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Abstract: The urban landscape is being affected by rapid urbanization, leading to a complexity of land
features and a fragmentation of patches. However, many studies have focused on the prediction of
land-use change with a lack of research on the landscape character types which have more integrated
descriptions of land features. Hence, this study predicts and identifies landscape character types
(LCTs) in different periods based on the PLUS model and the K-Medoids algorithm, taking the central
city of Chongqing as an example, to reveal the differences in the influence of driving factors on LCTs.
The results show that (1) the urban landscape characteristic types present a gradient change from
the built-up area to the outward expansion. (2) The SHDI and LPI of landscape character types
decreased significantly with the expansion of construction land. (3) Nighttime light, distance from
water bodies, and distance from the motorways are the main factors affecting the change of landscape
character types. This study predicts and identifies urban landscape character types and quantifies
the impact of urban expansion on landscape character. It can be used to guide urban planning
and help governments to make more informed decisions on sustainable urban development and
ecological conservation.

Keywords: land-use change; the PLUS model; K-medoids cluster; landscape management

1. Introduction

Over the past few decades, urbanization has become the dominant process of global
environmental change [1]. As land resources on the Earth’s surface are finite, the rapid
growth of construction land has had a tremendous negative impact on natural ecosystems,
biodiversity, and ecological integrity [2,3]. Thus, to ensure sustainable urban development,
the analysis of urban expansion patterns has been a hot topic in the current land-use/land
cover change research [4,5]. As a vehicle for visualizing the complex interactions between
natural factors and human activities in the ecological environment, the land-use/land
cover change has profound implications for terrestrial ecosystems, global biodiversity,
and regional ecological security [6–9], as well as causing a range of environmental and
social problems in local land systems. Especially in mountainous cities, undulating hills
and winding rivers divide the whole region into diverse landscape spaces, resulting in a
significant and complex impact on urban expansion [10–12]. Therefore, simulating and pre-
dicting urban expansion patterns has become key to ecosystem protection and sustainable
development [13], providing insight into the environmental impacts of human activities.

Among the many methods for modeling and predicting urban expansion patterns,
land-use change simulation is one of the most commonly used tools for urban land change
analysis, allowing planners to visualize potential land-use changes through different sce-
narios [14]. The urban expansion scenario based on the land-use change simulation has
been widely studied in many fields, such as ecology and climatology. For example, Yan
Zhang et al. used the cellular automata (CA)–Markov model to predict land-use for an
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ecologically constrained urban sprawl simulation in Wuhan, China [15]. Onuwa Okwuashi
et al. presented a novel integration of a support vector machine, Markov chain, and cellular
automata for urban change modeling in Nigeria, Africa’s most populous city [16]. In
Paris, A. Lemonsu et al. employed a land-use–transport interaction, socio-economic model,
and an urban climate model to simulate urban temperatures under five urban expansion
scenarios [17]. There is also a study that used the Multi-layer perceptron (MLP)-based
Artificial Neural Network–Markov Chain (ANN-Markov) model to simulate three future
urban growth scenarios in Miami’s Metropolitan Area. It assesses the future flood risk
under each scenario [18].

However, the majority of past research has focused on the relationship between
land-use and urban expansion, ignoring the complex impacts of land-use change on
urban landscapes. Changes in landscape patterns can interfere with important ecological
processes [19]. Therefore, the lack of research on urban landscape patterns is a barrier to
the planning of sound interventions by city managers and the maintenance of the results of
the guidelines [20,21].

Landscape character is a common means of describing the spatial variability of a
landscape pattern. It is defined as a unique and identifiable pattern of elements that
occur repeatedly across a given landscape type [22]. A particular combination of the
natural landscape components (topography, soils, vegetation) and the man-made landscape
components (built-up areas, villages) create landscape characters that distinguish one
landscape from another, generate different perceptible characteristics, and make an area
unique [23]. Landscape Character Appraisal was one of the first tools proposed by the
Countryside Agency in England to investigate, analyze, evaluate, and propose sustainable
development decisions for landscapes at a range of scales, from national to local [24].
Through constructing indicator systems, researchers can identify the most prominent
landscape characters in a region to guide urban management [25].

Typically, urban landscape characters are described in terms of landform, function,
and transportation [26]. Multi-dimensional characteristics such as topography, land-use,
vegetation cover, population, culture, and ecosystem services are used to assess and classify
urban and rural landscape characters on a larger scale [27]. However, most existing studies
focus on assessing and classifying the current state of landscape characters, and little
attention has been paid to changes in their types. Changes in the landscape character type
(LCT) can have an impact on ecological processes and lead to variations in the level of
ecosystem services and landscape perception [19]. Therefore, the monitoring and prediction
of changes in LCTs will be useful in the management of the environmental risks that may
be associated with urban expansion [28].

Therefore, this study optimized the methodology of existing studies, emphasizing
the modularity of indicator selection and the calculation process of landscape characters.
Chongqing, a typical mountain city with rich landscape characters, was chosen as the
study area. The natural environment, society and economy, and transport were used to
predict future land-use. A framework for identifying LCTs based on land-use prediction
was constructed for decision-makers by clustering LCTs in the topography, landscape
pattern, and land-use. This study answered three main questions: (1) What are the major
changes in LCTs during urban expansion? (2) How does the composite index system affect
LCT change? (3) What are the driving factors that influence the changes in land-use and
the LCTs? From a regional scale perspective, this study focuses on built-up areas and
can be considered as a guide for future landscape character analysis/urban planning in
mountainous cities.

2. Study Area and Data
2.1. Study Area

Chongqing (105◦11′~110◦11′ E, 28◦10′~32◦13′ N) is located in the interior of southwest
China, with a landscape dominated by hills and mountains. The terrain slopes gradually
from north–south to the Yangtze River. There are four parallel mountains running north–
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south (Jinyun, Zhongliang, Tongluo and Mingyue). Two rivers run from east–west (Jialing
River and Yangtze River) [29]. Chongqing has 38 districts and counties and, according to
data from 2020, a population of 10.34 million [30]. Aside from being an important central
city in western China, Chongqing is also a comprehensive transportation hub of the Yangtze
River economy belt, with unique location benefits [31].

