
Citation: Zhang, H.; Zhang, J.; Lv, Z.;

Yao, L.; Zhang, N.; Zhang, Q.

Spatio-Temporal Assessment of

Landscape Ecological Risk and

Associated Drivers: A Case Study of

the Yellow River Basin in Inner

Mongolia. Land 2023, 12, 1114.

https://doi.org/10.3390/

land12061114

Academic Editor:

Alexandru-Ionuţ Petrişor
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Abstract: The Yellow River Basin in Inner Mongolia (YRBIM) has witnessed major changes in land
use/land cover (LULC), which have had an impact on the basin’s ecosystem, in the context of fast
economic development and urbanization. This study set out to investigate the ecological risk and
key driving forces in the basin as LULC evolves. In order to evaluate the ecological risk of the basin
and use a geographic detector model to understand the causes of its spatial heterogeneity, we built
a landscape ecological risk index (ERI) model based on changes in LULC from 1990 to 2020. The
findings indicate that between 1990 and 2020, LULC modifications led to the transfer of several land
types to a small number of land types, all of which have since changed into other land types. With
high risk areas primarily located in the Hobq Desert, the Hetao irrigation area, and some portions of
the Mu Us Sandy Land, the ecological risk level in the basin is gradually decreasing. Human activities
are the main cause of the regional variation of ecological risk in the basin, with topography and
climate coming in second and third. The Yellow River Basin’s ecological danger and environmental
quality have only received a limited amount of analysis to date. This study is a crucial resource for
the development of civilization and ecological restoration in the region.

Keywords: ecosystem risk assessment; land use and land cover changes; landscape pattern;
geographical detector; Yellow River Basin in Inner Mongolia

1. Introduction

Human social productivity and material levels have rapidly increased in recent years,
which has led to more serious worldwide ecological and environmental concerns [1].
Through actions including the reclaiming of farmland, deforestation, overgrazing, the usage
of chemical fertilizers and herbicides, urbanization, and air pollution emissions, human
activities have changed the natural ecological environment [2,3]. A number of ecological
disasters, which include desertification, degradation of land quality, loss of biodiversity, and
global climate change, have been caused by these actions [3,4]. These ecological crises have
exacerbated ecological risks and have become important factors, affecting national security,
restricting economic sustainability, and healthy social development [5,6]. Ecological risk
refers to the risks it bears as a result of human activity and the natural environment, as
well as its ability to maintain its basic structure and function when disturbed by external
factors [7]. As ecological risk assessment evolved in developed countries such as the
USA and Europe in the 1970s, it focused on the relationship between human health and
environmental pollution, and in 1990, some American scholars began to combine ecological
risk assessment with regional landscape studies [7]. Since 2000, ecological risk assessment
has been integrated with landscape ecology, and the evaluation objects and evaluation
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factors have become more complex [7]. Ecology’s heterogeneity assessment is an important
research topic because it can uncover the driving factors and processes that maintain
ecosystem stability [6]. The field has also promoted qualitative and quantitative research
on natural and human factors.

Ecological risk assessment in earlier years concentrated on a single source of risk or
a single receptor and used quantitative models to assess ecological risk. Physical models
based on entropy and exposure-response methods [8], probabilistic statistical analysis
and mechanistic models based on mathematical models [9], and computer models of
artificial neural systems are examples [10]. At present, there are currently two predominant
approaches for assessing ecological risk: one involves a risk assessment model based on
ecological risk sources, using the inherent model of “risk source identification-receptor
analysis-exposure and risk characterization” to construct an ecological risk evaluation
index system in terms of risk source intensity, receptor exposure, and risk effects [11].
The other method is to build a landscape ecological risk assessment model based on the
landscape ecological process and its spatial pattern distribution changes and use remote
sensing and GIS technology to analyze the ecological risk situation [12,13]. Landscape
ecological risk is defined as the potential adverse consequences of the interaction between
landscape patterns and ecological processes under the influence of natural or human-
induced factors and can directly reflect the adverse impacts of land use/land cover (LULC)
changes on landscape components, structure, and function [14]. There have been many
studies worldwide on the relationship between landscape pattern indices, ecological risk,
and evaluation methods [15,16]. Among these, a landscape ecological risk assessment
model based on LULC data and a landscape index is widely used [17]. A landscape
ecological risk assessment model with a landscape ecology angle is more appropriate for
assessing the environmental risks caused by human interventions than risk assessment
models based on ecological risk sources [15]. Landscape heterogeneity, resilience, stability
to disturbances, and ecosystem diversity are closely related [18], all of which emphasize the
importance of landscape as an element of ecological risk assessment. Landscape ecological
risk assessment focuses more on the spatial and temporal heterogeneity of ecological
risks than traditional ecological risk assessment methods [19]. Therefore, in this paper, a
landscape model-based ecological risk assessment has been chosen to evaluate risks within
the basin.

