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Abstract: The low–carbon transition of farmland use (LCTFU) is an effective measure to coordinate the
development of farmland and the environment to meet China’s “dual carbon” and green agricultural
transformation goals. We studied the spatial–temporal evolution of the LCTFU and further explored
the driving factors of the LCTFU by applying a geographically weighted regression model (GWR)
to the coastal cities of Guangdong Province from 2000 to 2020. The results show that (1) temporally,
the comprehensive, spatial, functional, and mode transitions of farmland use in coastal areas of
Guangdong Province generally declined. The LCTFU level in most counties was low, and the
difference in the LCTFU level among counties was narrowing. (2) Spatially, the LCTFU generally
followed a high–to–low spatial distribution pattern, with high LCTFU values in the east and west
and low values in the center. (3) The hotspots of the comprehensive, spatial, functional, and mode
transitions were mainly concentrated in the eastern part of the study area, while the cold spots
were in the central region, which is generally consistent with the spatial distribution of high– and
low–value areas of the LCTFU. (4) The spatial migration path of the LCTFU migrated from northeast
to southwest, with the main body of the standard deviation ellipse in the middle of the study area,
displaying a C–shaped spatial pattern with weak expansion. (5) Economic, social, and environmental
factors jointly contributed to the spatial–temporal evolution of the LCTFU, with social factors being
the strongest driver.

Keywords: low–carbon transition of farmland use; geographically weighted regression (GWR) model;
driving factors; coastal areas; Guangdong province

1. Introduction

The Sixth Assessment Report of the Intergovernmental Panel on Climate Change
states that climate change can negatively impact agricultural crop production and that
anthropogenic warming is one of the major hindrances to crop yield, threatening food
security [1–3]. Agricultural production activities are a large source of anthropogenic
greenhouse gas emissions, accounting for about 20% of global greenhouse gases; their
impact on global climate change is second only to that of greenhouse gas emissions from
industrial processes [4–8]. In order to cope with the increasingly dire warming problem,
countries worldwide have been promoting low–carbon transitions of their economies.
Farmland activities have both carbon emission and absorption effects, and are pivotal in the
carbon cycle [9–12]. Compared with other single–emission reduction activities, changing
farmland use will help meet China’s “dual carbon” goal by reducing emission intensity
and using the carbon sink function of crops [13–15]. Promoting the low–carbon use of
farmland resources is an important move toward sustainability in the new era and an
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urgent task to achieve dual carbon targets in China. Therefore, identifying actions to realize
the low–carbon use of farmland has become an important issue.

Farmland is a critical resource for human survival and development, and its use di-
rectly affects national food security, sustainable ecological development, and social harmony
and stability [16]. Farmland use transition, the evolution of farmland use patterns over
time [17–22], is an important aspect of research on general land use transition. The pattern of
farmland use incorporates both explicit and implicit forms. Explicit forms include the quantity,
structure, and spatial pattern of farmland, while implicit forms include the quality, property
rights, operation methods, and functions of farmland [23–26]. Scholars have extensively
researched farmland use transition by constructing index systems and exploring transition
forms, spatial patterns, and the driving mechanisms of these changes. Most studies have
constructed farmland use transition indicator systems from three perspectives: spatial
patterns, functional patterns, or spatial–temporal patterns. For example, Li et al. proposed
a research framework for the transition of China’s farmland in the context of global land
planning [20]. Lv et al. constructed an indicator system for farmland use transition based
on an integrated “space–function” framework [27]. Lyu et al. explored the characteristics
of farmland use transition based on explicit area and landscape patterns and implicit func-
tional patterns [28]. Ke et al. studied the spatial and temporal evolution characteristics and
driving mechanisms of farmland use transition in three dimensions: spatial, functional,
and mode transition [29]. However, research on the low–carbon transition of farmland use
(LCTFU) and its driving mechanism, which has great theoretical and practical significance
for the sustainable development of agriculture, is relatively lacking. Therefore, this study
aims to answer the following scientific questions: (1) How can the LCTFU be quantified?
(2) How can the spatial and temporal evolution of the LCTFU be revealed? (3) What is the
driving mechanism of the LCTFU?

Our study focused on the LCTFU within the coastal region, a seascape coupling
zone with complex and sensitive interactions between the sea and land that harbors
a huge carbon reservoir. Its rich natural resources, unique geographical location, and
suitable living environment have led to the most human–land conflicts and environmental
pressures within China [30–33]. The coastal areas of Guangdong Province, part of the
Guangdong–Hong Kong–Macao Greater Bay Area, are among the most developed areas
in China. Rapid social and economic development and swift urbanization continue to
reshape land use modes and structures, leading to disturbances, destruction of ecosystem
structures and functions, and the instability of the carbon sink function. With the proposed
Guangdong–Hong Kong–Macao Greater Bay Area Strategy, the coastal areas of Guangdong
Province shoulder the task of economic development and the need to achieve green,
low–carbon, and circular development, and accelerate the realization of carbon neutrality.
However, few studies have focused on the LCTFU in developed coastal areas, which are
ecologically fragile and face high carbon intensity. Against this background, research on
the LCTFU in the eastern coastal areas is of great significance for ensuring regional food
security and realizing the dual carbon goal as soon as possible.

