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Abstract: Land use change detection (LUCD) is a critical technology with applications in various
fields, including forest disturbance, cropland changes, and urban expansion. However, the current
review articles on LUCD tend to be limited in scope, rendering a comprehensive review challenging
due to the vast number of publications. This paper systematically reviewed 3512 articles retrieved
from the Web of Science Core database between 1985 and 2022, utilizing a combination of bibliometric
analysis and machine learning methods with LUCD as the main focus. The results indicated an
exponential increase in the number of LUCD studies, indicating continued growth in this research
field. Commonly used methods include classification-based, threshold-based, model-based, and deep
learning-based change detection, with research themes encompassing forest logging and vegetation
succession, urban landscape dynamics, and biodiversity conservation and management. To build an
intelligent change detection system, researchers need to develop a flexible framework that integrates
data preprocessing, feature extraction, land use type interpretation, and accuracy evaluation, given
the continuous evolution and application of remote sensing data, deep learning, big data, and artificial
intelligence.

Keywords: bibliometric analysis; LUCD; machine learning; web of science; topic evolution

1. Introduction

Land use and land cover (LULC) are fundamental topics in global change research,
serving as the basis for human survival and development [1]. Changes in land use at
various scales have significant impacts on land cover, which is crucial for research on
global climate change, ecological environment monitoring, and related fields [2]. Change
detection involves identifying differences in the state of an object or phenomenon over time,
providing an accurate reflection of changes that occur over an extended period [3]. The
timely and precise detection of changes in global land use/cover is closely linked to various
aspects of global change, facilitating a better understanding of the relationship between
humans and natural phenomena and better resource management and utilization [4–7].

Remote sensing (RS) is the primary means of LUCD [8], allowing for the analysis of
changes in land use characteristics and processes by applying datasets from different time
periods and covering large areas. RS imagery offers several advantages, such as broad
coverage, long coverage periods, and relatively convenient data processing, making it a
major data source for detecting land use changes over recent decades [9–11]. Several remote
sensing satellites have been launched, providing datasets with different time and spatial
resolutions. The Landsat series, which was launched by the United States in 1972 and
increased the satellite image resolution to 30 m in 1982 with Landsat−4, has become one
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of the main data sources for researchers to detect changes in land use [12]. Other remote
sensing satellites, such as the moderate-resolution imaging spectroradiometer (MODIS) and
advanced very high-resolution radiometer (AVHRR), have also been widely used due to
their advantages of large coverage area and high temporal resolution. Time-series datasets
extracted from these satellites, such as the normalized difference vegetation index (NDVI),
are important data sources for detecting vegetation changes and extracting cultivated land
information [13]. In recent years, Sentinel−2, Landsat−8, and synthetic aperture radar
mounted on uncrewed aerial vehicles have been increasingly used thanks to their higher
temporal and spatial resolutions and faster revisit periods, driving the rapid development
of technology for LUCD [14–16].

The emergence of multi-platform, multi-sensor, and multi-source remote sensing
images, along with the increasing complexity of land use/cover change types, has led
to the development of various LUCD techniques, such as classification-based change
detection [17], time-series change detection [18], model-based change detection [19,20],
and deep learning-based change detection [21,22]. While monitoring changes in Earth’s
surface features is crucial, different authors often reach varying conclusions due to the
dependence of change detection techniques on the data source and the landscape and
environment of the study area, as well as various complex factors [9,23,24]. Existing
literature reviews primarily focus on the research on LUCD techniques without providing
a comprehensive analysis of the theme, current situation, and future development trends
of change detection [25].

Bibliometrics is a valuable tool for analyzing scientific research progress by quantify-
ing information related to a specific research topic in online citation databases. This tool
identifies authors, publication quantities, and research institutions involved in the field,
helping to identify key literature, provide keywords, and quantify the current status and
future trends of research topics [26,27]. HistCite [28], SATI [29], and CiteSpace [30] are
some common bibliometric analysis tools. Bibliometrix, an open-source tool developed
by Massimo Aria in 2017 [31], offers more literature information analysis and result vi-
sualization functions and can import and convert data from multiple database sources,
such as Web of Science, Scopus, Dimensions, and Lens [32]. In geography-related fields,
many scholars use Bibliometrix to perform quantitative analyses of literature. Xie et al. [33]
employed data mining and quantitative analysis to investigate research papers related
to land degradation from 1990 to 2019 in the Web of Science Core Collection database to
reveal the current research status of global land degradation and to assess future research
directions. Xu et al. [34] conducted a bibliometric analysis of land consolidation literature
from the Web of Science Core Collection database from 2000 to 2020, aiming to identify the
historical development, evolutionary trajectory, and future trends of this theme. However,
the manual selection of research literature by expert knowledge remains a disadvantage
of bibliometrics, as this process is time-consuming, labor-intensive, and may miss poten-
tially related studies, leading to narrow searches [35]. In cases where the literature growth
rate outpaces the available time for manual review, it may not be possible to conduct a
comprehensive search of the field [36].

To streamline the process of screening potentially relevant literature in the field of
LUCD, this study employed a machine learning algorithm combined with bibliometric
analysis. Specifically, the machine learning algorithm was used to select relevant literature,
followed by a comprehensive analysis and evaluation of LUCD-related publications in the
Web of Science Core Collection from 1985 to 2022 using the Bibliometrix R package. This
study aimed to answer the following research questions: (1) What is the trend in scientific
literature production on LUCD? (2) How have the journals, countries, and institutions
involved in LUCD research evolved? (3) What are the current research topics and hotspots
in this field, and how have they developed over time? (4) What are the potential future
research directions in this field?
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2. Data Collection and Cleaning
2.1. Data Sources

The Web of Science (WOS) Core Collection database was chosen as the search platform
for this study due to its reputation as one of the largest and most comprehensive academic
resource databases globally. With over 12,000 scientific journals across a range of fields,
including natural sciences, computer science, biology, arts, and humanities, the database
provides comprehensive coverage and high-quality indexed literature, making it an ideal
source for retrieving a substantial number of relevant and high-quality literature entries for
this study [37].

Based on our established search formula and restriction criteria, we conducted a search
in the topic field (including title, abstract, author keywords, and keywords plus) of the Web
of Science (WOS) core collection database on 22 December 2022, and we obtained a total of
5717 publications from the period of 1985 to 2022. We applied several filters to ensure the
quality of the search results, including limiting the language to English and focusing only
on document types such as “articles” and “review papers,” while excluding book chapters
and editorial materials. These restrictions were put in place to ensure the relevance and
reliability of the obtained literature. Our search formula, developed through repeated
experimentation and expert consultation, used the terms TS = ((change detection) AND
(land use OR land cover OR land use/cover OR lucc OR land use and land cover OR lulc)).
To ensure that the literature search results were confined to the relevant disciplinary fields,
we performed a data cleansing process, which is elaborated on in the following section.
Subsequently, duplicate and irrelevant data were removed in Bibliometrix, resulting in 3512
publications that met the established criteria. The complete records and cited references
were exported in “.txt” format. The entire data collection and cleaning process is illustrated
in Figure 1.