Factors driving landscape ecological risks are currently a research hotspot. These
factors include human activities, climate, and topography that interfere with changes in
ecological risk in basins [20]. Some scholars have found that the rapid growth of the human
footprint has accelerated changes in LULC types, which has assumed an important role in
the process of inter-transfer between land types. This has put the basin under enormous
pressure and has seriously threatened the ecological recovery of the basin [21]. Climate
determines the distribution of heat and moisture at the basin scale, which in turn affects
landscape pattern changes and the spatial heterogeneity of ecological risks [22]. High-
altitude and high-slope areas are generally less disturbed by human activities, resulting
in lower landscape fragmentation levels [23]. Common methods for studying the driving
factors of ecological risks include boosted regression tree [17], c correlation analysis [24],
and geographic detector [25]. Geographic detection is a method that can detect both
numerical and qualitative data as well as the interaction of two factors on the dependent
variable [26]. As opposed to other methods, the geographic detector method can better test
influencing factors and interpret their interactions [27].

The effective ecological protection of the Yellow River Basin is of great significance
for the social and economic development of China [28]. The natural climate conditions
of the YRBIM are relatively poor, and previous regional development and unreasonable
governance have led to the degradation of the ecological barrier function of the basin [29].
Therefore, this study analyzed the LULC changes in the Inner Mongolia region of the Yellow
River Basin from 1990 to 2020. An ecological risk assessment was performed according to
the LULC changes, and the contributions of human activities, climate, and topography to
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the changes in ecological risk in the basin were quantified. The objective of this study was
to comprehensively assess the ecological environment of the YRBIM and provide financial
guidance for the sustainable ecological management of the region.

2. Materials and Methods
2.1. Study Area

The YRBIM is located in the southwest of the Inner Mongolia Autonomous Region of
China (37◦37′–41◦50′ N, 106◦20′–112◦47′ E), covering a total area of about 14,718.86 × 102 km2.
The basin runs through the Inner Mongolian Plateau at an altitude of 848–2350 m (Figure 1).
The temperate continental climate that characterizes the region, the average annual precipi-
tation in the region is 305 mm and the average annual temperature is 6.5 ◦C, is primarily
concentrated in July, August, and September. The length of the Yellow River in the basin is
843.5 km, accounting for 18.48% of the total length of the Yellow River. The YRBIM features
a complex and diverse landscape, with fertile land dominated by croplands on both banks
of the river. Furthermore, the basin includes other landforms, such as mountains, deserts,
grasslands, and forests [30].
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Figure 1. The location and topography of the YRBIM.

