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Abstract: This study aimed at testing whether the integration of precision farming (PF) and agroeco-
logical practices could influence wheat yield in the short term on soils exposed to varying degrees of
risk from flooding. The study embraced two years (2018–2019 and 2020–2021) of wheat cultivation
in Central Italy. A two-way factorial grid with agronomic practice (two levels: agroecology vs.
conventional on-farm management) and soil vulnerability to flooding (three levels: extreme, mild,
non-vulnerable) as factors was set up. The agroecology level included a number of agroecology
practices (rotation, use of nitrogen-fixing crops, mulching, and reduction in chemical fertilization).
Crop phenology and photosynthetic activity of wheat was monitored by remotely-sensed Normalized
Difference Vegetation Index (NDVI). Grain yield was estimated at twenty sampling points at the end
of year 2. A flooding event occurred during year 2, which led to significantly lower photosynthetic
activity compared to year 1 in extremely vulnerable plots regardless of agronomic practices. Grain
yield measurements confirmed that vulnerability was the sole factor significantly affecting yield.
The study concludes that food security on vulnerable land can be guaranteed only when precision
farming and agroecological practices are coupled with water management techniques that strengthen
the resilience of vulnerable soils to floods.

Keywords: precision farming; agroecology; remote sensing; vegetation index; fertilization; nitrogen

1. Introduction

Sustainable soil management plays a crucial role in achieving the goals of key Euro-
pean agricultural policies, such as the Green Deal [1,2], the Farm to Fork strategy [3], the
biodiversity strategy [4], and the Climate Adaptation strategy [5].

Soil degradation processes that affect agricultural soil have to be addressed. Soil
erosion and compaction, organic matter, and biodiversity loss remain critical perils to soil
health in Europe. In addition, human health is connected with soil health and sustainable
soil management [6].

Weather and climate affect the variability of food production and the sustainability of
ecosystem services related to the agriculture sector. Climate change is exacerbating the rate
and intensity of extreme events, increasing uncertainty about growth and productivity. The
increase in atmospheric CO2, as well as the other greenhouse gases, has continuously led to
rising temperatures and an increase in the frequency and amounts of precipitations [7]. The
most recent IPCC report [8] states that the rise in global surface temperature was 1.09 ◦C in
2011–2020, above 1850–1900, and that there is at least a greater than 50% likelihood that
global warming will reach or exceed 1.5 ◦C in the near term (2021–2040).

Since the beginning of this century, several floods have occurred in Europe. Many
climate models assessed an increase in future flood event frequency and intensity. Flood risk
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control and land management have to consider geographical (topography), hydrological
(drainage), ecological (mainly soil compaction), soil management, cultivation system, water
retention, and economic aspects [9].

In Europe, inland or flash flooding is frequent [10]. They are respectively due to
continuous low-intensity or rapid high-intensity rainfall, during which the precipitation
rate exceeds the soil drainage capacity. In flat areas, water accumulates on the soil surface,
with considerable depths in depressions. In sloped land, erosion can lead to extensive
soil fertility loss through the transport of floating matter and sediment. Floods cannot be
forecast in advance; hence, soil protection measures are needed to prevent environmental,
agricultural, and economic damages [10].

To fit the productivity to the changing environment, farmers can adopt management
practices to mitigate the risks associated with extreme events. Resilient farming systems
should consider the introduction of sustainable actions, such as an increase in biodiversity,
the rational choice of crops to be planted and the most suitable varieties, an improve-
ment in soil characteristics, water use efficiency, and rationalization of the type and rate
of fertilizers [11,12]. Such objectives can involve a transition to systems of sustainable
agriculture [13] or the introduction of mitigation elements even without commencing long
and complex conversion processes [14]. Most sustainable practices are part of statutory
management requirements to maintain good agricultural and environmental conditions
(GAEC) of the land within the framework of the common agricultural policy [15], which is
subsidized by Member States.

Precision Farming (PF) may play a key role in improving decisions concerning agricul-
tural processes, optimizing the management of natural resources, and the use of chemical
factors. Although the most evident result can be a positive return against a costly technolog-
ical investment, what is hidden involves more careful management of the inputs and then a
shift toward a more respectful farming system. Within a scheme of sustainable agriculture,
the integration of PF may give a strong impulse toward the prevention of nutrient loss,
better pesticide management practices, a decrease in fuel use by optimizing the use of
tractors, emissions lowering, and ensuring more efficient land use [13].

Within the European Green Deal, sustainability plays a central role and in the agricul-
tural context, the use of PF is tagged as a sustainable practice in addition to agroecology,
agroforestry, and organic farming [13]. Rural Development programs may include some
PF techniques that the Member States could deem relevant for their regional characteristics
and specificity [16].

