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Abstract: Selecting samples with non-landslide attributes significantly impacts the deep-learning
modeling of landslide susceptibility mapping. This study presents a method of information value
analysis in order to optimize the selection of negative samples used for machine learning. Recurrent
neural network (RNN) has a memory function, so when using an RNN for landslide susceptibility
mapping purposes, the input order of the landslide-influencing factors affects the resulting quality of
the model. The information value analysis calculates the landslide-influencing factors, determines
the input order of data based on the importance of any specific factor in determining the landslide
susceptibility, and improves the prediction potential of recurrent neural networks. The simple
recurrent unit (SRU), a newly proposed variant of the recurrent neural network, is characterized
by possessing a faster processing speed and currently has less application history in landslide
susceptibility mapping. This study used recurrent neural networks optimized by information value
analysis for landslide susceptibility mapping in Xinhui District, Jiangmen City, Guangdong Province,
China. Four models were constructed: the RNN model with optimized negative sample selection,
the SRU model with optimized negative sample selection, the RNN model, and the SRU model. The
results show that the RNN model with optimized negative sample selection has the best performance
in terms of AUC value (0.9280), followed by the SRU model with optimized negative sample selection
(0.9057), the RNN model (0.7277), and the SRU model (0.6355). In addition, several objective measures
of accuracy (0.8598), recall (0.8302), F1 score (0.8544), Matthews correlation coefficient (0.7206), and
the receiver operating characteristic also show that the RNN model performs the best. Therefore, the
information value analysis can be used to optimize negative sample selection in landslide sensitivity
mapping in order to improve the model’s performance; second, SRU is a weaker method than RNN
in terms of model performance.

Keywords: landslide susceptibility mapping; information value analysis; recurrent neural network;
simple recurrent unit

1. Introduction

Faced with current human societal challenges, it is more important than ever for
geoscientists to use their understanding of the earth to benefit the society [1]. The most
notable development in the field of mathematical geoscience in the last decade has been
the introduction of big data and artificial intelligence algorithms. The ability of machine
learning (ML) algorithms to handle nonlinear problems has tremendous advantages in
dealing with complex geoscience problems [2–4]. As a result, ML is now being fully uti-
lized in geoscience fields. For example, Wang et al. used unsupervised ML algorithms to
identify multielement geochemical anomalies [5], and Yu et al. used hierarchical clustering,
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singularity mapping, and the Kohonen neural network to identify Ag–Au–Pb–Zn poly-
metallic mineralization-associated geochemical anomalies [6]. In general, we are primarily
focused on geological events that have a significant impact but occur infrequently, such as
earthquakes, typhoons, vein formation, and landslides.

Landslides are natural disasters that pose a serious risk to human lives and prop-
erty and represent one of the most destructive categories of natural disasters that occur
globally [7]. Mountainous areas are especially affected by landslides, whose controlling
mechanisms are the complex geological and geographical conditions present in that land-
scape. Seventy percent of China’s area is mountainous, providing favorable conditions for
landslide occurrences, resulting in casualties and considerable economic losses [8–11]. As a
consequence, landslide susceptibility mapping (LSM), which can analyze possible spatial
areas for landslide occurrence, is an effective technique for land managers to mitigate the
effects of landslides [12,13].

Machine learning is a subdivision of artificial intelligence (AI) that uses computer
technologies to analyze and predict information by learning from the training dataset. A
variety of ML methods have been used for LSM, including Bayesian networks, decision
trees, support vector machines, random forests, and artificial networks [14–18]. It is to
be noted that in recent years, in the implementation and development of natural hazard
modelling, researchers have begun to consider the use of hybrid models. Hybrid models
combine individual models with metaheuristic algorithms, allowing the hybrid model to
eliminate the weak points inherent to the individual models to obtain more accurate results.
For example, adaptive neuro-fuzzy system-gradient-based optimization (ANFIS-GBO) is
applied to the spatial modelling of flood hazards [19]; cuckoo optimization algorithm-
multi-layer perceptron (COA-MLP) and SailFish optimizer- multi-layer perceptron (SFO-
MLP) approaches are applied to the landslide susceptibility assessment [20]; and ANFIS
integrated three optimization algorithms (ant colony optimization (ACO), genetic algorithm
(GA), and particle swarm optimization (PSO)) applied to flood susceptibility maps [21].
A variety of machine learning and deep learning models have been used to improve the
accuracy of LSM. In recent years, to obtain better deep learning and machine learning
models, researchers have adopted a variety of improved methods, such as the deep-learning
optimization algorithm [22], the hybrid ensemble-based deep-learning framework [23],
and the class-weighted algorithm combined with ML models [24].