Figure 1. Data collection and cleaning flow diagram.

2.2. Data Cleaning

To restrict the literature search results to the relevant disciplinary fields, we initially
limited the search to five relevant disciplines, namely remote sensing, imaging science
and photographic technology, geophysics, geography, and regional and urban planning
categories in the WOS database. This approach yielded 2553 articles, but we found that
many relevant papers were also published in interdisciplinary journals. Thus, we further
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expanded the search to include other disciplines, resulting in 3164 publications. We then
employed machine learning algorithms to identify papers related to the research topic from
this set of publications.

Naive Bayes (NB) is a widely used algorithm for text classification due to its speed
and efficiency [38,39]. The algorithm calculates the probability of a data point belonging to
a particular category using Bayes’ theorem, which assumes the independence of all features
in the data point [40]. The formula for Bayes’ theorem is as follows:

P(yi|xi) =
P(xi|yi)P(yi)

P(xi)
(1)

where xi represents the data point, and yi represents the class that the data point belongs
to.

P(xi) is a constant given by the data and can be ignored. Assuming that the features
in xi are independent, the probability of a class can be estimated as follows:

P(yi|xi) ∝ P(yi)
M

∏
j=1

P
(
xi,j

∣∣yi
)

(2)

where xi,j represents the features from xi, and M is the total number of features in xi. P(yi)
and P

(
xi,j

∣∣yi
)

are estimated directly from the data. Finally, the probabilities of the classes
are normalized to sum up to 1, and the class with the highest probability is chosen as the
final prediction.

The data cleaning process was conducted using ASReview, an open-source machine
learning tool developed by van de Schoot et al. in 2021, which applies active learning
to assist with the process [35]. The specific steps of the data cleaning process were as
follows: First, the 3164 publications were uploaded into the ASReview software in RIS
format, which contains metadata such as the title and abstract. Then, the authors used their
expert knowledge to screen the titles and abstracts of the data records as prior knowledge
and categorized them into two groups: “relevant” and “irrelevant”. When the number
of “relevant” and “irrelevant” records reached five, the user could choose to perform a
classification algorithm. These records were used to train the first model. After training,
all articles in the database were sorted in order of “most relevant” to “least relevant”, and
each record was presented to the authors one by one. The authors confirmed whether
the record was “relevant” or “irrelevant”, and the algorithm was retrained based on this
input. This entire training process was iterated, and the relevance ranking of the articles
was continuously updated until the authors decided to stop confirmation.

The dynamic resampling data balancing strategy is a crucial step during the model
training process, as the data of “relevant” and “not relevant” can be extremely unbalanced.
In this study, we implemented this strategy by reducing the number of irrelevant records
and increasing the number of relevant records through duplication, ensuring that the
total number of records in the training data remained the same. We also used the default
settings of the ASReview software for the remaining parameters, including TF-IDF feature
extraction and a deterministic query strategy sampling. These default values were chosen
based on their consistently high performance and low computation time in benchmark
tests on multiple datasets [41].

The use of a data-driven combination stopping rule is a practical approach for bal-
ancing the risk of missing potentially relevant papers and the unnecessary cost of further
reading irrelevant papers. In this study, we classified 3164 unidentified literature works
into two categories based on WOS correlation ranking, and a target recall rate of 95%
was set as the stopping criterion for the top 1000 papers classified as “potentially highly
relevant papers” [36,42,43]. This ensured that a high percentage of relevant papers were
included in the final dataset. For the remaining 2164 papers classified as “potentially low
relevance papers”, a backup stopping criterion of screening for 30 consecutive papers
labeled as “irrelevant” was used [44]. This allowed for a more efficient screening process
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and minimized the number of irrelevant papers that needed to be read. As a result, a total
of 1001 papers related to LUCD were obtained in the interdisciplinary dataset.

3. Research Methodology

In order to analyze the research topic, current status, and trends of LUCD, we utilized
Biblioshiny, a data analysis framework based on Bibliometrix that can be accessed online.
Unlike Bibliometrix, which is operated through code commands, Biblioshiny utilizes the
shiny package to encapsulate Bibliometrix’s core code and provides a range of statistical
methods and visual charts to cater to the needs of researchers [31].

The research methods in the field of LUCD include three parts (Figure 2), namely
basic situation analysis, knowledge base analysis, and thematic evolution analysis [45].
Basic situation analysis includes the quantitative analysis of publications and published
journals, the analysis of cooperative networks of major research countries and institutions,
and the multiple correspondence analysis of author keywords. The quantitative analysis of
publications is to explore the changes in the number of publications and reveal the devel-
opment history of LUCD [46]. By setting the node type to “country” and “institution” in
Biblioshiny, a collaborative network analysis was conducted on the country and institution
to clarify the distribution of research forces in the field of LUCD [47]. The author keywords
are a concise summary of the author’s paper content, which can succinctly express the
content of the paper [48]. By setting the node type of “author keywords” for multiple
correspondence analysis, it can be used to identify research topics and hotspots in this
field. Knowledge base analysis involves the analysis of highly cited papers, which can
represent groundbreaking research achievements in this field and form a knowledge base
for LUCD [46]. In order to visualize the evolution of research objects and methods in the
field of LUCD, a Sankey of the evolution of research topics in this field over time was
generated using the “conceptual structure” function in Biblioshiny, which was used to
identify the forefront and hotspots of different development stages in this field [49].

Figure 2. Research design and workflow.
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4. Results
4.1. Analysis of the Number of Articles Issued and the Publishing Journal
4.1.1. Annual Trends in the Number of Publications

The analysis of the research history of LUCD began with a summary of the number
of publications over the years (Figure 3). The period from 1985 to 2000 can be regarded
as the embryonic stage of development. During this period, the number of publications
in any year did not exceed 20, with a total of 89 publications. The publications in these
16 years only accounted for 2.5% of the total publications. The research content was
relatively concentrated on the data sources and pre-processing of LUCD, such as image
registration [50], radiometric correction [51], and their effects on change detection accuracy.
The data sources for change detection mainly included SAR [52,53], AVHRR [54], and
MODIS [55]. Although the number of publications during this period was not abundant,
the development of different data sources laid the foundation for subsequent research.

Figure 3. Annual publication trend of land use change detection (LUCD) from 1985 to 2022.