2.2. Analysis of LULC Change in the YRBIM

To explore the LULC changes in the YRBIM from 1990 to 2020, considering the long
time series and accessibility of the United States Geological Survey (USGS) remote sensing
data, we used Landsat5 TM and Landsat8 OLI images at 30 m resolution from the United
States Geological Survey (USGS) in 1990, 1995, 2000, 2005, 2010, 2015, and 2020 (https:
//www.usgs.gov/ (accessed on 20 May 2023)). LULC data for the YRBIM were produced
using images with less than 5% cloud cover from June to September, and data preprocessing,
such as cropping and stitching, was conducted using the Google Earth Engine platform.
Six wavelength bands (blue, green, red, NIR, and two shortwave IR) were used for feature
classification. The normalized vegetation index (NDVI), modified normalized moisture
index (MNDWI), and normalized build index (NDBI) were used as band information to
improve classification accuracy. The GPS field survey data and sample point data that were
selected using Google Earth Pro software were imported into the Google Earth Engine
(GEE) platform, of which 70% were training samples and 30% were test samples [31]. Based
on the actual situation of the YRBIM, the LULC in the study area was divided into eight
types: cropland, grassland, river, lake, swamp, construction land, forest, and bare land.
After the overall accuracy assessment and kappa coefficient validation, the overall accuracy
of the seven LULC classification results was above 80%, and although there were some
potential errors, they could generally meet the needs of the study. Using the LULC data,
ArcGIS 10.2 was used to calculate the area of each category in the YRBIM from 1990 to 2020,

https://www.usgs.gov/
https://www.usgs.gov/
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construct a land-use transfer matrix, and analyze the LULC changes in the study area over
the period from 1990 to 2020 [32].

2.3. Analysis of Spatial and Temporal Changes in Ecological Risk in the YRBIM

To analyze the spatial and temporal changes in ecological risk in the YRBIM, we used
the landscape ERI as the assessment endpoint. The calculation formula was as follows:

ERI= ∑n
i=1

Aki
Ak

Ri (1)

where ERI is the ecological risk index for each grid, Aki is the area of the ith LULC type in
the kth grid (km2), Ak is the total area of the kth grid (km2), and Ri is the ith LULC type of
the landscape loss index, calculated as follows:

Ri = Fi × Si (2)

Here, Fi is the ecological vulnerability index, which describes the vulnerability of an
ecosystem caused by strong external disturbances resulting from human activities. When
the vulnerability is low, the risk to ecosystems is also low. The Fi values of the eight LULC
types were as follows: 1 for construction land, 2 for forest, 3 for grassland, 4 for cropland,
5 for lake, 5 for swamp, 5 for river, and 6 for bare land [33], Si denotes the landscape
disturbance index for the ith LULC type [34], calculated as follows:

Si = aCi + bNi + cDi (3)

Here, Ci stands for landscape fragmentation, Ni for landscape isolation, and Di for
landscape dominance. The weights of Ci, Ni, and Di are represented by a, b, and c, respec-
tively, and reflect the impact of anthropogenic disturbance on the ecosystem (a + b + c = 1).
Depending on the extent of their effects, a, b, and c were assigned values of 0.5, 0.3, and 0.2,
respectively [35].

Ci reflects the change process of landscape structure, function, and ecology and is
calculated as follows:

Ci =
ni
Ai

(4)

Here, Ai is the area of the ith LULC type (km2) and ni is the number of patches of the
ith LULC type.

Ni represents the degree of separation of different patches in the landscape: the higher
the number, the more dispersed the landscape and the more the complexity of the landscape
distribution. The calculation formula is as follows:

Ni =
A

2Ai

√
ni
A

(5)

where A is the total study area (km2), and ni and Ai are given by Equation (4).
Di reflects the extent to which the patch shape affects the ecological processes within

the patch, with larger values indicating a more complex patch shape. It is calculated as
follows [36]:

Di =
2 ln(Pi/4)

ln Ai
(6)

where Pi is the perimeter of the ith landscape in the grid.
Using the fishnet tool in ArcGIS 10.2, we divided the study area into 9547 grids with a

width and height of 4 km. The 1990–2020 ERI values in each grid [37] were calculated [12]
using the kriging interpolation tool in ArcGIS 10.2.

To determine the spatial distribution of different risk levels within the YRBIM, eco-
logical risks were classified into five levels based on the natural breakpoint method using
ArcGIS 10.2: lowest risk area (ERI≤ 0.0195), lower risk area (0.0195 < ERI≤ 0.0235), middle
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risk area (0.0235 < ERI ≤ 0.0275), higher risk area (0.0275 < ERI ≤ 0.0315), and the highest
risk zone (ERI > 0.0315).