Informative data and smart sensors support the accurate monitoring of inter- and intra-
field variability. Such knowledge not only leads to a more punctual release of fertilizers,
herbicides, and pesticides but also rational water supply and seed management. The
environmental impact is therefore mitigated by more efficient use of inputs, a reduction
in chemicals used, and their escape to the environment [17,18]. Moreover, guidance
technologies associated with PF (machine guidance, controlled traffic farming) help to
improve the soil status through a reduction in soil compaction, runoff, and erosion but also
reduce fuel consumption [17]. Overall, PF is considered a suitable approach to mitigate
GHG (greenhouse gas) emissions directly (mainly through its efficiency in nutrient and
water management) and indirectly (reducing the demand for inputs). The authors of [19]
estimated a reduction in GHG emission of 890 kg CO2 ha−1 from the unused fertilizer
when yield stability maps were used for N fertilizer application in the US Midwest.

In addition to the use of the aforementioned advanced technology and innovative
analytical methods, remote sensing (RS) is a powerful tool to provide comprehensive and
continuous assessments of crop growth and health, enabling prompt monitoring and early
identification of yield-impairing drivers [20,21]. By monitoring changes in the timing of
these events, RS, combined with informative data and smart sensors, can provide valuable
information about the impacts of climate change and other environmental factors on crop
growth and productivity. Additionally, remote sensing data can be used to accurately
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map and track changes in crop phenology, such as the timing of flowering and maturity,
providing valuable information for optimizing planting and harvesting schedules [20,21].

The aim of this study was to test the hypothesis that an integrated PF and agroecologi-
cal practices approach could increase grain yield productivity in the short term on soils
exposed to varying degrees of risk from flooding.

2. Materials and Methods

A 5.0 ha experimental field crop, spatially located in the northeastern outskirts of
Rome, central Italy (Figure 1a, Latitude 42.103◦ N, 12.628◦ E), was set up in 2018. The
field belongs to the Research Centre for Engineering and Agro-Food Processing (CREA) to
pursue academic investigations.

Figure 1. Digital elevation model (DEM) and contour lines of the experimental area (a). Experimental
design indicating flood vulnerability factors (V0, V1, and V2), agronomic management (COF and
APF), and the randomly selected soil sampling points (b). SRS: WGS84/UTM zone 33N; EPSG:32633.
Number and red points correspond to the sampling points.

The soil is of volcanic origin and is classified as Typic Argixeroll. Soils in the exper-
imental field fall in the clayey loam or silty clayey loam USDA classification and have a
sub-alkaline reaction. Workability is difficult, with a tendency to retain too much water,
often resulting in stagnant water after heavy rainfall. Floods can be a serious problem for
most crops since they may cause stunted growth, rot, or other diseases that lead to loss of
grain yield. Therefore, this type of soil requires drainage of surface waters.

The long-term data (30 years) of the ISIS 1.0 database show an average annual air
temperature of 13.7 ◦C and an average annual rainfall of 890 mm. The water regime is xeric
(80–115 days), with 88 cumulated dry days per year [22].

A set of 20 sampling points randomly located in the experimental field were routinely
sampled for soil chemical and physical features and the resulting grain yield assessment.
Soil samples were collected from a layer at 0–300 mm.

The experiment was carried out over two years of wheat cultivation, from November
2018 to July 2019 and November 2020 to July 2021. Wheat grain yield in t·ha−1 was assessed
at the end of the second year (June 2021). Six experimental plots (approximately 0.8 ha



Land 2023, 12, 915 4 of 17

each) were set up in a 2-way factorial grid with agronomic (2 levels) and vulnerability to
flood (3 levels) as factors (Figure 1b).

The levels of agronomic management were (i) the conventional on-farm management
(COF, used as control) and (ii) the application of some precision farming concepts to the
agroecology approach (APF, Agroecology Precision Farming). The former referred to
traditional farming practices involving classical tillage and fertilization at a fixed rate;
the latter relied on some of the agroecology practices such as a rotation system, use of
nitrogen-fixing crops, mulching, and a reduction in chemical fertilization [13,23] by using
the variable rate approach based on soil analysis and remote sensing.

Due to its pedology and its flat orography, the experimental field has historically been
subject to flooding. The vulnerability to flooding factor differentiated plots according to
their relative elevation above sea level (higher elevation, lower vulnerability to flooding)
and soil content in silt and active limestone content (lower values, lower vulnerability to
flooding). Soil content was sampled in 2018 on the 20 sampling points. An ordination
analysis by principal component analyses (98.8% of variability explained by the first
two axes) showed that silt, active limestone, and sand content clearly differentiated the
sampling points into three clusters (Figure 2). The three clusters matched the elevation
gradients on the experimental field (Figure 1b) and the historical records of previous
flooding. Hence, they were labeled according to flooding vulnerability as extreme (V2),
mild (V1), and non-vulnerable (V0).

Figure 2. PCA plot of the flooding vulnerability areas and soil properties with stronger influence.
Each polygon represents the corresponding flooding vulnerability: non-vulnerable (V0), mild (V1),
extreme (V2).