Therefore, this study first constructed a multilevel LCTFU evaluation index system
from a “Spatial–Functional–Mode” perspective, in order to measure the LCTFU in Guang-
dong Province coastal cities from 2000 to 2020. Thereafter, it went one step further by using
the cold and hot spot analysis and path analysis methods to explore the spatial clustering
characteristics and spatial migration path of the LCTFU. Finally, this study adopted a
geographically weighted regression (GWR) model to explore the driving mechanisms of
the LCTFU. The study provides a scientific reference for the low–carbon development of
farmland use in Chinese coastal cities. Moreover, this study contributes to realizing the
rational use of farmland resources and sustainable agricultural development.
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2. Materials and Methods
2.1. Study Area

The research area for this paper comprises the coastal cities of Guangdong Province
in southeastern China, including the 12 prefecture–level cities of Guangzhou, Shenzhen,
Zhuhai, Zhanjiang, Shantou, Chaozhou, Jieyang, Shanwei, Yangjiang, Maoming, Huizhou,
and Jiangmen (Figure 1). The study units are the 69 counties and cities in the region.
These cities are situated between 20◦13′~24◦14′ N and 109◦40′~117◦11′ E, with a total
area of about 78,750 km2. Farmland comprises approximately 23,046 km2 as of the end
of 2020, accounting for 29.42% of the total area of these cities (Resource and Environment
Science and Data Center of the Chinese Academy of Sciences). Moreover, the annual grain
production was more than 0.08 million tons. The gross domestic product (GDP) of the
study area was CNY 78,341 billion as of the end of 2020, accounting for 70.73% and 7.76%
of the GDP of Guangdong Province and the whole country, respectively (Statistics Bureau
of Guangdong Province, National Bureau of Statistics of China, 2020). Among these cities,
Guangzhou, Shenzhen, Zhuhai, Huizhou, and Jiangmen are distributed in the Pearl River
Delta region and are the core area of economic development in the nation; they are also
the core of the Guangdong–Hong Kong–Macao Greater Bay Area. Shantou, Chaozhou,
Jieyang, and Shanwei border the Fujian Minnan region and have important economic
development bases. Zhanjiang, Yangjiang, and Maoming have rich natural resources,
developed agriculture, and the most fruit and vegetable production in China. Therefore,
this region faces the challenge of coordinating economic development, food security, and
low–carbon development.
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Figure 1. Location of coastal areas of Guangdong Province.

2.2. Data Sources

Land use data: The farmland data used in this paper were obtained from Landset TM

remote sensing image data (30 m resolution), provided by the Resource and Environment
Science and Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/)
(accessed on 1 September 2021). The data were used to calculate indicators such as land
settlement rate, farmland landscape fragmentation, average land value of plantation pro-
duction, the replanting index, and carbon sequestration capacity.

https://www.resdc.cn/
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Socio–economic data: The socio–economic data were obtained from China’s economic
and social big data research platform (https://data.cnki.net/) (accessed on 17 December 2022),
the Guangdong Statistical Yearbook (2001–2021), the Guangdong Rural Statistical Yearbook
(2001–2021), and the statistical yearbooks of cities and counties. Missing data were calcu-
lated by the interpolation and moving average methods. The data were used to calculate
the indicators of spatial transition, functional transition, mode transition, social factors,
economic factors, and environmental factors.

Geodata: Administrative district boundaries and the Digital Elevation Model (DEM)
(30 m resolution) were obtained from National Geomatics Center of China (http://www.ngcc.cn)
(accessed on 25 December 2022).

2.3. Methods

This study investigated the spatial and temporal evolutionary trends of the LCTFU
and its driving mechanisms. First, we constructed an indicator assessment system of the
LCTFU and used entropy to measure indicators of the LCTFU. Second, we used cold and
hot spot analysis to explore the spatial clustering characteristics of the LCTFU. At the same
time, we analyzed the spatial migration path of the LCTFU using the path analysis method.
Finally, a geographically weighted regression model (GWR) was used to explore the factors
influencing the LCTFU (Figure 2).
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2.3.1. Weights of Evaluation Indicators for the LCTFU

The weight of an evaluation index was assigned according to the relative degree
of variance of its impact on the whole evaluation index system. An evaluation index
with a larger variance, reflecting a smaller information entropy, was assigned a larger
weight [34–36]. The higher the information entropy value of the selected evaluation indica-
tors, the higher the degree of influence on the evaluation of the LCTFU. In order to eliminate
the influence of different units on the selected evaluation indicators, a standardization
process was used before calculating entropy.

The attribute matrix R was normalized, and the normalized value X =
(

xij
)

m×n was
calculated as follows. The positive evaluation indicators selected in this study were nor-
malized using the following formula:

Xij =
xij −minxj

maxxj −minxj
(1)

The negative evaluation indicator Xij was calculated by the formula:

Xij =
maxxij − xij

maxxij −minxij
(2)

where m is the number of evaluation indicators, n is the year, Xij is the value corresponding
to the j–th indicator in year i; maxxj denotes the maximum value of the j–th index; minxj
denotes the minimum value of the j–th index; j = 1, 2,..., m; and i = 1, 2,..., n.