In recent years, rapid urbanization has led to the encroachment of construction land
into the natural environment and countryside in Chongqing, which has become a typically
frequented region for the study of mountain city development and landscape character
change [32]. Simultaneously, the environment of “two rivers and four mountains” means
the development of built-up areas is affected by the multiple influences of natural resources,
traffic arrangements, and human activities. A series of localized environmental protection
policies have forced the countryside to undergo rapid land-use change and ecological
degradation compared to built-up areas. All these imply a complex spatial relationship
between urban expansion and landscape character.

The central city of Chongqing was selected as the study area, including the Yuzhong
(YZ) District, Yubei (YB) District, Jiangbei (JB) District, Shapingba (SPB) District, Nan’an
(NA) District, Beibei (BB) District, Jiulongpo (JLP) District, Dadukou (DDK) District, Banan
(BN) District, and Bishan (BS) District, with mountains, plains, and hills, with a total area
of 6380.62 km2 (Figure 1).
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2.2. Data and Pre-Precession

A total of five types of data were used in this study, including the land-use, the
digital elevation model (DEM), transportation, the Point of Interest (POI), and the socio-
economic data (Table 1). The land-use of the study area was obtained from the Resource
and Environmental Sciences and Data Center. It was classified into six categories: farmland,
forest, grassland, water body, construction land, and other land, according to the landscape
characters and study objectives of the study area.
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DEM data were obtained from the geospatial data cloud. Elevations and slopes were
obtained by processing DEM data with ArcGIS Pro. Transportation data was taken from an
Open Street Map (OSM) with vector data of railway, highway, and trunk extracted. POI
data were obtained from a Baidu Map, and was used to characterize the functional density
of the city.

The socio-economic data included nighttime lights and population density. In this
study, nighttime light data published by Chen et al. (2021) were selected, which was based
on an algorithm to unify the Defense Meteorological Satellite Program’s Operational Lines-
can System (DMSP/OLS) data from 1992–2013 and National Polar-orbiting Partnership’s
Visible Infrared Imaging Radiometer (NPP/VIIRS) data after 2013 [33]. Population density
data were downloaded from the WorldPop hub. The units are the number of people per
square kilometer. The utilized mapping approach was Random Forest-based dasymetric
redistribution.

Table 1. Data details.

Data Source Format Year Resolution

Land-use www.dsac.cn,
accessed on 8 February 2023. Raster 2000,

2020 30 × 30 m

DEM www.gscloud.cn,
accessed on 8 February 2023. Raster — — 30 × 30 m

Transportation openstreetmap.org,
accessed on 8 February 2023. Vector 2020 — —

Nighttime light
www.nature.com/articles/s41597-0

22-01322-5,
accessed on 8 February 2023.

Raster 2020 1 × 1 km

Population density www.worldpop.org/,
accessed on 8 February 2023. Raster 2020 30 × 30 arc (approximately

1 km at the equator)
Point of Interests Baidu map Vector 2020 — —

To facilitate calculations, the resolution of all data was resampled to 30 × 30 m.
The data were also dimensionless by polarization standardization, the equation was:
x′ = (x− xmin)/(xmax − xmin). Then, a 1.5 × 1.5 km fishing net was created by ArcGIS Pro,
and each square fishing net space represented a study unit.

3. Methodology

To achieve the study objectives, this study includes three steps: firstly, investigating
and simulating the changes in land-use in the study area; secondly, identifying and ana-
lyzing the LCTs and their changes; and thirdly, exploring the driving factors behind these
changes (Figure 2). The simulation and analysis of land-use changes are based on the PLUS
model, while the LCTs are objectively classified with an unsupervised clustering approach
by constructing an index system to enhance the cognitive understanding of the landscape
in the study area.

3.1. Prediction of Land-Use Change
3.1.1. Plus Model

The patch-generating land-use simulation (PLUS) model is an enhanced CA model
that integrates the CA model of the multi-type random patch seeds (CARS) and a rule
mining approach based on land expansion analysis strategy (LEAS) [34]. This rule mining
approach retains the model’s ability to analyze the mechanisms of land-use change over
time while avoiding the analysis of conversion types, and the issue of exponential growth
in the number of categories associated with transformation types [35].

www.dsac.cn
www.gscloud.cn
openstreetmap.org
www.nature.com/articles/s41597-022-01322-5
www.nature.com/articles/s41597-022-01322-5
www.worldpop.org/
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First, the PLUS model extracted land-use expansions for two periods. A random forest
algorithm was used to identify the relationship between land-use type change and the
different driving forces. LEAS was then used to calculate the probability of growth for each
land-use type in the study area. This approach avoids the issue of exponential growth in the
number of categories associated with transformation types and retains the model’s ability
to analyze the mechanism of land-use change during this period while providing improved
explanatory power. The number of grids for different land-use types, the conversion
matrix, and the neighborhood weights of land-use types were combined to predict the
future demand of land-use types via a Markov model. Finally, the future land-use was
simulated based on CARS. The CARS module in the PLUS model is a Cellular Automaton
(CA) model that incorporates a patch generation mechanism based on various types of
random land-use seeds. Throughout the simulation process, the spatial competition for
each land-use type is determined by adaptive coefficients, thus driving the expansion to
meet the anticipated future demand. The CARS module combines random seed generation
and threshold decline mechanisms to enable the PLUS model to dynamically simulate
the automatic generation of patches within the bounds of the development probability
constraint [36].

3.1.2. Driving Factors Selection

A variety of natural and urban driving factors are the dominant causes of change in
land-use types and patterns. Based on the current environment, development plans, and
research on driving factors in the central city of Chongqing, this study selected three main
categories of driving factors [19,37].

Natural factors represent the strengths and weaknesses of the regional ecological
environment. Population concentration and economic development are facilitated by a
suitable environment. Chongqing is located in the transition zone between the Tibetan
Plateau and the Yangtze River plain [38]. The fact that 76% of the territory is hilly means
that not only do the altitudes and slopes have a complex variation but also that the sufficient
water resources (lakes and rivers), combined with the hills, divide the city into several
areas with different landscape characters. Thus, the conventional factors of mean elevation
value, mean slope value, and distance to water bodies were added.