Deep learning models have been increasingly applied in the modeling of environ-
mental variables, such as environmental remote sensing [25], PM2.5 prediction [26], and
water temperature prediction [27]. Recurrent neural networks (RNNs) are a specific kind
of neural network that not only considers the previous moment’s input but also gives the
network a “memory” function for the previous content. Based on this unique function of
the RNN approach, the order of data input will affect the model’s effectiveness. Exploring
a sequential data representation method can take advantage of the memory function of
RNNs, which allows for thorough exploration of the prediction potential of RNNs. RNNs
have been applied to LSM. Thi Ngo et al. applied RNN and CNN techniques for an LSM
of Iran at the national scale [28]. Liming Xiao et al. used long short-term memory (LSTM)
to predict landslide susceptibility along the China–Nepal Highway [29]. The common
variants of RNNs are LSTM [30] and gated recurrent units (GRUs) [31]. Recently, a simple
recurrent unit (SRU) was proposed as a new RNN variant that has a faster processing speed
than the LSTM and GRU approaches. The use of the new RNN variant, using an SRU, has
less application in LSM, and its specific performance in LSM should be further studied.

Traditional binary classifiers for machine learning usually require two sets of samples
with corresponding labels, including positive and negative samples [32]. There are often
imperfect cases in the practical applications, however, most commonly manifesting when
only positive and unlabeled samples are used in the training dataset. For non-landslide
samples, there still needs to be a specific definition and a reasonable method to obtain
them. In general, the study area is divided into landslide and non-landslide areas. Fur-
thermore, samples from non-landslide areas can be drawn randomly from non-landslide
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areas. These unlabeled samples cannot be directly considered negative samples, because
the areas of these samples are likely to be the only areas where disasters have not yet
occurred [33]. At present, the issue of non-landslide sample selection has received some
attention. Yang et al. [34] used Bayesian optimization algorithms to optimize the proportion
of landslide samples. Chang et al. [35] selected non-landslide samples multiple times and
investigated the uncertainty of non-landslide sample selection. Huang et al. [36] selected
the non-landslide samples from the non-landslide area with a low landslide susceptibility
level based on a semi-supervised multiple-layer perceptron model. Overall, there is no
universally accepted method for optimizing non-landslide sample selection due to the
differences in study areas and the logic and mechanisms behind different algorithms, which
need to be studied thoroughly.

Therefore, the main innovation of this study is to optimize the selection of negative
samples using information value analysis. Information value analysis determines the input
order of the data by calculating the influence factors and fully explores the prediction
potential of RNNs with memory function. In addition, SRU has been less studied on LSM,
and both RNN and SRU models are constructed to explore the prediction performance of
SRU through a comparative study.

2. Study Area
2.1. Description

Xinhui District, located between latitudes 22◦5′15′′ and 22◦35′01′′ N and longitudes
112◦46′55′′ and 113◦15′43′′ E, is in the south-central part of Guangdong Province (Figure 1).
The land area of the region contains 1354.71 square kilometers. Mountainous areas are
distributed in the northwest and southwest of the district, accounting for 35.84% of the total
area of the region. Plains are distributed in the southeastern, south-central and west-central
parts of the district, accounting for 43.53% of the total area of the district. The region’s
waters account for 20.63% of the total area of the region. Xinhui has a southern subtropical
maritime monsoon climate, abundant rainfall, sufficient sunshine, and mild and humid
conditions year round. The average annual temperature is 22.4 ◦C, with the highest and
lowest historical temperatures of 38.3 ◦C and 0.1 ◦C, respectively. The annual average
precipitation is 1808.3 mm. The precipitation is concentrated from April through September.
The average annual sunshine hours are 1734.1 h.

The list of landslides used in this paper, completed by the Guangdong Geological
Survey Institute, consists of 178 landslides and locations of high-risk points (Figure 1),
of which the landslide samples occurred from 2017 to 2020. Most of the landslides are
classified as sliding landslides. All the landslides in this study can be classified as moderate
(400–1000 m2) and small (<400 m2). In addition, there are rock landslides and earth
landslides. According to the report, these landslides were triggered by rainfall events that
occurred after anthropogenic activity.

2.2. Datasets

Heckmann et al. [37] stated that the increase in the samples accounted for has had
a positive impact on the LSM and has increased the model’s effectiveness. However, the
training samples used for LSM are insufficient in many cases. To solve this problem,
we collaborated with geologists to collect historical landslide points and locations with
significant potential for landslides throughout the whole region, totaling 178 points. We
used these points as samples to improve the effectiveness of the model.