The weight pij of the j–th indicator for the i–th year was calculated as follows:

pij =
Xij

∑m
i=1 Xij

(3)

The indicator information for entropy Ej(0 ≤ Ej ≤ 1) was found using the follo-
wing formula:

Eij = −
1

ln n

n

∑
i=1

pij ln pij (4)

where 1
ln n is the information entropy coefficient. The weights Wi of the indicators were

calculated using:

Wi =
1− Ej

n−∑n
j=1 Ej

(5)

2.3.2. Measurement of the LCTFU

Drawing on understanding of the LCTFU from previous studies, this study established
a multilevel LCTFU evaluation index system with 3 subsystems, 6 factor layers, and
18 indicators (Table 1).

The spatial transition of farmland use considers its quantity form and spatial pat-
tern. The quantity form includes farmland per capita (X1), land settlement rate (X2), and
grain–to–economic ratio (X3). The farmland area per capita displays the amount of farm-
land use per capita [19,27]. The land settlement rate (X2) reflects the level of farmland
use [28]. The grain–to–economic ratio (X3) shows changes in cultivation structure and
can more accurately reflect the actual use rate of farmland [27,37]. The spatial pattern at-
tribute is characterized by the landscape fragmentation of farmland (X4), which can reflect
human disturbance to the landscape. Referring to the studies by Huang et al. [29] and
Liang et al. [38], we chose farmland landscape fragmentation to reflect the spatial pattern
of farmland.
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Table 1. The evaluation indicators for the LCTFU.

Target Layer Factor Layer Indicator Layer Indicator Interpretation Attribute Weight

Spatial transition Quantity form
Farmland per capita (X1) Farmland area/total regional population + 0.0325
Land settlement rate (X2) Farmland area/total land area + 0.0113

Grain–to–economic ratio (X3) Area sown to food crops/area sown to cash crops + 0.1070
Spatial pattern Landscape fragmentation of farmland (X4) Number of farmland patches/total farmland area – 0.0003

Functional transition

Production function
Average land value of plantation production (X5) Total output value of farming industry/farmland + 0.0725

Grain yield(X6) Total food production/area sown to food crops + 0.0107
Replanting index (X7) Total crop area sown/total farmland + 0.0534

Living function

Guaranteed food per capita (X8) Total food production/total regional population + 0.0435

Food quality and safety assurance (X9) Fertilizer application safety standard/(fertilizer application
discounted amount/farmland) + 0.0620

Share of agricultural employment (X10) Agricultural workforce/rural workforce + 0.0230

Average land labor carrying capacity (X11) Agricultural labor force/farmland area, reflecting the labor
carrying function of farmland + 0.0341

Ecological function

Fertilizer surface source pollution intensity (X12)
Fertilizer application discounted amount/farmland

area–upper limit of safety standard for fertilizer application
per unit of farmland area a

− 0.0004

Carbon sequestration capacity (X13) Farmland carbon sink−carbon emissions from farmland use + 0.0020
Proportion of farmland to ecological land (X14) Total farmland area/ (total land area−construction land area) − 0.0072

Ecological carrying capacity of farmland per capita (X15)
Farmland area per capita × farmland balance

factor × farmland yield factor b + 0.0353

Mode transition Low–carbon use Share of land–average carbon revenue and expenditure (X16) (Farmland carbon sink/farmland area)/(farmland carbon
emission/farmland area) + 0.5047

Note: a The safe standard of fertilizer application per unit of farmland area adopts the upper limit of the international safe standard of fertilizer application: 225 kg/hm2. b The farmland
balance factor is 1 because it does not involve other land, and the farmland yield factor is the ratio of grain yield and national grain yield level.
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The functional transition of farmland use considers its transition of production, living,
and ecological functions. The production function can visually represent food production
capacity, measured by the average land value of plantation production (X5), grain yield (X6),
and replanting index (X7) [39,40]. The living function represents the ability of farmland
to guarantee food security, employment level, and labor carrying capacity, measured by
the guaranteed food per capita (X8), food quality and safety assurance (X9), share of
agricultural employment (X10), and average land labor carrying capacity (X11) [41–44].
The ecological function represents the carrying capacity and resilience of farmland to the
ecological environment, measured by fertilizer surface source pollution intensity (X12),
carbon sequestration capacity (X13), proportion of farmland to ecological land (X14), and
ecological carrying capacity of farmland per capita (X15) [45–48].

The low–carbon use of farmland focuses on enhancing the carbon sink function and
reducing carbon emissions from farmland use. It incorporates the concept of “low–carbon”
development into the transition of the farmland use mode by combining the realistic
requirements of China’s “dual carbon” target. The mode transition of farmland refers to
work by Wang et al. [49] to measure the degree of low–carbonization of farmland use in
terms of the share of land–average carbon revenue and expenditure (X16).

The data were normalized to eliminate the effects of the metric and index scales. We
used the entropy value method to calculate the weights of each indicator and calculated the
low–carbon color transition index of farmland use with results from the product of each
indicator weight and the standardized value of each indicator.

2.3.3. Cold and Hot Spot Analysis

The Gi∗(d) values were used to characterize the high–value areas (hot spot areas) and
low–value areas (cold spot areas) of spatial units in the study area, and they revealed the
spatial heterogeneity of the LCTFU. The hot spot areas were the clusters of county units
with high farmland transition in a certain period, and the cold spot areas were the densely
distributed areas of county units with low farmland transition. The formula is as follows:

Gi ∗ (d) =
n

∑
j=1

Wij(d)
Xj

∑n
j=1 Xj

(6)

where d is the distance; Wij is the spatial weight between i and j in the study area; Xj is the
observed value of region j; and n is the number of study units.