Socio-economic factors play a crucial role in driving the expansion of construction
land and investment in sustainable land management [39]. As the urban economy grows
and higher demands are placed on the living environment, the population and the Gross
Domestic Product (GDP) are beginning to converge [40]. However, rapid urban develop-
ment is often accompanied by inequitable economic, spatial, and social problems within
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cities [41]. The most notable phenomenon in the city of Chongqing is the price of real estate.
Influenced by rapid urbanization and Chongqing’s natural environment [42,43], large
numbers of migrants are moving into the city. The conflict between limited land supply
and growing demand has led to a steady rise in urban property prices. High prices are
accompanied by a good provision of infrastructure in the surrounding area [44]. Therefore,
population density, points of interest (POI) density, and the nighttime light were selected
as socio-economic factors influencing land-use change.

Transport accessibility also has a significant impact on land-use change. It is a good
indicator of the level of economic development in the area. Local transport accessibility
affects the efficiency of intra-city commuting, and regional accessibility influences the price
of residences, which means that both have a direct or indirect impact on the development
of the regional economy [45]. Convenient transport also has a radiating effect on the
economic level of the surrounding areas, which are otherwise congested [46]. Therefore,
this study selects the distance to trunk roads, motorways, and primary roads as transport
accessibility factors.

3.1.3. Model Parameter Setting

We simulated land-use distribution in 2020 using the CARS module in PLUS v1.3.5,
based on the 2000 land-use data and the raster dataset of land-use development probability.
The simulated 2020 land-use data were compared to the actual data, and the accuracy of
the model was evaluated using the Kappa statistical tool. We conducted multiple tests to
obtain optimal parameter settings, ensuring the stability and accuracy of the model.

In this study, patch generation refers to the attenuation coefficient of the decreasing
threshold. It was set to 0.2, with a parameter range of 0 to 1, and values closer to 1
corresponded with a higher difficulty of land-use change. Expansion coefficient refers
to the probability of random patch seeds. It was set to 0.7, with a parameter range of
0 to 1, and values closer to 1 corresponded with a higher probability of generating new
patches. Neighborhood weights refers to the influence of pixels on neighborhood, with a
parameter range of 0 to 1, higher values indicated a greater effect on neighborhood. Each
neighborhood weight could be calculated by the ratio of the change area of this type to the
total change area. Land-use conversion does not usually involve large-scale changes in
construction land [47]. Water bodies are also less likely to be converted to other land-uses,
as they are protected by strict policies [48]. The development pattern of the study area and
the proportion of changes in each land-use type are listed in Table 2.

Table 2. Neighborhood weights of land-use types.

Land-Use
Types Farmlands Forests Grasslands Water

Bodies

Urban
Construction

Lands

Rural
Construction

Lands
Other Lands

Neighborhood
weights 0.15 0.1 0.01 0.03 0.45 0.25 0.01

3.2. Index Systems to Cluster Landscape Character Types

In this study, an index system was constructed to describe the landscape characters
of Chongqing city in three dimensions: topography, landscape pattern, and land-use fea-
tures, aiming to portray the landscape characteristics comprehensively while reducing
redundancy. Unlike most large Chinese cities with flat topography, Chongqing has a highly
undulating terrain with rivers that run through the city. The relatively flat areas along
the river provide areas for urban expansion. Therefore, we selected elevation, slope, and
distance to water to characterize the above geographical features. The topography may
influence the expansion patterns of construction areas, and landscape pattern indexes
can reveal the ecological risks brought about by urbanization through characterizing the
morphology and structural features of ecological patches. Thus, the LPI, AWMPED, and
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SHDI were selected to describe the landscape pattern characteristics from three aspects:
dominance, regularity, and diversity. The land-use indexes were determined by the dom-
inant land-use types. In the study area, urban and rural construction lands, forests, and
farmlands play dominant roles, while water bodies and grasslands only account for only
2.79% and 0.71%, respectively. To avoid having too many units with indicator values of 0
(no water bodies or grasslands), we adopted the “distance to water” index to describe the
spatial distribution of water bodies. Additionally, grasslands were combined with forests
because they are spatially interlaced and can be treated as a whole. The specific indexes
and their definitions are shown in Table 3.

Table 3. Details of the index system to cluster LCTs.

Dimension Indexes Explanation

Topography

Mean Elevation Value (MEV) The mean elevation of each unit, used to describe whether it is in a
plain, mountainous area, or a transitional zone.

Mean Slope Value (MSV) The mean slope of each unit, used to describe whether its terrain is
gentle or steep.

Distance to Water bodies (DW) The distance of each unit to the water, can reflect the spatial
relationship between the samples and the rivers.

Landscape pattern

Largest patch index (LPI)

To calculate whether there are dominant large patches within
each unit, the formula is

LPI =

n
max
j = 1

(aij)

A (100), where n = number of patches in the landscape
of patch type (class) i, j= 1, . . . , n patches, aij = area (m2) of patch ij,

A = Total landscape area.

Area-weighted mean patch
fractal dimension (AWMPED)

To calculate the complexity of patches shape within each unit. the
formula is

AWMPED = ∑n
j=1

[(
21n(.25pij)

ln aij

)(
aij

∑n
j=1 aij

)]
, where m = number of

patch types (classes) present in the landscape, n = number of patches
in the landscape of patch type (class)

i, i = 1, . . . , m or m patch types (classes), j = 1, . . . , n patches,
pij= perimeter (m) of patch ij, aij = area (m2) of patch ij.

Shannon’s diversity index
(SHDI)

To evaluate the diversity of patches within each unit,
the formula is SHDI = −∑m

i=1
(

P
◦

i ln Pi
)
, where

m = number of patch types (classes) present in the landscape,
i = 1, . . . , m or m patch types (classes), Pi = proportion of the

landscape occupied by patch type (class) i.

Land-use

Ratio of Urban Construction
Land (RUL)

The proportion of urban and rural construction land, forests, and
farmlands, which are the dominant land-use types in the study area.

Ratio of Rural Construction
Land (RRL)

Ratio of Forests (RF)

Ratio of Farmlands (RFL)

3.3. Cluster of Landscape Character Types

K-Medoids clustering is an unsupervised classification method commonly used in ma-
chine learning. It can divide a given dataset into several groups with as little difference as
possible within the same group. This method was applied to this study to identify and clas-
sify study units with similar landscape features. For a dataset containing N i-dimensional
units, it needs to be classified into K groups, and the centroid of each group is OK [17,18].
First, OKs were selected randomly among all samples, and the Euclidean distances from
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the remaining points M to OK were calculated one by one. In this step, the initial clusters
were obtained by assigning Ms to the closest OK based on the calculation results.