In this study, 15 landslide influencing factors were considered, including elevation,
slope, aspect, plan curvature, profile curvature, degree of relief, land use, rock type, to-
pographic wetness index (TWI), terrain ruggedness index (TRI), topographic position
index (TPI), normalized difference vegetation index (NDVI) on 15 April 2014, distance
to faults, distance to rivers, and distance to roads. Detailed information on the landslide
influencing factors is shown in Table 1. The following describes the preparation for each
influencing factor.
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Figure 1. (a) Location of the study area; (b) and (c) are field photos.

The elevation, slope, aspect, plan curvature, profile curvature and degree of relief were
extracted from a digital elevation model (DEM) obtained from the Advanced Spaceborne
Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER
GDEM V2) (http://www.gscloud.cn, accessed on 11 March 2021). Slope, aspect, plan
curvature, profile curvature, and degree of relief were calculated in the MapGIS 10.2
software. The TWI and TPI were generated by the SAGA 6.1 software. The distance to
roads and the distance to rivers were produced by ArcGIS based on topographic maps at
a scale of 1:50,000. The distance to faults was produced by ArcGIS based on engineering
geological maps at a scale of 1:50,000. We obtained NDVI data for the study area from
the USGS (https://earthexplorer.usgs.gov, accessed on 20 March 2021). Land use data
and rock type data were provided by the collaboration with geologists. All factors were
converted into a raster form with a spatial resolution of 20 m. The descriptions of these
factors are shown in Table 1. Figure 2 shows the spatial distribution of these factors.

http://www.gscloud.cn
https://earthexplorer.usgs.gov
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Table 1. Description of landslide factors.

Factor Type Factors Range

Geologic Factors
Rock type Granite, Sandstone, Slate, Quaternary sediments and rivers

Distance to faults (m) (0, 6046)

Topographic Factors

Elevation (m) (0, 972)

Slope (0, 49.73)

Aspect Flat, North, Northeast, East, Southeast, South, Southwest, West,
Northwest

Plan curvature (0, 65.46)

Profile curvature (0, 11.36)

Degree of relief (0, 40.73)

TRI (0, 83.00)

TPI (−6.49, 10.96)

Water-Related Factors
Distance to rivers (m) (0, 3691)

TWI (0, 22.68)

Anthropogenic Factors Land use Farmland, Forest and grass, Residential, Bare, Water

Distance to roads (m) (0, 2704)

Vegetation Factors NDVI (−1, 1)
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Figure 2. Spatial distribution of landslide influencing factors: (a) elevation, (b) slope, (c) aspect,
(d) plan curvature, (e) profile curvature, (f) degree of relief, (g) land use, (h) rock type, (i) NDVI,
(j) distance to faults, (k) distance to river, (l) distance to roads, (m) TWI, (n) TRI, and (o) TPI.

3. Materials and Methods

Figure 3 shows the process diagram used in this study. There are six steps in this
process: (1) selecting the landslide influencing factors, (2) selecting typical negative samples
and representing landslide data in series based on the information values (IVs), (3) prepar-
ing both the training and testing datasets by random partitioning, (4) constructing RNN
and SRU models, (5) evaluating and comparing the landslide models, and (6) constructing
a landslide susceptibility map.

3.1. Information Value Analysis

Information value analysis is a data exploration technique that helps determine which
columns in a dataset have predictive power or influence on the value of a specified de-
pendent variable. Information value is a very useful concept for variable selection during
model building. The roots of the IVs are in the information theory that was proposed by
Claude Shannon [38,39]. The IV analysis is a popular tool in the banking and bond ratings
fields [40,41]. The effectiveness of landslide models can be enhanced by introducing IV into
the processing of landslide factors for LSM. The correlation coefficient can be calculated
as follows:

IV(xi) = (ni1/n1 − ni0/n0)WOE(xi) = (ni1/n1 − ni0/n0)ln
ni1/n1

ni0/n0
(1)

IV(x) =
N

∑
i=1

IV(xi) (2)

where n1 is the total number of landslide rasters, n0 is the total number of non-landslide
rasters, ni1 is the number of landslide rasters of class xi for variable x, and ni0 is the number
of non-landslide rasters of class xi for variable x. In practice, the standard rule of using the
IVs is shown in the Table 2.
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Table 2. Standard rule for using the information value.