During 2001 to 2010, there was a steady increase in publications related to LUCD, with
an average of 48.4 papers published per year, accounting for 13.78% of the total publications
during this period. This period was a period of rapid development in the field and was
characterized by the emergence of high spatial resolution remote sensing data, such as
Landsat MSS/TM and SPOT, which led to an increase in research on change detection
technology [23]. The focus of research during this period was primarily on improving
LUCD methods and combining multiple methods and multi-source remote sensing data
for more accurate results [56–58].

In recent years, there has been a surge in publications related to LUCD, indicating an
active stage of development in this field. Research papers published since 2011 accounted
for a significant proportion of the total publications collected in this study, which was
83.68% of all publications. In the period from 2019 to 2022 alone, more than 300 papers
were published each year. During this period, various research methods were employed,
including classification-based change detection using dual image pairs or time-series
data [59,60], object-oriented change detection [9,10], model-based change detection [19],
and deep learning-based multi-temporal remote sensing image change detection [61,62].
The advancement of LUCD techniques can be attributed to the development of remote
sensing, computer, and GIS technologies and to the improvement of the spatial resolution
of data sources.

4.1.2. Analysis of Publishing Journals

To study the development of the research area in different journals, the sources of
journals were ranked considering the number of publications, the h-index, and TC (total
citations) (Table 1). The h-index was used to measure the importance and impact of the
authors’ cumulative research contributions, and the TC represented the total citations for
all articles from a journal source. A total of 515 journals have published research on LUCD,
with the top five journals contributing to 1403 papers and accounting for 39.95% of the total
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papers. However, a large number of journals have only published one paper on this topic,
with only 47 journals publishing more than 10 papers. The top five journals in terms of the
number of published papers are Remote Sensing (585 papers), Remote Sensing of Environment
(313 papers), International Journal of Remote Sensing (242 papers), IEEE Transactions on
Geoscience and Remote Sensing (153 papers), and IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing (110 papers) (Table 1). The journal Remote Sensing showed
the highest annual growth rate in the number of published papers, followed by Remote
Sensing of Environment (Figure 4). The top ten influential journals were determined based
on their local citation counts, with Remote Sensing of Environment having the highest total
local citation count (Table 1). Other journals included International Journal of Remote Sensing,
Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing, and ISPRS Journal of
Photogrammetry and Remote Sensing. These journals played a crucial role in advancing the
research on LUCD during the study period.

Table 1. Top 10 journals with the most publications on land use change detection (LUCD) from 1985
to 2022.

Sources Articles Total Citations (TC) H-Index

Remote Sensing 585 11,380 49
Remote Sensing of Environment 313 36,064 98

International Journal of Remote Sensing 242 13,400 50
IEEE Transactions on Geoscience and Remote Sensing 153 7961 47

IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing 110 2019 25

International Journal of Applied Earth Observation and
Geoinformation 88 2310 28

ISPRS Journal of Photogrammetry and Remote Sensing 88 5593 38
Environmental Monitoring and Assessment 65 1438 19

Journal of Applied Remote Sensing 58 591 12
Photogrammetric Engineering and Remote Sensing 58 2962 26

Note: The h-index is a quantitative index used to characterize the number and level of academic outputs, which
was proposed by American physicist Jorge E. Hirsch in 2005; the higher the value, the greater the impact of the
journal in the field.

Figure 4. Source growth curve of land use change detection (LUCD) journals from 1985 to 2022.

4.2. Analysis of Key Countries and Institutions

The publication of research articles from different countries reflects the level of
importance and influence of each country in the field of LUCD. Since the inception of
this field, 3144 institutions from 95 countries or regions have participated in LUCD re-
search. Among the top 10 countries in terms of publication quantity, four Asian countries
(China, India, Iran, and Turkey), two American countries (the United States and Canada),
three European countries (the United Kingdom, Germany, and Italy), and one Oceanian
country (Australia) are represented (Table S1). China had the highest number of publica-
tions with 758, but a relatively low average citation frequency of 20.94 indicates the need
for improving the quality of papers. The United States had the highest average citation
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frequency at 63.34, followed by Australia and Canada with 49.8 and 48.24, respectively,
indicating strong research capabilities in LUCD among developed countries. A network
analysis of national collaboration (Figure 5) showed that the United States exhibited the
most national connections, followed by China and Germany. Despite having more publi-
cations, China had lower national connections than the United States, indicating greater
independence among Chinese scientists. Regular collaborations occur among the United
States, China, Japan, Canada, and Brazil, while Germany, the United Kingdom, Spain,
France, and Italy often collaborate among themselves.

Figure 5. National cooperation network in the field of land use change detection (LUCD) from 1985 to 2022.

The institutions that have made significant contributions to LUCD research include
Wuhan University, University of Maryland, and Chinese Academy of Sciences, with 195,
94, and 88 papers published, respectively (Table S2). Beijing Normal University and China
University of Geosciences have also made notable contributions with 85 and 54 papers,
respectively. The collaboration network among institutions is presented in Figure 6, where
Beijing Normal University is highly central and exhibits the highest degree of collaboration.
Wuhan University and the University of Maryland are also highly central in the collabora-
tion network. These institutions, with high publication frequency and centrality, have been
at the forefront of LUCD research. Notably, Beijing Normal University, Chinese Academy
of Sciences, and the Institute of Geographic Sciences and Natural Resources Research of the
Chinese Academy of Sciences frequently collaborate, while Wuhan University, University
of Southampton, and China University of Geosciences are also commonly seen in collab-
orations. Additionally, University of Maryland, Boston University, and NASA Goddard
Space Flight Center have a close collaboration.
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Figure 6. Institutional cooperation network in the field of land use change detection (LUCD) from
1985 to 2022.

4.3. Keyword Analysis
4.3.1. High-Frequency Keyword Analysis

In this study, 7922 author keywords were identified from 3512 research papers on
LUCD published between 1985 and 2022. Figure 7 shows the trend of author keywords over
time, with the X-axis indicating the year and the Y-axis indicating the keywords. The band
represents the time span of the keyword’s attention, and the size of the dot in the middle
represents the frequency of the keyword’s appearance. The top ten keywords ranked by
frequency of appearance are change detection, remote sensing, Landsat, land use/cover,
GIS, time series, MODIS, classification, land cover change, and NDVI. These keywords
reflect the essential data sources, research fields, and methods used in LUCD research, with
deforestation and urbanization also emerging as key research topics.

The blue bands in Figure 7 represent the duration of attention that each keyword
has received over time, indicating changing research trends in LUCD. Keywords with
blue bands further to the right indicate emerging or evolving research areas. Recent hot
topics in LUCD research related to sensors include “Sentinel−2” and “synthetic aperture
radar”. Methods commonly used in recent research include “random forest”, “machine
learning”, and “deep learning”. “Google Earth Engine” has become a popular online
remote sensing platform for researchers, enabling the deployment of algorithms online and
the use of supercomputers for processing massive amounts of data. Additionally, “time
series analysis” and “high spatial resolution” are keywords that reflect current research
status and trends in remote sensing images for LUCD.
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Figure 7. Time trend of author keywords in the field of land use change detection (LUCD) from 1985
to 2022.