To understand whether there is an aggregation effect of ecological risks in the YRBIM,
spatial autocorrelation analysis was chosen to reflect the similarity of ERI values of spatially
adjacent or nearby units [38]; it was calculated as follows:

I =
∑n

i=1 ∑m
i=1 wij(xi −

−
x)(xj −

−
x)

(xi −
−
x)2∑n

i=1 ∑m
i=1 Wij

(7)

where xi and xy are the values of the variables in adjacent paired spatial units, Wij is the

spatial weight matrix, and
−
x is the mean of the attribute values. Moran’s I index was

calculated using ArcGIS 10.2 to measure the global autocorrelation of ecological risk. When
Moran’s I index is greater than 0, the results have a significant positive correlation; when
Moran’s I index is less than 0, the results have a significant negative correlation.

To understand whether there are areas of high-value aggregation (hot spots) and
low-value aggregation (cold spots) in the YRBIM for ecological risk indices, cold and hot
spot analysis (Getis-Ord Gi*) was chosen to identify the spatial distribution of cold and hot
spots [39]. The calculation equation is as follows:

Gi∗ =
∑n

j=1 wijxj −
−
x∑n

j=1 wij

[

√
∑n

j=1 xj
2

n−1 ]

√
n∑n

j=1 wij
2−(∑n

j=1 wij)2

n−1

(8)

−
x =

1
n

n

∑
j=1

xi (9)

where xi and xj are the observed values of cells ‘i’ and ‘j’, wij is the spatial weight between xi

and xj,
−
x is the mean of the landscape ecological risk index, and n is the number of grid cells.

Gi* is the local autocorrelation index for the area i. The larger the absolute value of Gi*, the
more statistically significant it is, indicating that the result cannot be generated randomly.
When Gi* > 0, it means that the area is a hot spot area with high-value aggregation; when
Gi* < 0, it means that the area is a cold spot area with low-value aggregation; when Gi* = 0,
it means that the result is not statistically significant when it is randomly generated. The
cold hotspot analysis tool of ArcGIS 10.2 was used to analyze the obtained Gi* values, and
significance tests were conducted to obtain the cold hotspot areas with confidence intervals
and to determine their spatial clustering locations.

2.4. Analysis of Spatial Heterogeneity Driving Ecological Risk in the YRBIM

The spatial and temporal variability of ecological risk is mainly driven by a combi-
nation of human activities, climate, and topography. In this paper, six drivers, namely,
DEM digital elevation model, slope, annual precipitation, population density, NDVI, and
anthropogenic disturbance index, were selected to drive the spatial heterogeneity of eco-
logical risk in the YRBIM. The digital elevation model (DEM) with a spatial resolution of
30 m was downloaded from the Geospatial Data Cloud website of the Computer Network
Centre of the Chinese Academy of Sciences (https://www.gscloud.cn/ (accessed on 20
May 2023)); slope data were extracted from the DEM data in GIS; annual precipitation data
were downloaded from the precipitation data set of Zhai and Zhu’s team at Hehai Univer-
sity (http://www.scidb.cn/cstr/31253.11.sciencedb.01607/ (accessed on 20 May 2023));
population density data were downloaded from the Worldpop global population dataset
(https://www.worldpop.org/ (accessed on 20 May 2023)); and Normalized Difference Veg-
etation Index(NDVI) data were downloaded from the Chinese Academy of Sciences Data
Centre for Resource and Environmental Sciences (CAS) (http://www.resdc.cn/ (accessed
on 20 May 2023)).

https://www.gscloud.cn/
http://www.scidb.cn/cstr/31253.11.sciencedb.01607/
https://www.worldpop.org/
http://www.resdc.cn/
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To analyze the impact of anthropogenic disturbance degree on the ecological risk of
the landscape in the study area, with reference to previous research results [40,41] and
combined with the actual situation in the study area, the following formula was calculated:

HD =
∑m

i=1 UIiSi

S
(10)

where HD is the anthropogenic disturbance of the ith grid, UIi is the disturbance index of
the ith landscape type, Si is the area of the ith landscape type (km2), S is the total area of
the grid cells (km2), and m is the number of landscape types.