Information Value Predictive Power

<0.02 Useless

0.02–0.1 Weak

0.1–0.3 Medium

0.3–0.5 Strong

>0.5 Suspiciously good

3.2. Recurrent Neural Network and Its Variants
3.2.1. Recurrent Neural Network

In traditional neural network models, the layers are fully connected from the input
layer to the hidden layer to the output layer, and the nodes between each layer are uncon-
nected [42,43]. Recurrent neural networks (RNNs) are a class of Artificial Neural Networks
(ANNs), and RNNs are intended to be used to process sequential data (Figure 4). Specif-
ically, the network remembers the previous information input and then applies it to the
calculation of the current output. The nodes between the hidden layers are no longer
connectionless but connected, and the input of the hidden layers includes not only the
output of the input layer but also the output of the hidden layer at the previous moment.
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Traditional recurrent neural networks are often implemented using Elman networks or
Jordan networks, both of which are similar and are three-layer networks. The Elman network
and the Jordan network are also known as “simple recurrent networks” (SRN) [44,45]. Let
xt, yt, and ht be the input vector, the output vector, and the hidden layer vector, then we
can obtain

ht = σh(Whxt + Uhht−1 + bh) (3)

yt = σy(Wyht + by) (4)

where U and W are parameter matrices, b is the bias vector, and σh and σy are activa-
tion functions.

3.2.2. Simple Recurrent Unit

The SRU is a variant of the recently proposed RNN, and the SRU and the related
work aim to propose and explore simple, fast, and more explanatory RNNs (Figure 4) [46].
Compared to other RNN variants, such as LSTM and GRU, SRU can achieve faster training
speeds due to its designed structure. Figure 5 shows the basic structure of the SRU. The
SRU is built on the same “gate” structure as the LSTM and GRU, but the difference is that
SRU removes the limitation of parallelization of that LSTM and GRU adhere to, resulting
in a much faster processing speed. The SRU has two components: “light recurrence” and
“high network”. Let xt, ft, Ct, rt, and ht be the input vector, the forget gate vector, the
current state from light recurrence, the reset gate vector, and the hidden layer vector. The
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light recurrence can be summarized as Equations (5)–(7), and the high network can be
summarized as Equations (8) and (9).

∼
xt = Wxt (5)

ft = σ(W f xt + b f ) (6)

Ct = ft � ct−1 + (1− ft)� (Wxt) (7)

rt = σ(Wrxt + br) (8)

ht = rt � g(Ct) + (1− rt)� xt (9)

where W and b are the parameter matrices. The value � is the pointwise multiplication
operation [47].
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3.3. Selection of Landslide Influencing Factor

For LSM models, inputting more data does not necessarily result in a better model,
as too much redundancy in the influencing factors considered will reduce the model’s
predictive capability [48]. Therefore, it is crucial to correctly select the landslide influencing
factors [49]. The IV analysis method has been described above, and Table 3 shows the
analysis of these influencing factors using Equations (1) and (2).
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Table 3. Information value analysis of each landslide influencing factor.

Factor Class No. of Pixels No. of
Landslides WOE IV of Each Class IV

Rock type

Granite 10,872 65 0.1029 0.0037

0.0996

Sandstone 956 15 1.0678 0.0590

Slate 3832 11 −0.6308 0.0343

Quaternary
sediments and rivers 17,340 87 −0.0724 0.0027

Distance to
faults (m)

0–400 7630 68 0.5021 0.0757

0.1031

400–800 6770 37 0.0131 0.0000

800–1200 4824 16 −0.4863 0.0274

1200–1600 3634 22 0.1554 0.0016

1600–5300 10,142 35 −0.4466 0.0494

Elevation (m)

0–50 25,588 138 −0.0001 0.0000

0.0492
50–150 3469 27 0.3667 0.0171

150–220 1227 6 −0.0981 0.0003

220–972 2716 7 −0.7385 0.0317

Slope

0–4.10 22,125 79 −0.4125 0.0935

0.3456
4.10–11.31 5752 75 0.8827 0.2181

11.31–20.48 3531 21 0.0977 0.0011

20.48–49.73 1592 3 −1.0517 0.0330

Aspect

Flat 1442 1 −2.0513 0.0781

0.1859

North 3991 14 −0.4303 0.0182

Northeast 3899 17 −0.2128 0.0048

East 4313 18 −0.2565 0.0076

Southeast 4561 17 −0.3696 0.0158

South 3746 30 0.3952 0.0217

Southwest 3404 26 0.3479 0.0149

West 3670 29 0.3818 0.0197

Northwest 3974 26 0.1930 0.0050

Plan curvature

0–5.09 2509 4 −1.2189 0.0653

0.1889
5.09–25.90 10,913 92 0.4466 0.0831

25.90–44.40 11,148 42 −0.3589 0.0366

44.40–65.46 8430 40 −0.1282 0.0039

Profile
curvature

0–0.36 16,291 24 −1.2978 0.4657

0.6907
0.36–2.32 12,123 125 0.6479 0.2170

2.32–4.72 3855 26 0.2234 0.0065

4.72–11.36 731 3 −0.2733 0.0014

Degree of relief

0–5.00 25,944 115 −0.1963 0.0275

0.0994
5.00–7.67 2721 25 0.5326 0.0309

7.67–14.53 3272 30 0.5305 0.0368

14.53–40.73 1063 8 0.3331 0.0042
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Table 3. Cont.