4.3.2. Multiple Correspondence Analysis of High-Frequency Keywords

Multiple correspondence analysis involves clustering keywords based on their cor-
relation and reflecting the similarity between keywords based on their planar distance.
This provides a classification representation of how commonly used keywords are ap-
plied together. For example, when two different keywords, such as “urbanization” and
“expansion”, are used together in multiple articles, they can be clustered together, with
keywords closer to the center receiving greater attention [31,63]. This analysis can provide
an intuitive reflection of the research direction and themes of a particular research field [33].
The results (Figure 8) indicated that the research direction and themes of LUCD can be
broadly classified into five categories. While a comprehensive review of the content of
these five clusters exceeds the scope of this paper, searching for multiple keywords that
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appear in the same cluster using Biblioshiny yields several illustrative examples. These
examples demonstrate the diversity, breadth, and intellectual depth of the work performed
in each cluster.

Figure 8. Multiple correspondence analysis of keywords in the field of land use change detection
(LUCD) from 1985 to 2022.

The first category pertains to data sources and methods utilized for LUCD, which can be
categorized into three types: classification-based change detection, threshold-based vegetation
index change detection, and model-based change detection. Classification-based change
detection is a widely used and conventional method involving the classification of single-date,
dual-date, or time series images, followed by a comparison of classification results of different
time periods to obtain change detection information. This method can avoid the radiometric
normalization problem caused by multiple sources of sensors and can provide information on
the type, time, and location of land use change. However, the accuracy of change detection
depends on the accuracy of classification, and the classification errors of each time period may
accumulate and ultimately affect the accuracy of change detection.

The threshold-based vegetation index change detection method is specific to a single
land use type and involves setting spectral features with physical significance, or using the
maximum, minimum, and mean values of the spectrum as detection indicators. A certain
threshold is set to extract change information based on the temporal patterns of the target’s
detection indicators. This method fully utilizes time information and is convenient for
calculation, compensating for the accumulation of errors caused by classification. However,
the method requires consistency in time series data and strict preprocessing to exclude the
influence of multi-source sensors. Additionally, the determination of the threshold relies on
expert experience and the characteristics of different regions, and it cannot directly reflect
the specific information of land feature type changes.

In recent years, various model-based methods have been proposed by scholars to
obtain more accurate change detection results. These methods are generally based on
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statistical assumptions and achieve change detection by constructing a spatiotemporal
change model. Their advantages lie in their ability to effectively overcome the accumulation
of errors caused by classification, as well as simplifying the problem. However, their
disadvantages include difficulties in modeling, as well as the fact that the correctness and
accuracy of the model directly determine the results of change detection.

In the second category, the research content of LUCD is typically associated with
specific environmental factors such as forest logging, climate change, and land resource
management. For instance, Milevski et al. [64] utilized Landsat images from 1999 and 2021
to apply the comparison method before and after forest logging in southern Serbia. The
study showed that forest logging resulted in land degradation, increased surface runoff,
and soil erosion, and it caused significant economic and environmental impacts. Similarly,
Mekasha et al. [65] employed multi-temporal Landsat and MODIS images to generate land
use maps of Ethiopia. The results indicated that forest areas increased, while agricultural
land decreased from 1985 to 2019, which highlights the need to establish a sustainable
forest management system in the region.

The third category primarily deals with land use changes resulting from the process
of urbanization, and the research focus is mostly on China [66,67]. For example, Zhang
et al. [68] proposed a sub-pixel method that uses multiple temporal Landsat TM images to
detect land cover changes in the urban landscape of Urumqi. The results indicated that
the sub-pixel change detection method can effectively detect minor changes in urban land
cover in moderately spatial resolution images. Deng et al. [69] studied the spatiotemporal
dynamics and changes in land use and landscape patterns in the rapid urbanization
process of China from 1996 to 2006 by integrating high spatial resolution SPOT images and
employing change detection methods. The results demonstrated that the landscape pattern
in China underwent a fundamental transformation from being agriculture-dominated to
urban-dominated within a decade.

The fourth category is focused on the dynamics of landscapes and land cover [70].
For example, Kpienbaareh et al. [71] used a change detection method with four Landsat
images to assess land dynamics in the urban landscape of Navrongo, Ghana. The results
showed that from 1986 to 2016, land use transitioned from agricultural land and bare
land to built-up areas. Li et al. [72] classified land use into five categories (primary forest,
secondary forest, agricultural land, urban areas, and water bodies) using Landsat images
from 2011, 2014, and 2017 in the Amazon highway region. They analyzed the classified
images to detect changes and found that population and economic growth significantly
impacted forest logging and agricultural land dynamics in the region.

The fifth category of LUCD research focuses on biodiversity and protected areas.
Kangabam et al. [73] employed change detection methods to assess changes in land use
patterns in the Loktak Lake biodiversity hotspot located in India-Myanmar over the past
38 years. The study revealed a general increase in agricultural and residential areas,
accompanied by a significant decrease in vegetation. These changes in land use patterns
pose a serious threat to the local biodiversity. Scharsich et al. [74] analyzed land cover and
land use changes in and around the Matobo National Park in Zimbabwe between 1989 and
2014. The study showed a decrease in agricultural land area and an increase in forested
areas around the protected area, indicating that rapid land reforms played a critical role in
land use changes in the area.

4.4. Analysis of Highly Cited Papers

By identifying the top ten locally cited papers (Table 2), the most representative and
influential research content of LUCD can be represented, promoting the accumulation
of the LUCD knowledge base. Out of ten publications, seven research papers and three
reviews were included. The most commonly cited publication is the review by Lu et al. [23],
which comprehensively explored the mainstream LUCD method before the publication
of this literature. By linking different change detection technologies, data sources, and
research areas, the key factors for the successful implementation of change detection were



Land 2023, 12, 1050 13 of 26

discussed. It provided a detailed list of the advantages and disadvantages of different
change detection algorithms, emphasizing that no method is the best or suitable for all
situations. The main reason why this publication is widely cited may be that it provides a
detailed summary of the research progress of LUCD from several aspects: data selection
and preprocessing, change detection technology, post-processing, and accuracy evaluation,
and it provides suggestions on how to choose appropriate change detection methods. The
review by Coppin et al. [24] published at the same time as this article is often cited. This
publication focused on studying land use changes caused by ecosystem changes that are
gradual (vegetation succession) or sudden (fires, floods, etc.), and it proposed insights
and requirements for LUCD’s ability to address complex dynamic changes in spatial
scope, background, and long-term trends. It discussed the future development of LUCD
in ecosystem monitoring. Hussain et al. [9] compared traditional pixel- and statistical-
based change detection techniques with object-oriented change detection techniques and
discussed spatial data mining (DM) technology, which can help improve classification
results by exploring different classification features to automatically or semi-automatically
select decision thresholds for change detection. This article proposed that object-oriented
change detection methods and data mining techniques may have great potential in the
application of high-resolution or very high-resolution (VHR) images.