In the second step, K remaining points M were randomly selected to replace OK,
denoted as OM, and the differences in distances from the remaining points to the centroid
resulting from this behavior were calculated, denoted as CMK. The total cost function TMK
was calculated to determine whether OM, can replace the OK, with the formula:

TMK = ∑N
M=1 CMK (1)

A negative value of TMK means that the total deviation decreases, and OM replaces
OK as the new centroid. The above steps were iterated until TMK no longer experi-
enced changes.

Rationally determining the value of K is a key step toward making the clustering results
meaningful. In this study, the Sum of Squared Error (SEE) curve and the classification
results were combined to determine the K-value, with the aim being to reflect the critical
characteristics of the study area with the fewest clusters while keeping the error within
an acceptable range. The Partitioning Around Medoids (PAM) package was used to
implement K-Medoids clustering in R. A total of 7878 units were used for clustering,
covering three years 2000, 2020, and 2040, and each sample included three dimensions with
10 indicators altogether.

4. Results
4.1. Prediction of Land-Use Changes

We simulated the land-use data on the area for 2020 and used the Kappa coefficient to
test the simulation results obtained using the PLUS model. The simulation results were
compared with the status of the land space during 2020, and the Kappa coefficients and
overall accuracy were calculated. Kappa coefficients were used to test the accuracy of
the land-use prediction results. The Kappa coefficient ranged from 0 to 1, with a value
greater than 0.7 indicating consistent and accurate prediction results [49]. The calculated
overall accuracy was 90.2%, and the Kappa coefficient was 0.810, indicating a high degree
of credibility. As shown in Table 4, during 2000–2020, 1039.24 km2 of land-use conversion
occurred. The largest proportion of land-use change is the conversion of farmlands to urban
construction lands (64.8%), followed by the conversion of forests to farmlands (12.8%).
The converted farmland is mainly located on the north bank of the river and west of the
built-up areas. Large areas of forests in the southwest of the study area were converted to
farmland (Figure 3). It is worth noting that the area of rural construction land increased
by 18.4 km2, while approximately 22.6 km2 of rural construction land was converted into
urban construction land.

From 2020 to 2040, the area of land-use change reached 727.03 km2, with the change of
land from farmland to urban construction areas accounting for 79.6% and 10.1% resulting
from the conversion of forest to farmland (Table 5). Most of the farmlands within the central
city have been converted into construction land, and the built-up areas have continually
spread and grown. There has also been some expansion of urban construction land around
some rivers and forest belts (Figure 3). Rural construction land has increased by 45.27 km2,
which is higher than the increase between 2000 and 2020. About 10.7 km2 of rural con-
struction land has been converted into urban construction land, which is lower than the
decrease from 2000 to 2020 (Figure 4).
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Table 4. Transfer matrix of land-use from 2000 to 2020.

20
20

(k
m

2 )

2000 (km2)

Land-Use
Types Farmlands Forests Grasslands Water

Bodies

Urban
Construction

Lands

Rural
Construction

Lands

Other
Lands

Total
(2020)

Farmlands 3707.18 132.82 2.16 8.20 2.94 2.50 0.16 3855.97

Forests 67.68 1122.37 2.44 0.66 1.02 0.49 1.02 1195.69

Grasslands 6.73 1.22 45.12 0.10 0.00 0.61 0.00 53.78

Water bodies 26.27 1.65 0.33 143.12 0.83 0.58 0.15 172.94

Urban
Construction

lands
673.10 31.24 0.35 5.54 266.52 22.64 0.03 999.43

Rural
Construction

lands
38.59 2.90 0.02 0.38 3.34 54.09 0.00 99.32

Other lands 0.18 0.01 0.00 0.30 0.04 0.00 2.52 3.05

Total (2000) 4519.74 1292.22 50.42 158.30 274.70 80.92 3.89 6380.18
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2020 (km2)

Land-Use
Types Farmlands Forests Grasslands Water

Bodies

Urban
Construction

Lands

Rural
Construction

Lands

Other
Lands

Total
(2020)

Farmlands 3253.27 73.64 18.80 0.00 0.00 0.00 0.13 3345.84

Forests 0.00 1104.23 0.45 0.00 0.00 0.00 0.04 1104.72

Grasslands 0.00 0.30 32.06 0.00 0.00 0.00 0.00 32.36

Water bodies 0.00 0.00 0.00 172.94 0.00 0.00 0.00 172.94

Urban
Construction

lands
578.35 16.18 2.15 0.00 999.43 10.72 0.26 1607.10

Rural
Construction

lands
24.35 1.33 0.31 0.00 0.00 88.60 0.00 114.59

Other lands 0.00 0.00 0.00 0.00 0.00 0.00 2.62 2.62

Total (2020) 3855.97 1195.69 53.78 172.94 999.43 99.32 3.05 6380.18
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4.2. Cluster of Landscape Character Types

The SEE curve showed that after K > 3, the curve tended to flatten and the errors are
acceptable (Figure 5). However, only three groups were unable to demonstrate the complex
landscape characteristics of the study area. We tested three to nine groups one by one and
found that when K was less than 7, the integrated landscape characteristics of construction
and ecological spaces in urban fringe regions were neglected. However, if there were too
many clusters, there would be information redundancy.