The factor detection and interaction detection functions in the geographic detector
spatial analysis model [42,43] were selected to analyze the effects of individual factors on
the study variables and the effects of multiple factor interactions on the variables. The six
drivers’ data collected were reclassified using ArcGIS 10.2 before being sampled separately,
and the sampling results were imported into the geographic detector model for analysis,
and were calculated as follows:

q = 1− ∑L
h=1 Nkσk

2

Nσ2 = 1− SSW
SST

(11)

where the value of q measures the impact of each driver on ERI and has a value range of
(0–1). The larger the value, the greater the influence of the factor on ERI and the more
pronounced the influence on the spatial analysis of ERI; h is the partition sequence the
number of the independent variable; L is the total number of partitions; Nk and N are the
total number of rasters in each partition and the region, respectively; σk

2 and σ2 are the
variance of each partition and the variance of the ecological risk of the landscape in the
region. SSW and SST are the sum of variance within layers and the total variance of the
whole region, respectively.

3. Results
3.1. Spatial and Temporal Characteristics of LULC Change

The largest and most widely distributed LULC type in the study area was grassland,
followed by cropland and bare land. Cropland, rivers, lakes, swamps, and construction
land were mainly located on the northern bank of the Yellow River, while forests were
concentrated in the northeastern part of the basin. Bare land was mainly in the middle and
southeastern parts of the basin (Figure 2). From 1990 to 2020, the areas of grassland, bare
land, and swamps showed an overall decreasing trend, decreasing by 1093.44 × 104 ha,
191.20 × 104 ha, and 16.72 × 104 ha, respectively. The areas of cropland, forest, and con-
struction land increased by 17.09 × 104 ha, 29.46 × 104 ha, and 11.94 × 104 ha, respectively.
The areas of rivers and lakes kept fluctuating but remained the same (Figure 3).

The LULC transfer from 1990 to 2020 was mainly reflected in the transformation
of grassland and bare land into other land types (Table 1). Grassland and bare land
lost 110.68 × 104 ha and 85.48 × 104 ha, respectively, and the area of both that trans-
ferred to cropland, forest land, rivers, lakes, and construction land was 89.76 × 104 ha,
63.15 × 104 ha, 2.70 × 104 ha, 1.70 × 104 ha, 2.98 × 104 ha, and 50.22 × 104 ha and
13.62 × 104 ha, 0.61 × 104 ha, 101.94 × 104 ha, 2.07 × 104 ha, 0.41 × 104 ha, 1.15 × 104 ha,
and 10.28 × 104 ha.
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Table 1. LULC-type transition matrix from 1990 to 2020 (104 ha).

1990/2020 Cropland Forest Grassland Rivers Lakes Swamp Construction
Land

Bare
Land Total

Cropland 72.16 4.77 26.49 1.00 0.16 1.32 7.66 3.53 117.09
Forest 1.51 24.46 2.59 0.15 0.04 0.19 0.51 0.01 29.46

Grassland 89.76 63.15 845.69 2.70 1.70 2.98 50.22 37.23 1093.44
Rivers 0.86 0.04 0.90 3.02 0.33 0.60 1.07 0.83 7.65
Lakes 0.14 0.04 0.24 0.36 2.64 0.51 0.39 0.06 4.37

Swamp 4.42 0.14 2.70 1.83 0.53 2.73 2.28 2.09 16.72
Building 2.05 0.18 2.22 0.28 0.06 0.24 6.05 0.85 11.94
Bare land 13.62 0.61 101.94 2.07 0.41 1.15 10.28 61.12 191.20

Total 184.53 93.38 982.76 11.41 5.87 9.72 78.48 105.72

3.2. Spatial and Temporal Variation in Landscape Ecological Risk

The average ecological risk value between 1990 and 2020 for the overall YRBIM
landscape were 0.024086, 0.02386, 0.023039, 0.022854, 0.022486, 0.022486, 0.022385, and
0.022516, respectively, with a decreasing trend in the ecological risk level. Lower risk areas
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were the most widespread, whereas high and higher risk areas were mainly concentrated in
the central and southeastern regions (Figure 4). The share of area in low risk areas continued
to trend upwards, with an increase of 183,782.79 × 104 ha. The percentage of area in high
and higher risk areas showed a decreasing trend, with a decrease of 80,857.45 × 104 ha
and 99,008.01 × 104 ha, respectively, while the area share of low and medium risk areas
remained the same, at approximately 10% and 17%, respectively (Table 2).