In the seven most-cited research articles, Song et al. [51] addressed the pre-processing
steps in LUCD and argued that atmospheric correction is not a necessary step before
conducting change detection. The authors suggested that image classification and change
detection methods only require atmospheric correction when training data from one time
or location are applied to another time or location. Yuan et al. [56] used multi-temporal
Landsat TM data and supervised maximum likelihood classification to monitor and map
land cover changes in the study area using post-classification change detection methods.
Although this method can provide information on the type, time, and location of land use
changes, its change detection accuracy is highly dependent on classification accuracy, and
classification errors for each time period can accumulate and ultimately affect the accuracy
of LUCD. Bruzzone and Prieto [75] proposed an unsupervised classification method using
Bayesian rule analysis that does not require prior knowledge of the surveyed area and
does not rely on prior statistical information. However, LUCD based on unsupervised
classification methods faces challenges in identifying and labeling change trajectories.

Three highly cited research papers in LUCD proposed model-based approaches. Zhu
and Woodcock [19] introduced the Continuous Change Detection and Classification (CCDC)
model, which aims to detect various types of land cover changes and classify them based on
detection results. The model uses the deviation of predicted values from observed values as
the change metric, and a three-fold root mean square error is used to judge changes in land
cover types. While the CCDC model has been widely used in the field of time-series change
detection of remote sensing images, it requires high-frequency and clear observations to
construct time series models and may not be accurate for regions with persistent snow or
cloud cover. Additionally, the CCDC model calculates changes pixel-by-pixel and does not
consider spatial features, which may introduce noise into the results.

Kennedy et al. [20] presented the Landsat-based Detection of Trends in Disturbance
and Recovery (LandTrendr) model for identifying vegetation disturbances from Landsat
time series data. The LandTrendr model segments the spectral or extracted index time
series trajectories based on the detected changes to identify change information. However,
it is a pixel-based method and does not consider spatial relationships between pixels.
Additionally, it can only provide the year in which changes occurred and does not provide
information on the “from-to” land cover transitions.

Verbesselt et al. [13] proposed the Breaks for Additive Seasonal and Trend (BFAST)
model based on MODIS 16-day composite NDVI time series data. The model decomposes
the original NDVI time series data into three components: seasonal, trend, and residual.
The seasonal and trend components are fitted separately using harmonic and piecewise
linear models, respectively. The Bayesian information criterion determines the number and
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locations of change points using least squares estimation. The BFAST model is commonly
used to detect vegetation change information in NDVI and EVI data of remote sensing
images, such as MODIS and Landsat. Although the BFAST method can determine the
timing and spatial location of changes, it cannot provide “from-to” information. Moreover,
the method detects changes pixel-by-pixel and does not consider spatial information.

Table 2. Top 10 locally cited articles in the land use change detection (LUCD) field from 1985 to 2022.

Reference DOI Year
Local

Citations
(LC)

LC Per Year
Global

Citations
(GC)

GC Per
Year

LC/GC
Ratio (%)

[23] 10.1080/0143116031000139863 2004 521 26.05 1824 91.2 28.56
[24] 10.1080/0143116031000101675 2004 394 19.7 1395 69.75 28.24
[9] 10.1016/j.isprsjprs.2013.03.006 2013 215 19.5455 830 75.4545 25.90

[76] 10.1080/014311699213659 1999 201 8.04 654 26.16 30.73
[19] 10.1016/j.rse.2014.01.011 2014 190 19 773 77.3 24.58
[56] 10.1016/j.rse.2005.08.006 2005 182 9.5789 649 34.1579 28.04
[20] 10.1016/j.rse.2010.07.008 2010 162 11.5714 942 67.2857 17.20
[75] 10.1109/36.843009 2000 151 6.2917 855 35.625 17.66
[13] 10.1016/j.rse.2009.08.014 2010 149 10.6429 969 69.2143 15.38
[51] 10.1016/S0034-4257(00)00169-3 2001 135 5.8696 1228 53.3913 10.99

4.5. Analysis of the Development and Evolution of LUCD

By considering the growth trend of publications in the field of LUCD (Figure 2), we
divided the study period into four different stages based on the year 2000, 2010, and
2020 as time nodes, and we analyzed the evolution of research development over time
(Figure 9). In general, the number of keywords increased from the first stage to the second
stage and then decreased in the third and fourth stages. Among them, “change detection”
and “remote sensing” were consistently present throughout the study, confirming that
remote sensing is the mainstream method for LUCD. Over the past three decades of LUCD
development, numerous satellites have been launched, expanding the data sources of
remote sensing imagery, and scholars have proposed a multitude of LUCD methods and
algorithms, providing powerful technical support for this field. This chapter summarizes
the development history of change detection to provide researchers in this field with a
clearer understanding.

Figure 9. Theme evolution in the field of land use change detection (LUCD) from 1985 to 2022.
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4.5.1. Development of LUCD Data Sources

The methods for LUCD may vary depending on the satellite data sources used. In
this study, the main satellite sensors available for LUCD were summarized by analyzing
the articles in the database (Figure 10). The United States has been at the forefront of the
field of remote sensing since the launch of the world’s first meteorological satellite in 1961,
which marked the beginning of the development of remote sensing satellites. In 1972,
the first Landsat−1 satellite was launched, providing moderate resolution and long-term
time-series remote sensing data. In 1979, the third generation of meteorological satellites,
the NOAA series, was launched, and the AVHRR sensor carried on it was widely used in
large-scale land use change detection [54]. In 1982, the Landsat−4 satellite was launched,
increasing the resolution to 30 m [77]. In 1986, France launched the Systeme Probatoire
d’Observation de la Terre (SPOT−1) satellite, successfully increasing the spatial resolution
to 10 m. The SPOT−4 satellite, launched in 1998, added the mid-infrared spectral band,
enabling the classification and identification of plants and the detection of ice and snow [78].
In 1991, the European Space Agency launched the Earth Remote Sensing Satellite (ERS−1),
which carried a Synthetic Aperture Radar (SAR) with a spatial resolution of 30 m, enabling
the monitoring of global land ecosystem cycles.

Figure 10. Satellite data and launch time used in different periods of land use change detection
(LUCD).