After multiple attempts, it was determined that the characteristics of each group were
differentiated with minimal redundant information when K = 8. The characteristics of each
type are shown in Figure 6. Types 1, 3, and 4 are all dominated by farmland. Type 1 can be
characterized as transitional areas between agricultural and ecological spaces, with a higher
forest proportion and patch diversity. Samples in Type 3 are dominated by farmlands,
as evidenced by their relatively high LPI mean value. The values of various indicators
for Type 4 are between those of Types 1 and 3. Types 2 and 6 have a high proportion
of forests and significant variations in topography. Among them, samples in Type 6 are
dominated by forest patches and have a higher ecological value, while Type 2 is composed
of transitional areas between forests and farmlands, with both productive and ecological
value. Compared to the other types, Types 5, 7, and 8 are characterized by the presence of
construction land and relatively flat terrain. Most of the samples in Type 5 are distributed
in the urban fringe area, with a higher proportion of forests and farmlands compared to
other types. The samples in Type 8 are distributed in densely built-up areas, with strong
patch dominance, regular shape, and low diversity, indicating the dominance of urban
construction lands. Type 7 samples are distributed in the transition areas between Types 5
and 8. Type 7 also contains a certain amount of forests and farmlands, as well as a relatively
high diversity of land patches.
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4.3. Spatial Distribution and Changes of Landscape Character Types

During the simulation for 2000–2040, the number and spatial distribution of the LCTs
changed significantly (Figure 7). Table 6 shows that the samples of Types 1, 2, and 8 remain
nearly unchanged from 2000 to 2020. The spatial distribution of Types 7 and 8, which
are mainly urban construction land, shows an expansion from the densely built-up area
to the suburbs. Type 7 is converted mainly to Type 8 (56%). Type 8 possesses a 100%
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non-conversion rate, although the number is low, with only 14 study units. Samples in
Type 3, which are dominated by farmlands, are converted to Types 4, 5, and 7, mainly in
regions with flatter terrain. Type 4, located in the hills, is changed to Type 5 by 23.51%,
mainly in the southeast and southwest of the study area. Simultaneously, 24.62% of the
samples in Type 5 (containing significant rural construction land) are converted to Type 7,
distributed between densely built-up areas and suburbs. Compared to the other LCTs,
the conversion rate from Type 6 to Types 2, 3, and 4 is essentially the same, accounting
for 5–7%.

The transfer matrix from 2020 to 2040 reveals that Types 1, 2, and 8 are the types with
the least amount of change in sample numbers, with a limited number being converted
to Type 1 and Type 5 (Table 7). There is a tendency for Types 7 and 8 to expand further
into the periphery of the central city. The samples in Type 7 are only converted to Type 8.
Types 3 and 4, distributed in the plains, and Type 6, with montane forests as the dominant
cover, all have an increase in their non-conversion rate. They are mainly converted to
Types 2, 4, and 5, which are the areas adjacent to the urban construction land. In contrast,
the non-conversion rate of Type 5, located in the urban-rural transition zone, shows a
decreasing trend. The probability of conversion to Type 7 is 42.05%, almost as high as the
probability of maintaining the same type (45.13%).

According to the Sankey diagram of LCT changes (Figure 8), the most identifiable
trends are the encroachment of farmland in the urban periphery by construction land
(Types 3, 4, and 5 to Types 7 and 8) and the expansion of villages away from the densely
built-up area (Types 1 and 4 to Type 5). The number of samples in Type 3 shows the largest
decrease among the 8 types, from 852 to 430 (2000–2020). However, the decline in the
number of samples in Type 3 slows down from 2020 to 2040 (326 in 2040). Meanwhile, 95
of Type 4 become Type 5, and 164 of Type 5 become Type 7. The number of Types 7 and 8
increased from 96 and 14 (in 2000), respectively, to 335 and 336 (in 2040). It is noteworthy
that the number of Type 5 grows significantly from 2000 to 2020 (195 to 390), and few
changes occur from 2020 to 2040, while nearly half of the samples come from the other
types (mainly Types 1 and 4).
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Table 6. Transfer matrix of LCTs from 2000 to 2020.

20
00

(%
)

2020 (The Proportion of Changes in Study Units %)

Type 1 2 3 4 5 6 7 8

1 83.16 6.99 0.26 0.52 8.03 0.00 0.78 0.26

2 0.98 91.40 0.98 1.47 3.44 1.47 0.25 0.00

3 1.64 0.00 48.24 20.31 10.92 0.00 12.79 6.10

4 5.78 0.20 0.40 54.98 23.51 0.40 9.56 5.18

5 0.00 0.51 0.00 1.03 67.18 0.51 24.62 6.15

6 3.45 5.17 6.90 5.17 1.15 77.01 1.15 0.00

7 0.00 0.00 0.00 0.00 1.79 0.00 42.21 56.00

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100

Table 7. Transfer matrix of LCTs from 2020 to 2040.

20
20

(%
)

2040 (The Proportion of Changes in Study Units %)

Type 1 2 3 4 5 6 7 8

1 85.03 1.60 0.00 1.34 9.36 0.00 2.67 0.00

2 5.12 87.80 0.00 0.00 4.39 0.98 1.71 0.00

3 1.86 0.00 75.58 19.30 3.02 0.00 0.23 0.00

4 5.34 0.00 0.21 62.39 20.30 0.00 11.32 0.43

5 1.28 0.00 0.00 0.00 45.13 0.00 42.05 11.54

6 0.00 16.78 0.00 0.00 0.00 79.02 3.50 0.00

7 0.00 0.00 0.00 0.00 0.00 0.00 38.00 62.00

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100
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4.4. Contribution of the Driving Factors to Landscape Character Types Change

Figure 9a shows the contribution of each driving factor to the land-use conversion,
with nighttime light being the largest contributor. It contributes 23.6%, 30.5%, 36.9%, 23.6%,
and 21.5% to the conversion of farmland, forest, grassland, urban construction land, and
rural construction land, respectively (Figure 9a). Elevation and POI density contribute
14.5% and 11.5%, respectively, in the conversion of farmland to the remaining land-use
types. Similarly, the mean elevation and distance to trunk roads play a significant role in
forest conversion, with contributions of 11.9% and 11.6%, respectively. The contribution
of POI density to grassland conversion is much larger, standing at 16.9%. In contrast, the
distance to water bodies has a dominant influence on the conversion of water bodies and
urban construction land, with a contribution of 77.2% and 22.9%. Population density and
distance to trunk roads contribute 15% and 13.1%, respectively, to the conversion of rural
construction land.

Based on the driving factors’ contribution to the change in LCTs, nighttime light and
elevation have the most significant effect (Figure 9b). Specifically, the nighttime light has
the highest contribution to Types 1, 4, 5, 7, and 8, with respective contributions of 22.7%,
28.1%, 21.4%, 26.3%, and 27.8%. Meanwhile, the elevation has the highest contribution to
Types 3 and 6 (37.7% and 36.6%, respectively).