2.3.4. Selection of Driving Factors of the LCTFU

The LCTFU results from the mutual constraints and joint action of the natural en-
vironment and socio–economic development in the region. Thus, this paper selected
nine indicators as independent variables from the perspectives of social, economic, and
environmental factors (Table 2).

Table 2. Selection of driving factors.

Target Layer Indicator Layer Indicator Interpretation

Social factors
Population density (Y1) Total population/total land area
Urbanization rate (Y2) Non–agricultural population/total population

Traffic density (Y3) Total county road mileage/total land area

Economic factors
GDP capita (Y4) GDP/total population

Fixed asset investment density (Y5) Total investment in fixed assets/land area
Percentage of agricultural GDP (Y6) Agricultural GDP/GDP

Environmental factors
DEM (Y7) County average elevation

Forest coverage (Y8) Forest area/land area
Percentage of soil erosion (Y9) Soil erosion area/land area
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Economic factors are the core factors affecting agricultural production and will ulti-
mately affect the level of low–carbon technology in agricultural production [25]. Referring
to the study by Ke et al. [50], we selected GDP per capita (Y4), fixed asset investment density
(Y5), and percentage of agricultural GDP (Y6) to represent economic factors. Studies have
demonstrated that urbanization rate (Y2) [50], population density (Y1) [27], and traffic
density (Y3) [27] will affect the transition of farmland use. Thus, we selected Y1, Y2, and
Y3 to indicate social factors. Natural factors can reflect the condition of farmland endow-
ment, which affects the degree of farmland use and cultivation. Referring to the study by
Zhang et al. [51], we selected DEM (Y7), forest coverage (Y8), and percentage of soil erosion
(Y9) to represent environmental factors.

2.3.5. GWR Model

This study used a GWR model to explore contributors to the LCTFU in each county
and region, and analyzed the importance and spatial distribution of each influencing
factor. Traditional linear regression models (OLS model) are only global estimates of all
samples and parameters and cannot account for the spatial relationships of the independent
variables; parameter estimation with traditional linear regression models will no longer be
applicable. Unlike traditional linear regression models (OLS model), GWR is a regression
analysis tool for spatially variable coefficients. GWR can explore the non–stationarity
of spatial relationships by incorporating spatial location information into the regression
equation, which allows for the variation of parameters with their geographic location based
on the variation of parameter estimates. The model structure is as follows:

yi = β0(ui, vi) + ∑k βk(ui, vi)xik + εi (7)

where y is the observed value; β0(ui, vi) is the regression coefficient at point I, indicating
the degree of influence of the independent variable on the dependent variable; (ui, vi)
represents the coordinates of the geographic center of the i–th sample spatial unit; βk(ui, vi)
is the value of the continuous function βk(u, v) at sample spatial unit i; xik denotes the
value of the independent variable xk at point i; and ε is a normally distributed function
with constant variance, representing the random error term.

3. Results
3.1. Spatial–Temporal Evolution Characteristics of the LCTFU
3.1.1. Comprehensive Transition

The comprehensive transition index of the LCTFU in the study area generally showed
a trend of rising and then falling, and the average value of the composite transition index
decreased by 0.15%, from 0.0449 in 2000 to 0.0372 in 2020. The comprehensive transition
index varied among counties and districts, mainly fluctuating in [0.02, 0.08], with 39.13%,
24.64%, 43.48%, 39.13%, and 47.83% of the counties having a comprehensive transition
index higher than the average value, indicating that most counties in coastal areas of
Guangdong Province have a low level of comprehensive transition. The differences in
the LCTFU among the counties and districts were narrowing. In terms of their spatial
distribution, the overall comprehensive transition index of the study area from 2000 to 2020
varied greatly toward the edges, but little in the center of the study area. The areas with high
values on this index were concentrated mainly in the eastern and western parts of the study
area (i.e., the counties under the jurisdiction of Maoming, Yangjiang, Jiangmen, Jieyang,
Shantou, and Chaozhou), which represent the counties with lower levels of economic and
social development. The areas with low values of this index were concentrated in the center
of study area; they were counties within the Guangzhou, Shenzhen, and Zhuhai urban
agglomerations of the Pearl River Delta, a highly developed socio–economic coastal region
of China (Figure 3).
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3.1.2. Spatial Transition

The spatial transition index generally decreased, moving from 0.0125 in 2000 to 0.0079
in 2020, a decline of 0.09%. This trend may be attributed to the significant decrease in
the amount of farmland from 2000 to 2020 and a slight downward trend in the change in
landscape pattern, the combined effect of which led to a decrease in the spatial transition of
farmland (Figure 4). Over the past 20 years, the rate of change in the spatial transition index
was 0.02%, indicating that the differences in the spatial transition among counties and
regions have been narrowing. The spatial transition of high–value areas was distributed
mainly in the west and east, and that of the low–value areas was distributed mainly in the
north. Since the spatial transition was obviously constrained by farmland, fragmentation
of the arable landscape, and topography, counties with contiguous farmland, low elevation,
and flatter topography in the western and eastern parts of the study area had higher spatial
transition index values, while most counties in the north had high elevation and smaller
farmland areas and aggregation, contributing to their lower spatial transition index.