In the development stage of LUCD, the emergence of high spatiotemporal resolution
remote sensing imagery has brought significant convenience to LUCD. In 1999, the United
States launched the first Terra satellite, and two years later, the Aqua satellite was launched.
The MODIS sensor carried by the Aqua satellite replaced the AVHRR sensor due to its
global coverage, wide spectral range, and short revisit period, and it has been widely
used in large-scale LUCD [79,80]. Landsat series satellite imagery has become the most
commonly used data source for LUCD due to it having the longest image span and a
relatively high spatial resolution [19,59,81,82].

During the active phase of LUCD, high spatial and temporal resolution imagery has
been widely applied, and sub-meter resolution imagery has started to be used. In 1999,
the United States successfully launched the IKONOS satellite, which became the world’s
first commercial remote sensing satellite with a resolution of better than 1 m. Subsequently,
in 2001, the QuickBird satellite was successfully launched, updating the resolution to
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sub-meter level [10]. Since then, more and more sub-meter remote sensing satellites have
been successfully launched, such as the WorldView−1 satellite launched in 2007 with a
resolution of 0.5 m, the GeoEye satellite launched in 2008 with a resolution of 0.41 m, and
the WorldView−3 satellite launched in 2014 with a resolution of 0.31 m [83,84]. In recent
years, in addition to using these satellites for LUCD, Landsat−8 and Sentinel−2 satellites
have brought new vitality to large-scale, long-term LUCD due to their extensive, free, and
global availability [85]. In addition, the use of unmanned aerial vehicles for LUCD has
become a popular method in the past two years [86].

4.5.2. Development of LUCD Methods

By reviewing and analyzing research papers from different stages in the development
of land use change detection methods, the temporal evolution of these methods was
summarized and presented (Table 3).

The early stage (1985–2000) was characterized by the limitation of technology, which
led to the dominance of pixel-based statistical methods in LUCD. The method mainly em-
ployed simple algebraic operations on corresponding bands of medium- to low-resolution
remote sensing images to obtain the difference image, which was then segmented using
adaptive or manually determined thresholds to obtain the final change detection results.
The earliest algebraic method used was the image differencing method. Lambin et al. [54]
proposed a change vector analysis method that used NDVI derived from time series AVHRR
images to detect the process of land cover change. The method was straightforward and
resulted in a difference image by a simple subtraction of the two images. Additionally, the
image ratio method was also commonly used and differed from the differencing method in
that it used division to obtain the difference image. Olsson [87] utilized a band regression
method, which constructed a linear regression function to detect changes in the forest area.
Although the method was simple, it was highly sensitive to noise levels and geometric
registration accuracy between images, and it did not consider the two-dimensional distri-
bution characteristics of radiation information from different sensors. Another method of
LUCD involved the visual interpretation of two land use maps or aerial images to detect
changes in land use between the two images. However, this method was time-consuming
and laborious, and the data were difficult to obtain [88,89].

During the development phase (2001–2010), the focus of LUCD shifted towards using
post-classification change detection methods in combination with remote sensing imagery.
In this approach, the participating remote sensing images are first classified to obtain their
respective classification images. Then, these classification images are compared according to
their corresponding locations to obtain the final change detection map. Various information-
aided classifications, including GIS, were widely applied. Bagan et al. [90] evaluated the
dynamic trend of land cover change in the Korqin Sandy Land using a post-classification
change detection method with four Landsat images from 1975 to 2007. Results showed a
large-scale conversion of grassland and forest to cropland over the past three decades, with
desertification posing a serious threat to the local population. Additionally, Wolter et al. [91]
quantified the forest land use type transitions in northeastern Minnesota using a Landsat
time-series from 1990–1995. Results indicated that mature forest gradually transformed into
early-successional types, such as grassland and conifer forest land, due to human activities,
floods, and fires. During this period, keywords such as “NDVI” and “MODIS” emerged,
indicating that scholars began to pay attention to using vegetation indices for change detection.
Lunetta et al. [92] monitored land use change in the Albermarle-Pamlico estuarine system
(APES) in the United States using MODIS NDVI time series from 2001 to 2005. Although this
method has the advantage of being cost-effective and fast, it has a lower spatial resolution,
which may lead to a loss of spatial details in change detection, making it only suitable for
large-scale change detection analysis. Furthermore, this method can only provide information
about the timing of change and cannot give specific “from-to” information.

In the active phase (2011–2020), with the rise of machine learning, new opportunities
emerged for LUCD. Machine learning algorithms such as support vector machines (SVM),
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random forests (RF), and artificial neural networks (ANN) have been widely used in
remote sensing image classification, improving the accuracy of image change detection.
Meanwhile, with the commercialization of high spatial resolution remote sensing images,
the basic unit of change detection has gradually shifted from pixels to objects, and object-
based image analysis techniques have been introduced into the analysis of LUCD. This
technique can effectively improve the initial classification accuracy of images and reduce
the influence of classification errors on change detection results. In addition, to obtain more
accurate change detection results, scholars have proposed various model-based methods
by considering the temporal relationship between data image sequences. In addition to the
two main data sources, Landsat and NDVI, many scholars have applied LiDAR to land use
change research. For example, Yu et al. [14] used multi-spectral LiDAR data to generate
a set of feature images and trained a hybrid capsule network composed of encoder and
decoder networks for accurate land cover classification. Kamps et al. [15] combined LiDAR
data with multi-temporal orthophotos to quantify land use change caused by deep-seated
landslides near the village of Doren in Austria from 2006 to 2012. In addition, due to
the high spatial and temporal resolution of Sentinel−2 satellite images, they have been
widely used in LUCD, playing an important role in forest succession [93], fallow land
reclamation [94], and the monitoring of land use change in mining areas [95].

In the climax phase (2021–2022), big data and artificial intelligence have led to a new
wave of development in LUCD. With the development of remote sensing big data and
artificial intelligence, deep learning methods have rapidly been introduced to LUCD. As an
effective means of feature extraction for high-resolution remote sensing data, deep learning
methods provide a new approach for image classification and change detection of high-
resolution imagery. Feizizadeh et al. [21] developed a fuzzy object-based image analysis
and deep learning (FOBIA-DL) method to analyze Landsat imagery from 1990 to 2020 in
the Urmia Lake region of northern Iran, investigating the impact of land use and land cover
change on drought and comparing it with SVM, RF, and decision tree (CART). The results
indicated that the method combining object-based and deep learning approaches had the
highest image classification accuracy. Moncrieff [22] used a convolutional neural network
(CNN) and transformer to detect land cover changes in South Africa’s critically endangered
fynbos ecosystem, demonstrating the enormous potential of this method in the continuous
monitoring of habitat loss. Currently, related research is increasing rapidly, indicating that
the new thinking and new mode of the big data and artificial intelligence era will have a
significant impact on LUCD methods.