However, there are differences in the contribution of the driving factors to each LCT
change. For Types 1 and 4, the driving factors with the largest impact are elevation and
population density. For Type 2, the slope is the largest contributor (22.6%). Distance to
trunk roads and distance to motorways also contribute 16.5% and 12.6%, respectively,
which is similar to Type 3 (distance to trunk roads contributes 13.8%). For Types 5 and
8, the socio-economic factors of POI density and population density are the ones that
contribute most to the types change (21.2% and 12.7% in Type 5, 16.8% and 13.7% in Type
8). For Type 7, the natural and socio-economic factors (POI density and distance to water
bodies) contribute significantly to the type change, with 14.6% and 11.5%, respectively. It is
noteworthy that slope and population density, with 14.1% and 12.3%, respectively, are the
factors that contribute most to the change in Type 6.
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5. Discussion
5.1. Advantages of Landscape Character Types for Landscape Management

Analyzing land-use change is often considered an intuitive method for understanding
landscape changes during the urban development process. However, the characteristics of
landscape spaces and their ecosystem service capacity are not only determined by land-use
types but also influenced by the pattern and combination of ecological patches and terrain
features. For example, numerous studies have demonstrated that a landscape’s spatial
pattern significantly impacts its structure and function [50]. Fragmented landscapes may
impede the provision of ecosystem services, such as biodiversity conservation and climate
change mitigation. Therefore, analyzing the evolution of urban landscapes from a compos-
ite perspective of LCTs can supplement land-use change analysis. Furthermore, it can reveal
the potential ecological risks and changes in ecosystem service capacity brought about by
land-use changes, which may manifest in different dimensions, such as the aggravation of
ecological risks, decrease in supply levels, or variations in landscape perception.

Compared to analyzing only changes in land-use, considering changes in LCTs can
better support spatial planning [22]. The classification of LCTs is inherently site-specific,
as it often depends on attributes that imbue the study area with landscape identity and a
sense of place, and highlight its unique qualities [51,52]. This suggests that the landscape
characterization approach and the indicators used may vary depending on the specific
landscape characters [53]. In this study, an indicator system was used to identify LCTs in
the study area, which is a commonly used method. The index system covered three aspects:
topography, landscape pattern, and land-use. The complex topography and water bodies
in Chongqing characterized the engineering difficulties which need to be overcome during
urban expansion. The landscape pattern indicators focused on the diversity, dominance,
and fragmentation degree of patches, while the land-use indicators provided information
on patch types. The LCTs and their changes identified were based on the indicator system
having multiple meanings, which were enough to describe the landscape character changes
brought about by urban construction land expansion in the study area during urbanization.

Identifying LCTs with strong local characteristics can be challenging to generalize, and
traditional methods may lack adaptability. However, parametric methods can effectively
address this issue [51]. Based on the indicator system, this approach can draw thematic
maps for conveying specific information. Furthermore, by combining different thematic
maps, diverse LCTs can be recognized [54]. Unsupervised clustering methods in machine
learning provide a way to combine thematic maps of LCTs. By analyzing the intrinsic data
features, subjective bias can be eliminated and more objective and unified classification
criteria can be obtained [55]. The K-Medoids method used in this study can achieve
LCTs classification independent of researchers and planning practitioners, and has strong
interpretability, demonstrating the usability and value of the methods and indicators.

5.2. Relationships between Land-Use and Changes in Landscape Character Types

Over the past 20 years, the landscape character of the central city of Chongqing has
changed significantly. These changes were closely related to land-use and have a great
impact on the prediction of land-use in the next 20 years.

The most striking changes over the period from 2000 to 2040 were those from Type
3 (dominated by the farmland) and Type 5 (located in the urban-rural transition zone) to
Types 7 and 8 (dominated by the construction land). Type 7 changed to Type 8 more than
50% of the time, which has a higher FRAC and SHDI with a lower LPI. This LCT change,
caused by the expansion of construction land, is in line with the general pattern of urban
development, especially the conversion of farmland into construction land [56,57]. During
this period, the LPI of Type 3 decreases and the FRAC increases, implying that the original
landscape pattern begins to be fragmented. The study units where the LCT changes occur
are less numerous when farther away from the built-up area, which is the change of LCTs
in the urban-rural gradient [58]. In contrast to Type 3, Type 5, as a category adjacent to
built-up areas (where the forest, farmland, and construction land coexist), shows a decrease
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in FRAC and SHDI during the change process, which can be explained by the change
from originally diverse and fragmented farmland and forest to intact urban construction
land [59].

From 2000 to 2020, the changing rate of Type 3 to Type 4 and 5 (31.23%) is much larger
than that of Type 7 and 8 (18.89%). This phenomenon has been closely related to the strict
implementation of the policy of “returning farmland to the forest” and “balance of farmland
acquisition and compensation” in the study area [60]. Reasonable policy measures can
effectively slow down the rate of construction land encroachment on farmland. It should be
noted that although this is the relationship between LCTs and land-use found in Chongqing,
it could be equally significant in the other urban regions [58,61].

Compared with the period of 2000 to 2020, the primary difference between 2020 and
2040 is a 42.05% change from Type 5 to Type 7. No significant increase or decrease in the
number of Types 3, 4, and 5 occurs, which is likely to be caused by the gradual reduction in
the area of suitable land for building as construction land expands [62] or the continued
growth of the urban low-income population in the study area, most of whom cannot afford
the housing loans located in the central city [63]. With economic development and capital
accumulation, Types 7 and 8 have reached their ultimate capacity within the study area,
and the rural population can purchase expensive housing in the central city, as evidenced
by the decline in the number of Type 5 from 2020 to 2040.

Furthermore, Types 1, 2, and 6, did not change significantly in number from 2000
to 2040. Compared to areas with a gentle topography and low ecological value, such as
Types 3 and 4, Type 1 has a richer ecosystem and is mostly distributed between cultivated
and forested land, away from the central city, where there is little disturbance from human
activities [64]. Types 2 and 6 have a larger topographic relief and a higher proportion of
woodlands. Thus, as a result of the limitations posed by the topography of Chongqing’s
parallel mountain ranges, none of these three types are preferable for development, indicat-
ing that the complex topography and the protection of high- value ecological space will
affect the expansion of construction land [65,66].