Land 2023, 12, x FOR PEER REVIEW 8 of 16 
 

Building 2.05 0.18 2.22 0.28 0.06 0.24 6.05 0.85 11.94 

Bare land 13.62 0.61 101.94 2.07 0.41 1.15 10.28 61.12 191.20 

Total 184.53 93.38 982.76 11.41 5.87 9.72 78.48 105.72  

3.2. Spatial and Temporal Variation in Landscape Ecological Risk 

The average ecological risk value between 1990 and 2020 for the overall YRBIM land-

scape were 0.024086, 0.02386, 0.023039, 0.022854, 0.022486, 0.022486, 0.022385, and 

0.022516, respectively, with a decreasing trend in the ecological risk level. Lower risk areas 

were the most widespread, whereas high and higher risk areas were mainly concentrated 

in the central and southeastern regions (Figure 4). The share of area in low risk areas con-

tinued to trend upwards, with an increase of 183,782.79 × 104 ha. The percentage of area 

in high and higher risk areas showed a decreasing trend, with a decrease of 80,857.45 × 104 

ha and 99,008.01 × 104 ha, respectively, while the area share of low and medium risk areas 

remained the same, at approximately 10% and 17%, respectively (Table 2). 

 

Figure 4. Landscape ecological risk classification from 1990 to 2020. 

Table 2. Area and proportion of different risk levels. 

 Lowest Risk Lower Risk Middle Risk Higher Risk Highest Risk 

 
Percent 

(%) 

Area (104 

ha) 

Percent 

(%) 

Area (104 

ha) 

Percent 

(%) 

Area (104 

ha) 

Percent 

(%) 

Area (104 

ha) 
Percent (%) 

Area (104 

ha) 

1990 10.86% 143,869.68 46.59% 617,184.18 17.65% 233,826.30 15.35% 203,295.78 9.55% 126,554.94 

1995 9.74% 129,007.44 48.73% 64,5529.50 18.73% 248,102.10 14.38% 190,527.75 8.42% 111,564.09 

2000 10.90% 144,393.84 54.50% 721,953.54 19.71% 261,117.09 10.30% 136,412.91 4.59% 60,853.41 

2005 11.75% 155,696.58 54.59% 723,161.34 20.03% 265,330.89 9.76% 129,247.83 3.87% 51,294.25 

2010 15.07% 199,674.18 57.26% 758,584.62 13.72% 181,704.87 9.74% 129,068.73 4.20% 55,698.42 

2015 9.81% 129,933.09 62.66% 830,081.25 18.01% 238,548.51 6.51% 862,24.19 3.01% 39,917.73 

2020 10.71% 141,858.63 60.46% 800,966.97 17.51% 231,920.01 7.87% 104,287.77 3.45% 45,697.49 

The global Moran’s value for landscape ecological risk in the YRBIM from 1990 to 

2020 ranged from to 0 to 1, with a more significant positive spatial correlation and aggre-

gation effect. In addition, Moran’s I index showed a decreasing trend from 1990 to 2020 

despite fluctuations (Figure 5). 

Figure 4. Landscape ecological risk classification from 1990 to 2020.
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(104 ha)

1990 10.86% 143,869.68 46.59% 617,184.18 17.65% 233,826.30 15.35% 203,295.78 9.55% 126,554.94
1995 9.74% 129,007.44 48.73% 64,5529.50 18.73% 248,102.10 14.38% 190,527.75 8.42% 111,564.09
2000 10.90% 144,393.84 54.50% 721,953.54 19.71% 261,117.09 10.30% 136,412.91 4.59% 60,853.41
2005 11.75% 155,696.58 54.59% 723,161.34 20.03% 265,330.89 9.76% 129,247.83 3.87% 51,294.25
2010 15.07% 199,674.18 57.26% 758,584.62 13.72% 181,704.87 9.74% 129,068.73 4.20% 55,698.42
2015 9.81% 129,933.09 62.66% 830,081.25 18.01% 238,548.51 6.51% 862,24.19 3.01% 39,917.73
2020 10.71% 141,858.63 60.46% 800,966.97 17.51% 231,920.01 7.87% 104,287.77 3.45% 45,697.49

The global Moran’s value for landscape ecological risk in the YRBIM from 1990 to 2020
ranged from to 0 to 1, with a more significant positive spatial correlation and aggregation
effect. In addition, Moran’s I index showed a decreasing trend from 1990 to 2020 despite
fluctuations (Figure 5).