3.1.3. Functional Transition

Overall, the functional transition index decreased from 0.0242 to 0.0225 between 2000
and 2020, which is a small change. During the study period, the transition index capturing
the production function of farmland in the study area increased from 0.0067 to 0.0088, and
the transition indexes for the living and ecological functions of farmland decreased from
0.0102 and 0.0083 to 0.0086 and 0.0069, respectively (Figure 4). The increase in average grain
yield and average land value of plantation production increased in the production function
of farmland, while the decrease in per capita food security and agricultural workforce
corresponded to a decreased living function of farmland. Still, the intensity of fertilizer
surface source pollution decreased from 340 km/hm2 to 282 km/hm2, and the continuous
decrease in the carbon sequestration capacity and the ecological carrying capacity of
farmland per capita led to decreased farmland ecological function. The functional transition
indexes of the counties in the study area were generally low. The high–value areas of the
function transition index were scattered in counties with higher topography in the north
of the study area, and the number of high–value areas was decreasing. In contrast, the
low–value areas were distributed widely in the center and west, with some counties in the
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east. In the northern part of the study area, due to the influence of geographical location
and socio–economic development, the ecological function of farmland was strong, the
proportion of modern agriculture was low, the efficiency of agricultural production was
low, and a large amount of labor outflow led to the weakening of the production and living
functions of farmland.
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3.1.4. Mode Transition

The mode transition index depicted clear spatial differences, with a general trend of
increasing and then decreasing. The mean value of mode transition increased from 0.0083
in 2000 to 0.0203 in 2005 and then decreased to 0.0068 in 2020 (Figure 4). The high–value
areas were located mainly in the western and eastern parts of the study area (i.e., counties
under the jurisdictions of Maoming, Yangjiang, Huizhou, Jieyang, Shantou, and Chaozhou),
where they were characterized by a low level of economic development and a high carbon
sequestration capacity of farmland. The low–value areas were located mainly in the center
of the study area, including the counties under the jurisdictions of Guangzhou, Shenzhen,
and Zhuhai, which were areas with high economic development characterized by a small
amount of farmland and weak carbon sequestration capacity. The high–value areas of the
mode transition index increased from 2000 to 2005, and then decreased from 2005 to 2020.

3.2. Spatial Clustering Characteristics of the LCTFU

For each stage, in 2000, 2010, 2015, and 2020, the Getis–Ord Gi* tool was used to
derive the significant cold spot and hot spot areas of the spatial distribution of the four
indexes of comprehensive, spatial, functional, and mode transition and the cold and hot
spot distribution of the four indexes (Figures 5 and 6). The four LCTFU indexes in coastal
counties and districts of Guangdong Province had positive clustering effects in terms of
their spatial distribution. The high–value (hot spot) areas of the comprehensive transition
index were concentrated in counties within Huizhou, Jieyang, Jiangmen, Shantou, and
Chaozhou, and the eastern counties of the study area maintained more stable hot spots.
The low–value (cold spot) areas were concentrated in counties within Guangzhou and
Shenzhen, and the cold spot areas were becoming more prominent.
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The high–value (hot spot) areas of the spatial transition index were concentrated in
the counties within Jieyang, Shantou, and Chaozhou in the eastern part of the study area.
The hot spot areas in the eastern counties showed strongly significant differences from 2000
to 2015, although they weakened in 2020. Due to the advantages of the amount of farmland
and grain production in these counties, the population was relatively small. Low–value
(cold spot) areas were concentrated in counties within Guangzhou and Shenzhen, in the
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center of the study area, areas with small amounts of farmland, dense populations, and high
economic and social development. The latter has led to a continuing reduction in farmland
population density and a subsequent increase in cold spots. Most of the counties in the
study area showed insignificant functional transition indexes, and the high–value (hot spot)
areas of the functional transition indexes were concentrated in a small number of counties
in Huizhou (in 2000, stronger significance), Chaozhou (after 2005, weaker significance),
and Zhuhai. Low–value (cold spot) areas were concentrated in counties within Guangzhou
and Shenzhen in the center of study area. The number of counties with low–value areas
increased and became more significant from 2000 to 2010, but gradually diminished after
2015. The high–value (hot spot) areas of the mode transition index were concentrated in the
counties of Maoming, Huizhou, Jieyang, and Shantou, with the western areas concentrated
mainly in Maoming. In the east, the high–value areas showed an expanding trend, and
the significance continued to increase after 2010. The low–value (cold spot) areas were
concentrated in counties within Guangzhou and Shenzhen, in the center of study area; their
significance weakened and then gradually increased.

According to the results presented in Figures 4 and 5, the four transitions of the high–high
agglomeration areas were mainly in the eastern part, and the low–low agglomeration areas
were mainly in the center part of the study region. This distribution was primarily due to
differences in national policies, economic development levels, and topography. High–high
agglomeration areas were mostly areas with high topography, low economic development,
and poor agricultural production technology, while low–low agglomeration areas were
the core cities of the Pearl River Delta and the Guangdong–Hong Kong–Macao Greater
Bay Area in China, important engines of national economic development. The trend
of new construction occupying continuously flat farmland is expanding, and farmland
fragmentation is high, making the various transitions of farmland somewhat constrained.