Factor Class No. of Pixels No. of
Landslides WOE IV of Each Class IV

TRI

<2.93 16,246 19 −1.5287 0.5894

0.88272.93–20.83 13,470 145 0.6910 0.2808

>20.83 3284 12 −0.3894 0.0125

TPI

<−0.95 3392 21 0.1378 0.0021

0.4914

(−0.95)–0.33 4460 58 0.8800 0.1678

0.33–0.28 18,924 46 −0.7971 0.2511

0.28–2.13 4648 45 0.5849 0.0655

>20.83 1576 6 −0.3484 0.0049

Distance to
rivers (m)

0–500 17,364 116 0.2139 0.0268

0.0985500–1500 12,263 55 −0.1845 0.0116

1,500–3691 3373 7 −0.9552 0.0601

TWI

<7.88 11,184 108 0.5824 0.1560

0.32077.88–16.47 20,184 68 −0.4707 0.1081

>16.47 1632 2 −1.4819 0.0566

Land use

Farmland 11,517 35 −0.5738 0.0874

0.2750

Forest and grass 13,492 95 0.2665 0.0333

Residential 3981 39 0.5968 0.0588

Bare 646 4 0.1380 0.0004

Water 3364 5 −1.2890 0.0952

Distance to
roads (m)

0–50 16,797 100 0.0987 0.0052

0.137250–350 9534 64 0.2187 0.0155

350–2704 6669 14 −0.9437 0.1165

NDVI

<0.22 3356 3 −1.7974 0.1525

0.2058
0.22–0.49 12,749 61 −0.1199 0.0052

0.49–0.67 8974 66 0.3100 0.0306

>0.67 7921 32 −0.2891 0.0174

Table 2 shows the standard rule of using the IV analysis. All IVs are higher than 0.02,
indicating that all influencing factors have certain predictive power for the occurrence of
landslides. Based on the above results, the TRI has the highest IV of 0.8827, indicating
that it may be the dominant factor, and most of the other factors are between 0.1 and 0.4,
proving that they also have a positive correlation with the landslide occurrence.

3.4. Factor Importance Ranking

From the above introduction of the architecture of RNNs and SRUs, it is clear that
RNNs are effective in processing data that have sequential properties due to their special
recurrent hidden states. Therefore, constructing models using RNNs should consider the
problem of data redundancy and the input sequence of data. In this study, we propose a
landslide data representation of RNNs, as shown in Figure 5. According to the results in
Section 3.3, first, the IVs of all the influencing factors are arranged in a descending order,
and then the influencing factors are ranked via their level of importance. Then, each pixel
in the study area is converted into a continuous sample. Thus, the data are the input into
the model in the previously ranked order of importance. Due to the special architecture
inherent to RNNs, the previous input data are related to the latter input, and the key
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information of each influencing factor that induces landslides is passed along the next
hidden state.

3.5. Selection of Negative Sample

Landslides are geological events that occur infrequently but are hazardous to our
society, and we can further define landslides as being rare events [50]. Identifying classes
of rare events and representing them from a large quantity of data are challenging due to
the insufficient number of positive samples and the absence of negative samples [51]. The
lack of positive samples has been improved by adding the risk points above, and in this
section, negative samples are selected by the weight of the evidence (WOE) method.

The WOE is calculated by Equation (1), from which it can be seen that the difference
between the ratio of the number of landslides contained in the current class to the number
of all landslide occurrences and the ratio of the number of non-landslide samples contained
in the current class to the number of all non-landslide samples in this study is the logarithm
of the two ratios. The larger the WOE is, the greater the probability of landslide events
happening for the pixels belonging to this interval, and the opposite relation results in the
probability of landslides being smaller.

To obtain the area for selecting the negative samples, the WOEs of the 15 influencing
factors for all pixels were summed and averaged in order to obtain a WOE map of the
study area, and then the region was divided into two areas: positive WOE and negative
WOE (Figure 6). To verify the effectiveness of this method, two groups of negative samples
were selected: one group was randomly selected in the area of negative WOE region, and
the other group was randomly selected directly in the study area. The number of negative
samples in both groups was the same as the number of positive samples.
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3.6. Evaluation and Comparison of Models