Hot spots in the YRBIM were mainly concentrated in the central and southeastern
parts of the basin, whereas cold spots were mainly distributed in the northern, south-
central, and western parts. Thirty years ago, the distribution of hot spot areas did not
change considerably, whereas the cold spot areas decreased significantly in the northern
and central parts of the basin after 2010 (Figure 6). The areas of both cold and hot spots
showed a decreasing trend, decreasing by 184.39 × 104 ha and 39.58 × 104 ha, respectively
(Figure 7).
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3.3. Analysis of the Drivers of Change in Landscape Ecology Risk

Anthropogenic disturbance and elevation were the two main factors that strongly
influenced changes in landscape ecological risk in the YRBIM (Figure 8). The contribution
of any two of the factors listed is greater than the contribution of a solitary factor, with
the interaction mainly being a two-factor enhancement or nonlinear enhancement. The
interactions between anthropogenic and natural factors were stronger than those between
natural factors (Figure 9).
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4. Discussion
4.1. Characteristics of Land Type Transfer in the YRBIM

In the YRBIM, there is a concentration of land transfer from several land types to a
few land types and from a few land types to other land types to varying degrees, showing
a ‘many-to-one’ and ‘one-to-many’ pattern of transfer. This finding is consistent with the
results of Qu [29] regarding LULC change in the entire Yellow River Basin. During the land
transfer process, grasslands and bare land play an important role in “area transfer out”.
Grasslands and deserts are the most well-known landscape symbols in Inner Mongolia,
and grassland and bare land are also two of the larger and more widespread land types
in the basin, making them advantageous for transfer to other land types in the regional
development process [44]. Cropland and construction land are important players in the
process of land transfer, with “area transfer”. The Hetao area in the northern part of the
basin has assumed the burden of food production since ancient times and has an important
strategic position [45] where food security has become a major concern [46]. In addition,
The establishment and the development of the “Hohhot-Baotou-Ordos“ economic circle
in the basin [47] has made cropland and construction land the main targets for other land
types to be transferred.

4.2. Ecological Risks in the YRBIM Show a Decreasing Trend

From 1990 to 2020, the ecological risk of the YRBIM decreased. The spatial distribution
of ecological risk hot spot areas and cold spot areas concerning their ecological risk levels
remained the same, and the hot spot areas also showed a decreasing trend. This is in
agreement with the results of Du et al.’s [48] ecological risk evaluation of the Yellow River
Basin in the last few years. The gradient distribution pattern of the risk levels was closely
related to LULC changes [33]. From 1990 to 2020, the overall area of low risk areas in
the study area increased and the area of high risk areas decreased, mainly owing to the
large shift from grassland and bare land to cropland, construction land, and forest during
the study period, and the landscape dominance increased. Landscape fragmentation and
separation decreased significantly [18], leading to a shift in risk levels to lower levels. The
ecological risk-sensitive areas (hot spot areas) of the basin mainly contain land types such as
cropland, bare land, and construction land, which have a high degree of landscape fragility
and strong human interference. Cold areas of ecological risk in the basin are mainly located
in forests or grasslands where the level of human activity is comparatively low, with high
vegetation cover and low landscape fragmentation, and where forests can improve the
quality of soil and the stability of ecosystems. At the same time, government control and
regulation of industrial pollutant emissions, pollution of water and soil resources, and
rational planning of land type changes in recent decades have also led to an increase in
ecosystem stability and a reduction in landscape fragmentation and separation.