5.3. Influence of the Critical Driving Factors

Land-use and LCT change are influenced by a combination of natural, socio-economic,
and transport accessibility factors [67]. In the central city of Chongqing, elevation is the
most significant natural factor affecting change, which represents a substantial conversion
from Type 3 to Types 4, 5, 7, and 8 from 2000 to 2020. It highlights the key role of natural
factors in mountain cities for the change from one LCT (dominated by farmland) to another
LCT (dominated by urban construction land), where the rapid development of the central
city is reflected in the full use of the topography and the extension of roads. These findings
are consistent with previous research by [68]. Distance to water bodies is another natural
factor influencing the growth of urban construction land. Riverside locations are more
accessible than inland ones, with easy-to-reach supplies such as drinking water [69].

This study reveals that socio-economic factors have a greater impact on the majority of
LCTs (Types 1, 4, 5, 7, and 8). It indicates that economic development and urbanization play
a critical role in landscape character changes, which is consistent with previous research [70].
Nighttime light is also identified as a significant factor influencing the growth of urban and
rural construction land, and its impact on change in farmlands, forests, and grasslands is
also noteworthy. The expansion of the urban construction land in central cities will cause a
trend of decreasing farmland, which will continue till 2040.

Based on the phenomenon of more types (Types 5 and 7) located in the transition
area between the densely built-up area and countryside change to urban construction
lands (Type 8), this study finds that the entire central city has become much simpler in
morphology. This implies a significant reduction in the diversity of landscape characters
and an increase in ecological threats to urban construction land. Meanwhile, population
density and POI density have a stronger impact on the above LCTs than on the other types,
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suggesting that an increasing population and industrial agglomeration have raised the
demand for higher-density urban space.

Hence, in future urban planning, population and POI densities in local areas (e.g.,
LCTs with high forest cover) should be controlled based on monitoring the encroachment of
urban construction land on the surrounding farmland. The protection of river ecosystems
is equally important and is integrated into urban planning. In addition, the periphery
of urban construction land, as a target for potential population concentrations and rapid
development traffic, is the most sensitive area in the process of urban expansion [71]. It
should protect the prime farmlands located in these areas, improve accessibility to rural
building sites, and promote sustainable rural development [72].

6. Conclusions

In this study, based on the location and landscape characteristics of the central city
of Chongqing, nine influencing factors were selected from three aspects: nature, socio-
economics, and transportation. The PLUS model was used to predict land-use in 2040.
Based on the prediction results, the land-use in 2000, 2020, and 2040 was divided into
1.5 × 1.5 km study units. This way, the study units were clustered by nine indicators in
three dimensions: topography, landscape pattern, and land-use features. Finally, the change
in LCTs over the three years and their driving factors were clarified.

The results are as follows:

(1) If the urban development trend from 2000 to 2020 continues until 2040, urban con-
struction land in the central city of Chongqing will encroach on a large amount of
farmland (79.6%) and a small amount of forest (10.1%). There has also been some
expansion of urban construction land around some rivers and forests.

(2) From 2000 to 2040, there is an encroachment of the LCTs (dominated by farmland)
around the built-up area by another LCT (dominated by urban construction land), as
well as an expansion of villages away from the built-up area.

(3) The driving factors contribute to the conversion of all land-use types, from high to
low: the nighttime light, POI, elevation, and distance to trunk roads. The distance to
water bodies mainly influences the conversion of water bodies and urban construction
land. Population density and distance to trunk roads mainly influence the conversion
of rural construction land.

(4) There are also differences in the main driving factors affecting changes in LCTs. The
nighttime light has the highest contribution to Types 1, 4, 5, 7, and 8. The elevation
has the highest contribution to Types 3 and 6.

The PLUS model is used to predict land-use and perform clustering as a basis for ana-
lyzing the spatial distribution of LCTs and the driving factors behind their changes. It has
significant implications for urban planners and policy-makers to make proper judgments.
Especially amongst the global trend of advocating sustainable urban development, the
results of predicted land-use and LCTs can provide a scientific and accurate planning basis
for the study area. The methods of this study are widely applicable to cities in different
locations and can be further integrated with local policies for the clustering of LCTs and
spatial planning.
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53. Gormus, S.; Oğuz, D.; Eşbah TuNÇAY, H.; Cengiz, S. Using Landscape Character Analysis to Assess The Relationship Between
Protected and Nonprotected Areas: The Case of The Küre Mountains National Park. Tarım Bilim. Derg. 2021, 27, 414–425.
[CrossRef]

54. Lu, Y.; Xu, S.; Liu, S.; Wu, J. An approach to urban landscape character assessment: Linking urban big data and machine learning.
Sustain. Cities Soc. 2022, 83, 103983. [CrossRef]

https://doi.org/10.1016/j.landurbplan.2022.104580
https://doi.org/10.1016/j.scitotenv.2022.153395
https://www.ncbi.nlm.nih.gov/pubmed/35081410
https://doi.org/10.1016/j.ecolind.2022.109205
https://doi.org/10.1016/j.scitotenv.2021.148311
https://doi.org/10.1016/j.ecolind.2020.106259
https://doi.org/10.1038/s41597-022-01322-5
https://doi.org/10.1016/j.scs.2022.104055
https://doi.org/10.1016/j.jclepro.2022.134004
https://doi.org/10.1016/j.compenvurbsys.2020.101569
https://doi.org/10.1016/j.scs.2022.104012
https://doi.org/10.1016/j.ecolind.2022.108803
https://doi.org/10.1016/j.landusepol.2015.11.020
https://doi.org/10.1016/j.cities.2022.103753
https://doi.org/10.1016/j.healthplace.2022.102899
https://www.ncbi.nlm.nih.gov/pubmed/36242828
https://doi.org/10.1016/j.jclepro.2022.133480
https://doi.org/10.1016/j.regsciurbeco.2020.103613
https://doi.org/10.1016/j.habitatint.2019.102068
https://doi.org/10.1016/j.cstp.2022.100932
https://doi.org/10.1016/j.jtrangeo.2022.103371
https://doi.org/10.1038/s41467-021-22702-2
https://doi.org/10.1016/j.ecolind.2020.106507
https://doi.org/10.1007/s10980-022-01461-5
https://doi.org/10.1016/j.ecolind.2008.11.008
https://doi.org/10.1016/j.jenvman.2016.07.076
https://doi.org/10.15832/ankutbd.640159
https://doi.org/10.1016/j.scs.2022.103983