Table 3. Evolution of methods in the field of land use change detection (LUCD) from 1985 to 2022.

Data Sources Study Region Year Change Detection
Methods

Overall Accuracy
(%) References

AVHRR on
NOAA−9 and

NOAA−11
West Africa 1987–1989 Change-vector

analysis (CVA) -/- [54]

Aerial images Carolina bay and
bay-like wetlands 1951, 1992 Visual interpretation -/- [89]

Landsat TM images USA 1988, 1994 Generalized linear
models (GLMs) -/- [96]

Land cover map Northern Patagonia,
Argentina 1913, 1985

Visual interpretation
and field

investigation
84.4 [88]

Landsat TM images Neuse River Basin 1993, 2000 Multiband image
difference 80–91 [97]



Land 2023, 12, 1050 18 of 26

Table 3. Cont.

Data Sources Study Region Year Change Detection
Methods

Overall Accuracy
(%) References

Spot images Lusitu, the Southern
Province of Zambia 1986, 1992, 1997 Maximum likelihood

classification 83 [78]

Landsat TM images Minnesota, USA 1990–1995
Fitting Landsat TM

images with
topographic maps

89 [91]

Landsat TM images Moist tropical
region of the Amazon 1994, 1998 Principal component

differencing 92–99 [98]

MODIS Vegetative
cover conversion

(VCC)

Idaho, Montana, New
Mexico, Cambodia,

Thailand, and Brazil
2000 Decision trees 55–90 [79]

Landsat TM images Minnesota, USA 1986, 1991, 1998, and
2002

Maximum likelihood
classification 80–90 [56]

MODIS NDVI

Albemarle, Pamlico
Estuary System

(APES)
region of the US

2001–2005 Threshold method 88 [92]

Landsat TM images Oregon, USA 1984–2004 Trajectory-based
change detection 77–91 [99]

Landsat TM/ETM +
and Landsat MSS

Horqin Sandy Land,
China

1975, 1987, 1999, and
2007

Self-organizing
mapping neural

network method and
subspace method

70.66–86 [90]

Landsat ETM + Mountainous area in
Mexico 1999, 2006

Object-based
maximum likelihood
(ML) and standard
nearest-neighbor

(SNN)

71–77 [100]

Landsat Savannah River 2001–2004

The continuous
monitoring of forest

disturbance
algorithm (CMFDA)

95 [82]

Landsat Louisiana, Colorado,
and Mississippi 2006, 2011

Comprehensive
change detection
method (CCDM)

91 [101]

Landsat New England 1982–2011 CCDC 90 [19]

MODIS NDVI Southeast Australia 2000–2008
Breaks for additive
season and trend

(BFAST)
-/- [13]

Landsat Pacific Northwest of
the USA 1985–2007 LandTrendr 97 [20]

Sentinel−2 Klingenberg, Saxony,
Germany 2016, 2018

Fully convolutional
neural network
(FCN) and long

short-term
memory (LSTM)

networks

87 [102]

Unmanned aerial
vehicle (0.2 m) Guangzhou, China 2009, 2019

A deep multitasking
learning frame-

work for change
detection (MTL-CD)

92.97 [86]

Aerial imagery -/- 2012–2020
Dual correlation
attention-guided

detector (DCA-Det)
99.5 [103]

Landsat5, 7, 8 Australia 1985–2015 Random forest (RF) 93 [104]

Sentinel−2
Western Cape

Province of South
Africa

2016–2021
Convolutional neural
networks (CNN) and

transformer
89 [22]

Landsat
TM/ETM+/OLI Shenzhen, China 1986–2017

Temporal
segmentation and

trajectory
classification

93.33 [105]

0.2 m high-resolution
images -/- -/-

Super-resolution-
based change

detection network
(SRCDNet)

85.66–90.02 [84]
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5. Discussion
5.1. Future Research Directions for LUCD

Through a systematic review of relevant research on LUCD, this study identified
several areas that require further exploration.

Regarding data sources, common remote sensing data used for LUCD include AVHRR,
MODIS, Landsat, and Sentinel−2. Over time, remote sensing imagery has become increas-
ingly higher in spatial resolution, resulting in clearer land cover conditions. However, the
improved spatial resolution also highlights the shadows of land cover features and exacer-
bates the problem of cloud cover, leading to the loss of important land cover information
and adversely affecting LUCD [105,106]. Furthermore, for large-scale applications, the
high spatial resolution of satellite data results in limited coverage and high computational
demands, posing challenges to data analysis. Google Earth Engine (GEE) is a platform that
can collect and process large amounts of already published data products, and its advanced
computing capabilities surpass traditional computers and servers [107]. Researchers can
utilize this platform to greatly expand the temporal and spatial scales of their research,
significantly improving the accuracy and efficiency of LUCD.

In the domain of change detection, precise geometric registration and atmospheric
correction or normalization between multi-temporal images are crucial factors that de-
termine the success of the project [23]. The use of multiple sensors in the pre-processing
stage requires the resolution of the issues arising from differences in spectral characteristics
and geometric registration errors, especially in cases where images need to be joined or
cropped. As generations of remote sensing satellites continue to upgrade, algorithms have
been developed to make acquired images have similar brightness or gradually increasing
brightness, allowing for a more natural joining of two images. Additionally, establishing a
uniform geographic reference system can reduce registration errors between multi-source
remote sensing images.

The accuracy assessment of LUCD results is crucial for decision-making. Commonly
used methods for accuracy assessment include overall accuracy, Kappa coefficient, recall
rate, and IOU index. However, the accuracy of the Kappa coefficient has been questioned
by some scholars [108]. Additionally, the current accuracy evaluation is mainly based on
the pixel-based approach, and the accuracy assessment methods for object-oriented and
feature-based LUCD require further research.

In terms of methods, there are numerous types of available change detection methods
for land use, each of which is suitable for different scenarios. Despite the development of
various change detection technologies, it remains difficult to select the appropriate method
for accurate change detection, particularly for specific research purposes or fields. With
the popularity of high-resolution and sub-meter resolution remote sensing images, the
consideration of different land cover types and change characteristics increases, requiring
more effective detection methods to address these issues. With the advent of object-based
analysis methods and models, most scholars have applied these methods to LUCD, achiev-
ing high accuracy. The most critical step in object-oriented change detection is image
segmentation, and numerous scholars have proposed various segmentation methods, each
with specific applicable scenarios and conditions. In future research on object-oriented
LUCD, image segmentation techniques still require further in-depth research. Furthermore,
threshold selection must be considered in the change detection method, and more conve-
nient methods should be developed to quickly select the appropriate threshold and further
improve the accuracy of LUCD.