4.3. Human Activity Is the Dominant Factor Driving Ecological Risk Change in the YRBIM

Topography, climate, and human activities jointly drive changes in ecological risk in
the YRBIM [49], but human activities contribute to the dominant role of ecological risk
change in this area, which is in agreement with the results of Deng et al. [50] in their
exploration of the drivers of ecological risk in the Yellow River Basin. The greater the
intensity of human activities, the more damage is done to the surface landscape, reducing
its ecological stability. In contrast, the ecological risk was significantly lower at high
altitudes than at low altitudes, as found by Hamed et al. [20] in their study on the drivers
of ecological risk in the Dongjiang River Basin. The ecological integrity of the landscape
was well-maintained because less landscape disturbance occurs at higher elevations. A
range of ecological conservation and rehabilitation projects, such as the integrated soil
and hydrological conservation project initiated in the 1990s, have led to increased land
use [51], which reflects the effects of ecological civilization construction and ecological
conservation [52] to a certain extent [42]. The people of Inner Mongolia have a long
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history of living in harmony with nature, and the scientific concept of sustainable grassland
exploitation dates back to the time of Genghis Khan [53].

4.4. Policy Recommendations and Research Limitations

The YRBIM plays a critical role in the general development and ecological security of
the Yellow River Basin and the entire region [54]. With the progress of ecological civiliza-
tion construction projects and the further strengthening of urbanization, the mechanism of
coordinated regional development will improve [55]. However, issues such as landscape
fragmentation and increased ecological risk due to unreasonable land development and
utilization during the process of social and economic development pose considerable chal-
lenges. Therefore, it is crucial to follow the principle of protection against overproduction
in the process of regional development: build a “mountain, water, field, forest, lake, grass,
and sand” community of destiny [56], prioritize the impact of urban construction, agricul-
tural development, and mineral resource development on the environment, strengthen
land use planning in areas sensitive to ecological risks, and strictly control the scale of
construction land. Future research in ecological risk management will focus on prevention
before loss rather than recovery after loss, and we need to look at ways to enhancing the
connectivity and integrity of regional landscapes, reducing the concentration of risky areas,
and mitigating the pressure of ecological risks.

The LULC-based approach to landscape ecological risk assessment is a useful tool that
can be applied to multiscale areas and can achieve spatial and temporal representation of
multisource risks without extensive field observations [2,33]. However, there are several
inconclusive factors in this study. First, the results of landscape ecological risk assessment
are significantly reliant on the accuracy of the LULC. Therefore, inaccuracies in LULC data
may cause uncertainty in the ecological risk assessment of the landscape [57]. Although
the overall accuracy of the seven LULC datasets used in this study was higher than 80%,
errors in LULC data cannot be eliminated. Therefore, increasing the accuracy of LULC data
should be a priority for future research. Second, landscape ecological risk assessment is
only considered for the landscape. In the future, the sustainable development of the YRBIM
can be analyzed from multiple perspectives, including those related to human activities
and economic factors [58]. Third, the landscape ecological risk assessment method only
considers the proportion of the area of different landscape types and lacks the ecological
meaning of ecological risk [33]. Despite these uncertainties, this study is significant in
assessing the ecological risk in the YRBIM based on a more widely applied method that
validates the effectiveness of conservation policies to some extent. This work can provide
support for protecting the eco-quality of the basin.

5. Conclusions

This study analyzed the spatial and temporal changes in ecological risk and its drivers
in the YRBIM based on LULC data from 1990 to 2020. We found that high ecological risk
areas were primarily concentrated in the central part of the basin, in the Hetao Irrigation
Basin and the Hobq Desert, as well as in the southeastern part of the basin, in the Mu Us
Sandy Land. The ecological risk situation is gradually improving, with human activities
being the main factor driving the changes in ecological risk in the basin. To further enhance
environmental protection in the area, the Chinese government has enacted the Yellow River
Protection Law and initiated several remediation projects aimed at enhancing the ecological
sustainability of the Yellow River Basin. This study provides important reference material
for the ecological restoration of the YRBIM, the construction of an ecological civilization,
suggestions for global environmental governance, and the building of a community of life.
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