Land 2023, 12, 928 20 of 20

55. Chuman, T.; Romportl, D. Multivariate classification analysis of cultural landscapes: An example from the Czech Republic.
Landsc. Urban Plan. 2010, 98, 200–209. [CrossRef]

56. Estoque, R.C.; Murayama, Y. Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city,
the Philippines: A scenario-based analysis. Appl. Geogr. 2012, 35, 316–326. [CrossRef]

57. Acheampong, M.; Yu, Q.; Enomah, L.D.; Anchang, J.; Eduful, M. Land use/cover change in Ghana’s oil city: Assessing the impact
of neoliberal economic policies and implications for sustainable development goal number one—A remote sensing and GIS
approach. Land Use Policy 2018, 73, 373–384. [CrossRef]

58. Yang, D.; Zhang, P.; Jiang, L.; Zhang, Y.; Liu, Z.; Rong, T. Spatial change and scale dependence of built-up land expansion and
landscape pattern evolution—Case study of affected area of the lower Yellow River. Ecol. Indic. 2022, 141, 109123. [CrossRef]

59. Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area.
Sci. Total Environ. 2019, 655, 707–719. [CrossRef]

60. Zhang, H.; Wang, Z.; Chai, J. Land use\cover change and influencing factors inside the urban development boundary of different
level cities: A case study in Hubei Province, China. Heliyon 2022, 8, e10408. [CrossRef]

61. Darvishi, A.; Yousefi, M.; Marull, J. Modelling landscape ecological assessments of land use and cover change scenarios.
Application to the Bojnourd Metropolitan Area (NE Iran). Land Use Policy 2020, 99, 105098. [CrossRef]

62. Wolf, I.D.; Sobhani, P.; Esmaeilzadeh, H. Assessing Changes in Land Use/Land Cover and Ecological Risk to Conserve Protected
Areas in Urban–Rural Contexts. Land 2023, 12, 231. [CrossRef]

63. Lerner, A.M.; Eakin, H.C.; Tellman, E.; Bausch, J.C.; Hernández Aguilar, B. Governing the gaps in water governance and land-use
planning in a megacity: The example of hydrological risk in Mexico City. Cities 2018, 83, 61–70. [CrossRef]

64. Yang, Z.; Hong, Y.; Guo, Q.B.; Yu, X.X.; Zhao, M.S. The Impact of Topographic Relief on Population and Economy in the Southern
Anhui Mountainous Area, China. Sustainability 2022, 14, 4332. [CrossRef]

65. Siddique, S.; Uddin, M.M. Green space dynamics in response to rapid urbanization: Patterns, transformations and topographic
influence in Chattogram city, Bangladesh. Land Use Policy 2022, 114, 105974. [CrossRef]

66. Kiziridis, D.A.; Mastrogianni, A.; Pleniou, M.; Tsiftsis, S.; Xystrakis, F.; Tsiripidis, I. Simulating Future Land Use and Cover of a
Mediterranean Mountainous Area: The Effect of Socioeconomic Demands and Climatic Changes. Land 2023, 12, 253. [CrossRef]

67. Marcucci, D.J. Landscape history as a planning tool. Landsc. Urban Plan. 2000, 49, 67–81. [CrossRef]
68. Jia, L.; Ma, Q.; Du, C.; Hu, G.; Shang, C. Rapid urbanization in a mountainous landscape: Patterns, drivers, and planning

implications. Landsc. Ecol. 2020, 35, 2449–2469. [CrossRef]
69. Qu, W.Y.; Zhao, S.Q.; Sun, Y. Spatiotemporal patterns of urbanization over the past three decades: A comparison between two

large cities in Southwest China. Urban Ecosyst. 2014, 17, 723–739. [CrossRef]
70. Wang, L.; Wu, L.; Zhang, W. Impacts of land use change on landscape patterns in mountain human settlement: The case study of

Hantai District (Shaanxi, China). J. Mt. Sci. 2021, 18, 749–763. [CrossRef]
71. Xiu, N.; Ignatieva, M.; van den Bosch, C.K.; Zhang, S.; Sveriges, L. Applying a socio-ecological green network framework to Xi’an

City, China. Landsc. Ecol. Eng. 2020, 16, 135–150. [CrossRef]
72. Sun, D.L.; Hong, B.T.; Ren, P. Spatiotemporal evolution and driving factors of the rural settlements in the mountain-plain

transitional zone. Int. J. Agric. Biol. Eng. 2022, 15, 149–155. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.landurbplan.2010.08.003
https://doi.org/10.1016/j.apgeog.2012.08.006
https://doi.org/10.1016/j.landusepol.2018.02.019
https://doi.org/10.1016/j.ecolind.2022.109123
https://doi.org/10.1016/j.scitotenv.2018.11.267
https://doi.org/10.1016/j.heliyon.2022.e10408
https://doi.org/10.1016/j.landusepol.2020.105098
https://doi.org/10.3390/land12010231
https://doi.org/10.1016/j.cities.2018.06.009
https://doi.org/10.3390/su142114332
https://doi.org/10.1016/j.landusepol.2022.105974
https://doi.org/10.3390/land12010253
https://doi.org/10.1016/S0169-2046(00)00054-2
https://doi.org/10.1007/s10980-020-01056-y
https://doi.org/10.1007/s11252-014-0354-3
https://doi.org/10.1007/s11629-020-6236-7
https://doi.org/10.1007/s11355-020-00412-z
https://doi.org/10.25165/j.ijabe.20221502.5776

	Introduction 
	Study Area and Data 
	Study Area 
	Data and Pre-Precession 

	Methodology 
	Prediction of Land-Use Change 
	Plus Model 
	Driving Factors Selection 
	Model Parameter Setting 

	Index Systems to Cluster Landscape Character Types 
	Cluster of Landscape Character Types 

	Results 
	Prediction of Land-Use Changes 
	Cluster of Landscape Character Types 
	Spatial Distribution and Changes of Landscape Character Types 
	Contribution of the Driving Factors to Landscape Character Types Change 

	Discussion 
	Advantages of Landscape Character Types for Landscape Management 
	Relationships between Land-Use and Changes in Landscape Character Types 
	Influence of the Critical Driving Factors 

	Conclusions 
	References