The validation of model strength or weakness is a key condition for assessing model
performance. The fitting accuracy has been considered a significant feature and is obtained
by comparing the model predictions with the true values in the training dataset. The
analysis and evaluation of models using the receiver operating characteristic (ROC) curves
are common in many related studies. The ROC curve is plotted by including the statistical
index values of the false-positive and true-positive ratios. The area under the ROC curve
(AUC) represents the model’s predicted value. The AUC values range between 0.5 and
1.0, with larger areas indicating a better spatial prediction performance of the model [52].
Statistical indicators such as accuracy (ACC), Matthews correlation coefficient (MCC), F1
score, and recall are added to evaluate the predictive ability of the model, and these are
calculated as follows [53–55]:

ACC =
TP + TN

TP + FP + TN + FN
(10)

MCC =
TP× TN− FP× FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(11)

F1 score =
2× TP

2× TP + FP + FN
(12)

recall =
TP

TP + FN
(13)

where TP and TN represent true positives and true negatives, and FP and FN denote false
positives and false negatives, respectively. The values of ACC, recall, and F1 score range
between 0 and 1. MCC ranges between −1 and 1. The higher the ACC, F1, and MCC
values, the better the predictive ability of the model.

4. Results
4.1. Performance of the Landslide Models

A dataset with negative samples selected by the IV analysis is input into the RNN
and SRU models, named the RNN model and SRU model. A dataset randomly selected
directly from the area of negative samples is input to the RNN and SRU models, named the
RNN_random model and SRU_random model. The models are implemented in Python
under scikit-learn (https://scikit-learn.org/stable/, accessed on 21 October 2022) and
Keras (https://keras.io/, accessed on 21 October 2022). Parameters of the RNN model
are as follows: hidden units = 40, learning rate =0.0001, batch size = 128, epoch = 500.
Parameters of the RNN model are as follows: hidden units = 40, learning rate =0.0001,
batch size = 128, epoch = 550, depth = 4, max features = 10,000.

The process of constructing the training and testing datasets is as follows: both of
our datasets include 178 positive samples and 178 negative samples in order to construct
the training and validation sets for the ML process; 70% of the positive samples (124) and
negative samples (124) are used for training, and the remaining 30% (54 and 54) are used
for testing. After training and testing the models, four machine learning models were
evaluated using five criteria: AUC, ACC, MCC, F1 score, and recall. Table 4 shows the
performance of the models. To verify that the method can work across data, we used the
five-fold cross-validation, and Table 5 shows the averages of the statistical metrics of the
five-fold cross-validation.

https://scikit-learn.org/stable/
https://keras.io/
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Table 4. Performance of the models.

Model Name ACC MCC F1 Score Recall

RNN 0.8598 0.7206 0.8544 0.8302

SRU 0.7850 0.5949 0.8099 0.9245

RNN_random 0.6887 0.3780 0.6796 0.6604

SRU_random 0.6132 0.2274 0.6306 0.6604

Table 5. The averages of the statistical metrics of 5-fold cross-validation.

Model Name ACC MCC F1 Score Recall

RNN 0.8220 0.6489 0.8278 0.8549

SRU 0.7591 0.5456 0.7639 0.8228

RNN_random 0.6570 0.3150 0.6601 0.6651

SRU_random 0.5834 0.1915 0.5869 0.5883

The results show that the performance of the RNN model and SRU model are higher
than that of the RNN_random model and SRU_random model in all four statistical metrics,
indicating that the dataset constructed with negative samples selected by information value
analysis model fitting performance is significantly higher than that of the dataset with
randomly selected negative samples. Regarding the ACC, the RNN model performs the
best and achieves its highest ACC of 0.8598, which is over 0.0748 higher than that of the
SRU (0.7850). The RNN model also achieves the highest MCC and F1 score (0.7206, 0.8544),
which are 0.1257 and 0.0445 higher than those of the SRU model. In addition, it can be
seen that the ML models trained with the IV analysis dataset outperform the ML model
trained with the randomly selected negative samples dataset in terms of the RNN and
SRU. This is evidenced by the fact that all statistical indicators for the ML models trained
with the information value analysis dataset are greater than the ML model trained with the
randomly selected negative samples dataset by more than 0.2.

Figure 7 plots the ROC curves of the four models. It can be seen that the AUC values
of both the RNN model and the SRU model are above 0.90. In contrast, the AUC values
of both the RNN_random model and the SRU_random model are low, indicating that the
RNN and SRU techniques combined with the information value analysis show excellent
predictive power for LSM. In addition, the RNN model achieves the highest AUC value
(0.928), which is superior to the other models.