3.3. Path Analysis of the LCTFU

The spatial migration path of the farmland use transition in the study area was
analyzed using ArcGIS 10.8 software. Based on the elliptical azimuth tan θ param-
eter, the spatial migration of the farmland use transition from 2000 to 2020 showed
a northeast–southwest pattern, with a continuous contraction in the north–south direction,
a continuous translation in the east–west direction, and a tendency to drift to the southwest
(Figure 7).
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The transition center of the gravity migration path from the standard deviation ellipse
center was not particularly significant during the 20–year period, and the ellipse center
was still in the middle of the region in 2020. The center of gravity of the comprehensive
transition moved 6.44 km, that of the spatial transition moved 45.52 km, functional transi-
tion moved 12.18 km, and mode transition moved 74.59 km. The comprehensive transition
center of gravity movement speed decreased from 4.85 km/year to 0.74 km/year, spatial
transition decreased from 2.14 km/year to 2.07 km/year, functional transition decreased
and then increased to 4.51 km/year, and mode transition decreased from 15.15 km/year
to 9.51 km/year. In addition, the centers of gravity of the comprehensive transition and
functional transition have been in Baoan District, Shenzhen; that of the spatial transition
was transferred from Baoan District to Nansha District, Guangzhou, after 2015; and the
pattern transition was transferred to Huicheng District, Huizhou, in 2005, back to Baoan
District in 2010, and then to Huiyang District, Huizhou, in 2020. From the degree of cov-
erage of the standard deviation ellipse, the spatial distribution of the LCTFU in the study
area during the 20–year period examined showed an expansion that was continuously
fluctuating. The directional changes of the spatial transition and comprehensive transition
were basically the same. The functional transition generally expanded to the southwest, and
the pattern transition generally showed a weaker expansion trend. Based on the ellipse’s
spatial location, the geographical range contained more cities, the main body of the ellipse
was in the central location of the study area, and the overall spatial pattern was C–shaped,
indicating that there were differences in the transition of farmland use across the study area,
and the transition intensity of the central counties was higher than that of other regions.

3.4. Analysis of the Driving Factors of the LCTFU

This paper identifies the driving mechanisms based on social, economic, and environ-
mental factors, and used the GWR model to measure the regression coefficients of each
influencing factor from 2000 to 2020. Spatial autocorrelation analysis of the variables was
required before using the GWR model. ArcGIS software was used to calculate the global
Moran’s I indexes of the variables and test their significance. The Moran’s I index of each
variable was high, all were greater than 0, and the p–value was much less than 1%, passing
the significance level test of 99%. The R2 values of the GWR model ranged from 0.179 to
0.664, and the AICc values ranged from −190.895 to −401.150 for each year, indicating that
the model fits better and has strong explanatory power (Table 3).

Table 3. The GWR results.

2000 2005 2010 2015 2020

Bandwidth 75.445 75.445 6.505 75.445 3.056
Residual squares 0.015 0.173 0.012 0.021 0.006
Effective number 10.021 10.020 12.117 10.017 18.480

Sigma 0.016 0.054 0.015 0.019 0.011
AICc −359.995 −190.895 −369.874 −336.604 −401.150

R2 0.664 0.179 0.433 0.237 0.563
Adjusted R2 0.613 0.053 0.322 0.120 0.411

As for social factors, the regression coefficients for population density and urbaniza-
tion rate fluctuated [−0.04, 0.05], indicating that the spatial differences between population
density and urbanization rate were significant. Both population density and urbanization
rate had positive and negative effects on the LCTFU. In 2000–2005, the regression coeffi-
cients on population density were mostly negative, the number of positive areas was small,
and the changes were weak. In 2010, the regression coefficients for population density
were all positive, and population density had a positive impact on the LCTFU in the study
area, with the eastern region showing the strongest influence. From 2015 to 2020, the
coefficients for population density were all negative, and population density had a negative
impact on the LCTFU. From 2000 to 2010, the number of areas with positive values for
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urbanization rate were distributed mainly in the east of the study area. The coefficients of
the urbanization rate in the center and west of the study area were negative, indicating that
the urbanization rate had a positive influence on the LCTFU in the eastern study area and
a negative influence on the LCTFU in the central and western parts of the study area. From
2015 to 2020, the influence of the urbanization rate on the LCTFU gradually decreased from
the western part of the study area to the east, indicating that the urbanization rate negatively
influenced the LCTFU in the study area and gradually decreased. From 2000 to 2010, the
regression coefficient for traffic density fluctuated [−2.23, 2.21]. In 2000, the positive values
of traffic density were distributed mainly in the center and the west. The positive values
were larger and more widely distributed, while the negative values were mainly in the
east, showing an overall distribution pattern from high in the center and west to low in the
east. After 2005, the regression coefficients of traffic density were mostly negative, and the
negative values were larger, indicating that traffic density mainly negatively influenced the
LCTFU of each region in the study area. During the study period, population density and
traffic density mainly negatively affected the LCTFU in all regions of the study area, with
weak positive effects. Urbanization rate negatively affected the LCTFU in the center and
west, and had positive effects in the east before turning to negative effects. Socio–economic
development, population density, urbanization rate, and traffic density have increased to
a certain extent in coastal areas of Guangdong Province. Population concentration, high
urbanization level, and high traffic density will expand the amount of construction land
and decrease the amount of farmland, the area of farmland patches, and the degree of
concentration. These changes will lower the level of farmland production function and
spatial transition, which will negatively influence the study area’s LCTFU to some degree.
Urbanization will cause many rural laborers to move to highly developed areas in the
center of the study area. This migration will increase the population density and demand
for agricultural products in the center of the study area and stimulate the flow of farmland,
agricultural modernization, and agricultural scale operation in the western and eastern
parts of the study area. The amount of chemical fertilizers and pesticides used per unit
area of farmland would decrease, improving the production and ecological functions of
farmland in the western and eastern parts of the study area, which will positively impact
functional transition to some degree.

