. Conclusions

We conclude that regenerative grazing with short recovery periods (3–6 months) was
most conducive to increasing pasture production under high rainfall conditions. In the one-
day grazing treatment, sheep could not exploit selective grazing, but rather the trampling
of pasture biomass, which is caused by the disturbance from the high stocking density
in the treatment plots. The trampled residual from the post-grazing event was found to
be statistically significant, thus, providing an insight into the source of variability in the
treatment plots. In the one-day grazing, an insignificant biomass volume was utilised.
Therefore, being one of the pioneering studies in this field, there is an opportunity for
future research to understand the effect of regenerative grazing in drought or in a year
with moderate rainfall. More work is needed to understand the effects of more grazing
days (3 to 5) to make regenerative grazing sustainable. Additionally, more robust data on
post-grazing should be considered since it is the main effect in the current study.

This study demonstrated that a predictive machine learning model could be devel-
oped using Sentinel-2 time-series imagery to estimate TSDM, standing green DM, and
standing dry DM to support regenerative grazing at the farm scale. Although the model
underestimated TSDM in all the plots, it is within the variability of the measured biomass.
Specifically, the model could explain the variability in biomass for the plot (Vault 4) with a
regular grazing and recovery period. Furthermore, the model could show the treatment
plot (Vault 5) with the highest level of variance. Our subsequent study will use more
timely imagery (PlanetScope) with radar imagery (Sentinel-1) with the aim of overcoming
some of the limitations associated with the present study, including less frequent satellite
pass-overs, as well as a lack of cloud-free images.

We conclude regenerative grazing with shorter recovery periods in wet seasons is
more likely to improve grassland productivity, however, this result remains to be seen in
drier seasons (e.g., El Nino). We also showed promise in machine learning with satellite
imagery at very small field sizes, and we encourage further research into this area.
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