Figure 8 shows the accuracy and loss curves of four models, which are used to check
the robustness of the results. When the model is optimized to the most stable level, the
curves are presented as follows: as the epoch increases, the two accuracy curves gradually
increase and level off; the two loss curves gradually decrease and level off (the loss curve
of the training set decreases and the loss curve of the test set increases, indicating that the
model may have an overfitting problem). All four models are optimized to the most robust
level without overfitting problems.
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4.2. Landslide Susceptibility Maps

When LSM is used for comparison, the maps should be classified using quantitative
methods [56]. The model output was analyzed and processed using ArcGIS. The maps
were divided into five groups: very high, high, medium, low, and very low using the
Jenks natural breaks classification method to finally obtain the landslide susceptibility
maps (Figure 9). Among the four maps, most of the historical landslide and high-risk sites
in Figure 9a–c are in the high landslide susceptibility areas, which are mainly located in
the north, southwest, and southeast due to the mountainous terrain in the northwest and
southwest of the study area and the strong human engineering activities in the northeast.
According to the statistical indicators, the map shown in Figure 9a, which was constructed
by the RNN model, is the best, compared to the map shown in Figure 9b, which was
constructed by the SRU. Figure 9a does not have too many high susceptibility areas and
does not predict low susceptibility areas such as rivers in the study area (Figure 2) as high
susceptibility areas. Figure 9c, d also predict that some river areas are moderate and high
susceptibility areas, which are not in accordance with the geomorphological conditions of
the study area. Therefore, the map shown in Figure 9a is believed to be the best portrayal
of the real-world conditions.
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The visual data analysis initially shows the excellent results of the spatial predictive
ability of the RNN model encompassing the LSM of the study area. The model evalua-
tion results can still be described using mathematical-statistical methods (Table 6). LSM
produces a model that focuses on high-susceptibility areas and models them simply and
efficiently [57]. The evaluation of the practicability of models focuses on two groups, those
with a rating of high and very high. First, we introduce the concept of landslide density
(LD), which is the frequency ratio, referring to the ratio of the percentage of landslides
(IV + V) to the percentage of groups (IV + V) in Table 6. It can be seen that the RNN
model is more practical than the SRU model because although the RNN model covers
fewer landslide and high-risk points than the SRU model (lower than 3.37%), the high
susceptibility regions are much smaller than in the SRU model (lower than 16.31%). The low
LD value of the high susceptibility regions of the SRU model also reflects the weak range
of real-world applications when compared to that of the RNN model. The RNN_random
model and SRU_random model cover too few landslide and high-risk points, indicating
that the practical applications of these two models are poor.

Table 6. Practicability of the landslide susceptibility group.

Model Group No. of
Pixels

Percentage
of Group

Percentage
of Group
(IV + V)

No. of
Landslide

Percentage
of

Landslide

Percentage
of

Landslide
(IV + V)

LD

RNN

Very low (I) 13,854 40.34%

34.96%

3 1.69%

77.53%

0.042

Low (II) 3846 11.20% 10 5.62% 0.502

Medium
(III) 4634 13.49% 27 15.17% 1.124

High (IV) 5611 16.34% 48 26.97% 1.650

Very high
(V) 6396 18.62% 90 50.56% 2.715

SRU

Very low (I) 2537 7.39%

51.27%

4 2.25%

80.90%

0.304

Low (II) 4054 11.81% 13 7.30% 0.619

Medium
(III) 10,144 29.54% 17 9.55% 0.323

High (IV) 10,200 29.70% 59 33.15% 1.116

Very high
(V) 7406 21.57% 85 47.75% 2.214

RNN_random

Very low (I) 9165 26.69%

12.99%

3 1.69%

59.55%

0.063

Low (II) 10,998 32.03% 10 5.62% 0.175

Medium
(III) 9717 28.30% 59 33.15% 1.171

High (IV) 3374 9.82% 80 44.94% 4.574

Very high
(V) 1087 3.17% 26 14.61% 4.615

SRU_random

Very low (I) 4491 13.08%

12.54%

10 5.62%

32.86%

0.430

Low (II) 8776 25.56% 41 23.03% 0.901

Medium
(III) 16,766 48.82% 69 38.76% 0.794

High (IV) 3520 10.25% 45 25.28% 2.466

Very high
(V) 788 2.29% 13 7.30% 3.183
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5. Discussion
5.1. Uniqueness of the Study Area

Although Xinhui District is neither an active seismicity area nor an extremely fragile
geological environment area, and its climate is not special, its geographic location deter-
mines its unique economic location and its research value, as shown in Figure 1. As a
new growth pole in the Guangdong Coastal Economic Belt and a destination for industrial
transfer from the east to the west of the Guangdong–Hong Kong–Macao Greater Bay Area,
the Xinhui District has become an important node district at the strategic intersection of the
Guangdong Coastal Economic Belt and the Guangdong–Hong Kong–Macao Greater Bay
Area in China, which is both an enormous opportunity and a great challenge. There will be
more and more human activities in the Xinhui District, posing a very big challenge to future
economic development and land use. Reasonable land planning cannot be separated from
reliable geological hazard investigation and evaluation. Therefore, assessing the landslide
susceptibility and the potential impacts of landslides on the economic environment can
lay the foundation for optimizing the land use patterns and reducing the geological risk in
the future.