The coefficients for regional economic factors fluctuated [−0.14, 0.47], indicating that
economic development had both positive and negative effects on the LCTFU. Between
2000 and 2010, the negative effects of GDP per capita and fixed asset investment density
gradually weakened, and the positive effects of the gross agricultural product ratio gradu-
ally increased from west to east, while the number of counties with positive effects grew.
The ratio of the LCTFU gradually increased, and the number of counties with positive
effects did not increase much. For 2015–2020, the regression coefficients for each economic
factor were generally positive, and each had positive effects on the LCTFU. The contin-
uous expansion of urban and rural construction land, due to economic growth and the
over–exploitation of resources, led to a sharp decrease in the “quantity” and “quality” of
farmland resources and inhibited the LCTFU. This trend changed in 2015, when regional
economic development became an important factor in promoting the LCTFU. With the
continuous socio–economic development of coastal areas in Guangdong Province, local
governments increased investment in fixed assets, such as agricultural irrigation facili-
ties and the construction of high–quality basic farmland. This investment promoted the
large–scale operation of farmland and agricultural mechanization and modernization, and
facilitated the LCTFU.

Additionally, the environmental impact coefficients fluctuated between [−0.14, 0.15],
with significant spatial heterogeneity. There was a positive distribution of influence mainly
in the west and east, and a weak positive influence in the central region. Environmental
factors in the northern part of the study area, such as high topography, large forest coverage,
and strong farmland ecological functions but weak production and living functions, signif-
icantly positively influenced the LCTFU in the north. Due to the high and concentrated
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precipitation in the coastal areas of Guangdong Province, natural disasters significantly
impacted land use. Jiexi County, Puning City, Luhe County, and Gaocheng City, in the
western and eastern parts of the study area, were classified as key erosion control areas, and
the frequent soil erosion damaged the farmland system, as well as the production, living,
and ecological functions of farmland. In contrast, due to the high socio–economic level of
the central region, the quantity of farmland was small. The high fragmentation of farmland
here prompted the simultaneous reduction in the spatial and functional transition, which
had a certain constraining effect on the LCTFU (Figures 8–12).
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Figure 8. Spatial distribution of the estimated regression coefficients of various influences on the
LCTFU in 2000. Note: (A–C) are the regression coefficients of population density, urbanization
rate, and transportation density; (D–F) are the regression coefficients of GDP per capita, fixed asset
investment density, and the share of agricultural GDP; and (G–I) are the regression coefficients of
DEM, forest cover, and soil erosion ratio, in that order.
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Figure 9. Spatial distribution of the estimated regression coefficients of various influences on the
LCTFU in 2005. Note: (A–C) are the regression coefficients of population density, urbanization
rate, and transportation density; (D–F) are the regression coefficients of GDP per capita, fixed asset
investment density, and the share of agricultural GDP; and (G–I) are the regression coefficients of
DEM, forest cover, and soil erosion ratio, in that order.
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Figure 10. Spatial distribution of the estimated regression coefficients of various influences on the
LCTFU in 2010. Note: (A–C) are the regression coefficients of population density, urbanization
rate, and transportation density; (D–F) are the regression coefficients of GDP per capita, fixed asset
investment density, and the share of agricultural GDP; and (G–I) are the regression coefficients of
DEM, forest cover, and soil erosion ratio, in that order.
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Figure 11. Spatial distribution of the estimated regression coefficients of various influences on the
LCTFU in 2015. Note: (A–C) are the regression coefficients of population density, urbanization
rate, and transportation density; (D–F) are the regression coefficients of GDP per capita, fixed asset
investment density, and the share of agricultural GDP; and (G–I) are the regression coefficients of
DEM, forest cover, and soil erosion ratio, in that order.
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4. Discussion
4.1. Potential Reasons for the LCTFU

Overall, we found that the LCTFU is at low levels from 2000 to 2020. Similarly,
Ke et al. [50] explored LCTFU in Hubei Province from 2000 to 2019, and found that the
LCTFU is relatively low, but higher than that in coastal areas of Guangdong Province.
This might be because Hubei is located in Jianghan Plain, where the degree of farmland
fragmentation is relatively low [52]. In contrast, the spatial differences in the distribution
of farmland in coastal areas of Guangdong Province are relatively large, and the extent of
farmland fragmentation is generally high [49]. As for the functional transition, our results
indicated that the transition of ecological function and living function of farmland use is
continually decreasing, while that of the production function generally increased during
the study period. The coastal areas of Guangdong are developed rural areas with a large
proportion of non–agricultural employees, and the income of farmers mainly comes from
non–agricultural industries. The livelihood security function of farmland is continuously
weakened, while the production function is continuously enhanced with the extensive
application of green agricultural technology [53]. As for the mode transition, the high–value
areas of the mode transition index increased from 2000 to 2005, and then decreased from
2005 to 2020. This might be due to rapid urbanization development during 2005–2020 in
the coastal areas of Guangdong Province, which has accelerated the expansion of urban
construction land, eroded farmland, and ultimately led to a reduction in carbon sinks [54].