In recent years, there has been an increasing amount of research focused on using deep
learning methods, such as convolutional neural networks, recurrent neural networks, and
transformers, to improve the accuracy of land use classification. However, the automated
mining of data and the acquisition of spatiotemporal features still present some difficulty.
For training change detection methods, particularly in parameter selection, a significant
amount of time and effort is required. Thus, future development should focus on creating
lightweight modules that can enhance the performance of network models and reduce
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the time required for model training. As multi-source remote sensing data, deep learn-
ing, big data, and artificial intelligence continue to develop and be applied, researchers
should provide a flexible framework that can integrate critical issues related to data pre-
processing, feature extraction, land use type interpretation, and accuracy evaluation, in
order to construct an intelligent change detection system.

The following directions are suggested for future research in the field of LUCD, based
on the analysis of past issues and existing research methods:

(1) Expanding the range of image data acquisition can be achieved by combining multiple
data sources.

(2) Cloud platforms should be utilized to conduct more precise, long-term, and large-scale
land use change detection studies.

(3) Further research is needed on the geometric registration and spectral differences of
multi-source remote sensing images during the preprocessing stage.

(4) Accuracy evaluation should be improved, and object-oriented and feature-based
accuracy evaluation methods should be developed.

(5) Future research should focus on studying optimal, adaptive, and full-scale image
segmentation and threshold selection techniques.

(6) Based on deep learning, LUCD methods have demonstrated great potential in recent
years through their multi-level and deep network structures.

5.2. Advantages and Uncertainties

This study demonstrated the effectiveness of utilizing machine learning models and
software tools such as ASReview and Bibliometrix for screening articles in the field of LUCD.
This approach can significantly reduce the time and labor costs involved in screening large
databases of articles, making it an attractive option for researchers. Furthermore, machine
learning models can be continuously improved by incorporating feedback from experts and
adding relevant and non-relevant articles to the training data. Although labeling training data is
a time-consuming process, ASReview significantly reduces this burden by actively identifying
relevant articles and excluding irrelevant ones during the training process. Moreover, ASReview
is an open-source tool that does not require any programming knowledge, making it accessible
to a broad range of researchers. The use of machine learning models and software tools such as
ASReview and Bibliometrix can potentially enhance the efficiency and accuracy of literature
reviews in various research fields [109].

This study has several limitations that should be acknowledged. First, the bibliometric
analysis results are highly dependent on the selected databases, which may not include
all relevant publications in the field. In addition, this study only focused on a specific
topic using the Web of Science Core Collection database. Although it is one of the most
influential databases, incorporating other databases could provide a more comprehensive
global perspective. Lastly, further research is needed to integrate bibliometrics with machine
learning methods to improve the efficiency of systematic reviews and reduce labor costs while
uncovering more interesting results. Future studies should explore more advanced machine
learning techniques and data sources to further enhance the effectiveness of this approach.

In this study, a noteworthy concern arises regarding the bibliometric analysis process
employed to obtain the development trends of LUCD by analyzing the article quantity and
citation rate of journals. The chosen approach may be subject to influence from the publish-
ing method of the journals, such as gold open access or subscription, and limitations on the
number of articles published annually by certain journals. The comparison of journals and
articles with varying publishing methods poses a challenging task and necessitates careful
consideration of the underlying assumptions supporting these methods. A fundamental
assumption in this context is that subscription-based journals offer superior quality control
and peer review mechanisms, as publishers have a financial motivation to uphold high
standards. Conversely, open access journals may be perceived as having lower barriers to
entry, which can lead to lower standards of peer review and editorial oversight. However,
this premise is not always accurate, as some open access journals have rigorous peer review
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procedures and maintain a high degree of quality control. Another presumption is that
open access journals are more accessible and inclusive than subscription-based journals, as
they do not require payment for article access. Nonetheless, this assertion does not fully
address the reality that open access journals may levy article processing fees, which could
limit access to articles for authors from low-income countries or institutions.

Furthermore, an underlying assumption posits that the free and accessible nature of
open access articles may engender increased citation rates and a wider dissemination of
research findings. However, limitations on the number of articles published annually by
certain journals may affect the citation rates of individual articles. Should a journal be
able to publish only a finite number of articles each year, authors may find it increasingly
arduous to secure publication within said journal, potentially impeding the attention and
citation their research receives. Nevertheless, this does not always hold true, as some
journals with limited publishing capacity are highly discerning and esteemed, thereby
augmenting the impact and visibility of the research they publish. Additionally, the factors
influencing citation rates and impact are intricate and multivariate, variably influenced by
factors such as research quality, author and journal reputation, employed methodology
and techniques, as well as novelty and significance of the findings.

The significance of this study lies in its comprehensive survey of LUCD, coupled with
an in-depth analysis of data sources, research areas, and various themes and methodologies.
This provides researchers with a means of identifying specific research topics and content
related to LUCD, and it serves as a valuable reference for practitioners in this field.

6. Conclusions

Through a combination of bibliometric analysis and machine learning, this study
provides a comprehensive overview of 3512 papers related to LUCD in the core collection
database of the Web of Science from 1985 to 2022. The study identified the trends of
publications and main journals in the field, established the cooperation networks among
major research institutions and countries, and analyzed the most influential articles and
frequent keywords. Furthermore, the study examined the evolution of data sources and
research methods in this field, and discussed future research directions and trends.

In the past 37 years, the publication output of the LUCD field has experienced expo-
nential growth, which can be divided into three stages: the budding stage from 1985 to
2000, the rapid development stage from 2001 to 2010, and the active stage from 2011 to 2022.
The most influential journals include Remote Sensing of Environment, International Journal of
Remote Sensing, and Remote Sensing. China, the United States, India, and Germany are the
main research countries, while Wuhan University, Maryland University, and the Chinese
Academy of Sciences are the main research institutions. With the passage of time, the
data sources in this field have become increasingly diverse, from AVHRR and MODIS to
SPOT, Landsat, Sentinel, and LiDAR, with higher spatial resolutions. The research methods
have also become more diverse, from early band operation and the comparison of two
land use images to later detection using machine learning, deep learning, and change
detection models. From the current state of research on LUCD, there are many methods
to choose from, and different methods are suitable for different situations. An efficient
change detection solution should provide a flexible framework that integrates multiple
data sources, holistic processing, intelligent methods, and prior knowledge guidance. With
the continuous development and application of remote sensing technology, computer
technology, artificial intelligence, big data, and cloud platforms, the need for automated,
real-time, and intelligent change detection processing is becoming increasingly evident.
LUCD technology needs to solve key problems such as automatic image registration, fea-
ture extraction, target interpretation, image fusion, and data cleaning, as well as automatic
data mining and knowledge discovery from spatio-temporal large databases, in order to
build an intelligent LUCD system.
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