5.2. Optimization of Non-Landslide Sample Selection

A variety of ML methods have been applied to LSM, with good results in recent years.
However, previous studies have mostly focused on applying and comparing various ML
methods to improve the performance of the models, but the selection of negative samples
used to construct the models has affected the architecture construction of ML models.
Randomly selecting non-occurring locations as negative samples will lead to considerable
pollution, and conducting unsupervised cluster analysis to select negative samples still
results in them being specified artificially, which also leads to a great deal of uncertainty
in the resultant performance of the model. Therefore, we use the IV analysis to calculate
the influencing factors based on historical landslide points to obtain negative samples that
have less pollution to produce the landslide susceptibility maps.

The data in this study are different from the positive and negative sample problem
that occurs in supervised learning; however, a positive and unlabeled (PU) problem occurs
where there are only definite positive and unlabeled samples. It can only be assumed that
the unlabeled samples may be negative samples without a level of certainty. Information
value analysis was used to obtain the WOE for the entire study area as a basis for the
selection of the negative samples. The final result comparison shows that this method works
well, and that the negative data pollution is effectively limited. The groups of influencing
factors within each pixel contain important data to consider both the positive and negative
influences they have on landslides, and the negative value indicates that the importance
is not in accordance with the daily logic. Therefore, we use the WOE with a proportional
correction IV as an indicator for the most important factors for determining the order of
the data for the input into the RNN model. The results indicate that the two slope-related
factors, the TRI and profile curvature, were the most important factors in determining
whether there was a chance of the occurrence of a landslide at that pixel location.

The problem of non-landslide sample selection has received attention, and many
methods have been proposed recently, such as determining the proportion of non-landslide
and landslide samples (because the value of negative samples is weaker than that of
landslide samples, more non-landslide samples should be selected to improve the accuracy
and avoid the imbalance of positive and negative samples caused by too many non-
landslide samples), selecting non-landslide sample sets several times to find the best
non-landslide sample set and using semi-supervised learning models. This study obtains
negative samples with less pollution through the IV analysis. Overall, various studies on
optimizing non-landslide sample selection have achieved satisfactory results. However, due
to the differences in study areas and the logic and mechanisms behind different algorithms,
there is no universally accepted method for optimizing non-landslide sample selection. A
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comparative study using different methods for selecting non-landslide samples under the
same conditions should be considered in the future.

5.3. Comprehensive Comparison of the Various Methods

Four datasets were input into the models, and Figure 9 shows that the dataset using
less noisy negative data performs significantly better than the dataset with more noisy
negative data in regard to their ROC, ACC, MCC, recall, and F1 values. After that, the
traditional RNN model was compared to the newly proposed SRU model (which both
use datasets that contain less noisy negative data) to produce two landslide susceptibility
maps. Both models have excellent accuracy (AUC > 0.900), but from Tables 4 and 5, the
RNN model generates a more reasonable area of high susceptibility for landslide events
and identifies more historical points. Therefore, the map helps regional managers make
effective decisions, and this study improves the prediction performance of deep learning
techniques represented by RNNs in LSM.

6. Conclusions

This paper focuses on landslide susceptibility mapping (LSM) in the Xinhui District
based on the RNN and SRU methods. Using the information value analysis, 15 landslide
influencing factors were calculated, and their order of input in the recurrent neural network
was determined. Then, the negative data were selected by the information value (IV)
analysis. The 178 historical landslide and high-risk points were randomly divided into a
training set and a test set for the model calculation, and the final landslide susceptibility
maps were produced by the RNN and SRU for comparison purposes. The results led
to the following conclusions: (1) the IV analysis method can improve the performance
of machine learning methods in LSM by optimizing the selection of negative samples;
(2) both the RNN and SRU models obtain excellent results in LSM (AUC > 0.900), but
the LSM performance of the SRU, a newly proposed variant of RNNs, is weaker than
the traditional RNN model in LSM; and (3) the RNN can produce accurate landslide
susceptibility maps in areas that have the geography similar to that of the Xinhui District.

However, there are some limitations to be addressed in further studies, such as better
consideration of the existing geomechanical properties, which are not well considered.
Moreover, in addition to the characteristics of the non-landslide sample itself, whether the
surrounding environment of the non-landslide area also influences the performance of the
model needs to be better determined. In the future, more focus will be made on selecting
more scientific non-landslide samples by increasing the influencing factors and analyzing
the mutual influence of the surrounding environment, etc., to ensure the accuracy of the
LSM results.
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