For the driving factors of LCTFU, we found that the LCTFU is the result of a combina-
tion of the social, economic, and environmental factors in the county, and that social factors
have the greatest impact on the LCTFU. This view has been confirmed by scholars who
have analyzed the LCTFU and its driving factors in Hubei Province, an inland region, and
the results of the study pointed out that economic growth has been identified to have a more
significant impact on the farmland use transition [28]. Among social factors, urbanization
plays an important role. Urbanization causes contiguous farmland to be converted to
urban construction land, leading to a decrease in the area of arable patches and an increase
in the fragmentation of farmland [55]. These changes ultimately lead to a lower level of
spatial transition. Some scholars have pointed out that increasing urbanization has led
agricultural labor to shift to secondary and tertiary industries in economically developed
areas, leading to a decrease in rural population density, and the extent of farmers’ use of
farmland can be significantly weakened [56], thereby constraining the functional transition
of farmland. In addition, economic factors have both positive and negative impacts on
the LCTFU in different stages. This result is consistent with the results of Chen et al. [47].
The industrial–technological progress induced by economic development can promote
the transformation of agricultural production methods and the innovation of production
technology, which in turn induces the farmland use transition to the direction of relative
quality improvement [57,58]. Our study also found that natural factors, such as DEM, have
significantly influenced LCTFU. This result is confirmed by Chen et al. [47], as they found
that DEM has significantly impacted the spatial pattern of cultivated land use.

4.2. Policy Implications

In order to achieve sustainable regional economic, social development, and “double
carbon” goals, as well as ensure food security, each region should identify the leading
factors influencing the LCTFU. Regional differences in the level of the LCTFU and farmland
use patterns and methods should be accounted for when formulating targeted and timely
policies and measures for farmland use. Our research showed a continuous decrease in
farmland area in the study area from 2000 to 2020, along with a decrease in the area of
farmland patches and the agglomeration level. In order to optimize agricultural, ecological,
and urban spaces, local governments should develop territorial spatial planning, implement
comprehensive land preparation projects, and improve the productive and ecological
functions of farmland.
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This study also reveals regional differences in the level of the LCTFU in the coastal
areas of Guangdong Province. Highly developed economic areas have a lower level of
LCTFU due to the greater demand for land for urban construction and the urban popula-
tion’s higher consumer demands. Therefore, controlling the supply of urban construction
land, fully exploiting the potential of urban low–utility land, and implementing urban low–
utility land consolidation projects to improve land use efficiency and strengthen farmland
protection are crucial. For relatively economically underdeveloped western and eastern
regions, the main goal should be to enhance various farmland functions. Localities should
develop green agriculture from a low–carbon perspective, innovate agricultural ecological
compensation mechanisms, and absorb part of the agricultural labor force by introducing a
series of agricultural subsidies and protection policies. Furthermore, promoting the transfer
of farmland, agricultural modernization, and large–scale agricultural operations will help
to improve farmland productivity and achieve intensive, efficient, and low–carbon use
of farmland.

4.3. Limitations and Prospects

(1) This paper aims to develop a comprehensive evaluation system for the LCTFU using
a “spatial–functional–mode” approach, combining quantitative and qualitative per-
spectives. However, since farmland use is a complex and long–term process, various
factors affecting the LCTFU may not be captured in the evaluation system presented
in this paper. Future research may consider adding indicators such as the level of
technological innovation in farmland carbon sequestration and emission reduction,
and the level of ecological management of farmland.

(2) This paper focuses primarily on the social, economic, and environmental factors
that affect the LCTFU, but policy factors should also be considered in future studies.
However, policy factors may be challenging to analyze quantitatively.

(3) The paper employs a geographically weighted regression (GWR) model to explore the
influencing factors of the LCTFU, providing useful insights for future research. One
advantage of the GWR model is its ability to visualize the spatial heterogeneity of
research results. However, the GWR model is a linear model, and it can only quantify
the degree of influence of a single influencing factor indicator on the LCTFU. It cannot
quantify the degree of influence of two or more influencing factor indicators on
the LCTFU.

5. Conclusions

This study reveals the spatial–temporal evolution patterns and driving factors of the
LCTFU in coastal areas of Guangdong Province by constructing a “spatial–functional–mode
transition” index system and adopting a GWR model. Based on the analysis and findings,
the following conclusions were drawn:

(1) The comprehensive, spatial, and functional transitions, as well as the mode transition
of farmland use in coastal areas of Guangdong Province decreased overall from 2000
to 2020, and the level of LCTFU in most counties is low. Spatially, the LCTFU in the
study area generally exhibits a high–low–high spatial distribution pattern, with high
levels of LCTFU in the east and west, and low levels in the center.

(2) The hot spots of the comprehensive, spatial, functional, and mode transitions are
distributed mainly in the eastern part of the study area, and the cold spots are concen-
trated in the central region of the study area, which was basically consistent with the
spatial distribution of the high and low value areas of the LCTFU in the study area.

(3) The center of gravity of LCTFU moved from northeast to southwest during the study
period; the LCTFU shows a trend of continuous fluctuation and expansion in the
physical space, with a noticeable spatial spillover effect.

(4) The evolution of the LCTFU is driven by the combined effects of social, economic,
and environmental factors, with social factors being the strongest driver.
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