Over the experimental duration (2018–2021), the temperature trend was quite steady.
The peak of maximum temperatures generally occurred between July and August, while
the lowest minimum temperatures were generally observed in January (Figure 3). Yearly
cumulated rainfall was, on average, 792 mm (±190 mm standard deviation). The rainy
period starts from October until April, but in the two years under consideration, significant
rainfall was recorded in May and July 2019, while the period from January to September
2020 was particularly dry. A flooding event occurred in December 2020 and January
2021, with 342 mm of rainfall (about 48% of the average yearly rainfall) distributed in
two weeks. This resulted in flooding part of the experimental field from January to April
(Figure 4). Meteorological data were collected by the Arsial agrometeorological station in
Monterotondo (RM), location Grotta Marozza (92 m asl, 2.836 m East–South–East from the
experimental field, https://www.siarl-lazio.it/E1_2.asp, last access 8 August 2022).

https://www.siarl-lazio.it/E1_2.asp
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Figure 3. Average monthly temperatures (◦C) and cumulative monthly rainfall (mm) registered in
the two cultivation years at the Grotta Marozza (92 m asl) meteorological station. Phenological stage
windows are shown as shaded boxes labeled F1 (emergence), F2 (stem elongation), F3 (flowering
phase). Cyan-colored bars highlight excessive precipitation events that occurred during the F1 phase
in year 2.

Figure 4. Flooded areas. For each phenological stage (F1 in November-December, F2 in January-
February, and F3 in March-April) in year 1 (2018-19) and year 2 (2020-21), a composite image was
computed with the maximum values of the Normalized Difference Water Index (NDWI). Pixels with
values higher than the threshold of −0.5, corresponding to the median of the six NDWI maximum
images, were gathered in colored polygons, indicating high humidity or flooded terrain.
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In October 2020, 10 soil samples (approximately 3.5 kg each) were taken from both
areas (overall, twenty samples) in the soil layer 0–300 mm. The samples were dried (105 ◦C
for 24 h) for moisture content determination, and a one-kg sub-sample was bagged and
shipped to the Larian s.r.l. Laboratory for full analysis. All the analyzed soil samples
were clayey loam or silty clayey loam (USDA classification). Total limestone and active
limestone were high; the cation exchange capacity was high; calcium was the most present
exchangeable cation. The content of organic matter and total nitrogen was classified as
medium. Nitrogen and potassium concentrations were sufficient for an average demanding
crop, so generally, their supply was not required. The available phosphorus was low due
to both the excess of Ca and the presence of active limestone, which cause a high degree of
immobilization of the element [22].

On the 3 APF plots, green manure faba beans were sown in February 2020, while
sunflower was sown in April on the conventional portion. At the end of June, the field
beans were mulched, while sunflowers were harvested in September.

In October 2020, all 6 plots were plowed, and after about a month, the soil was refined
with two consecutive harrowings. Wheat sowing was completed in late November 2020
with a row seeder using the durum wheat variety Pluto (220 kg ha−1).

In mid-July, before harvesting, we collected 50 plants from each sampling point
(20 samples). Each grubbed area was photographed, and the area was calculated by using
ImageJ software (https://imagej.nih.gov/ij/download.html, accessed 12 October 2022). At
two points (13 and 16) of the V2 plots, the plants were lying and covered by weeds as a
result of the flooding in January. For each sample, the stems were separated from the ears
in the laboratory, and the two fractions were weighed. The seeds of each harvest point were
obtained by means of a fixed-point threshing machine of the company Cicoria, weighing
the production with a precision balance Kern (Stuttgart, Germany) mod. 572 (d = 0.1 g).

Fertilization on the APF plots was carried out with differentiated doses. Previously
developed prescription maps [22] highlighted the presence of at least three zones with
different phosphorus availability. Based on this indication, three areas were considered
for fertilization with mineral superphosphate in the APF plots at pre-sowing: 157 kg ha−1,
170 kg ha−1, and 183 kg ha−1.

Nitrogen fertilization was carried out on both APF and COF plots but with different
dosages, given the presence of an abundant nitrogen reservoir in the soil. Moreover, in
the APF part, the preceding cultivation of faba beans added a further quantity of nitrogen
through biological fixation and burying of the residues. Thus, the nitrogen requirements in
the APF plots were met by distributing 72 kg/ha of 18–46. In contrast, 150 kg ha−1 of the
same fertilizer was distributed in the COF plots. Both interventions were carried out using
a centrifugal spreader (Model L/1250, make Maassluis, The Netherlands). Plants were
fertilized again at the beginning of stem elongation (end of March 2019 and 2021), applying
52 kg ha−1 of ammonium nitrate on the APF plots and 150 kg ha−1 of both ammonium
nitrate and urea on the COF plots.

Phenology is the seasonal timing of the life cycle [24]; its variation is the main tool by
which wheat (and plants in general) may adapt to climatic change. Following the Feekes
scale [24,25], the main developmental stages of wheat during the two-year study were
estimated using remote sensing data in year 1 and were visually assessed in the field in
year 2 (Table 1).

Crop phenology of wheat yield and soil moisture were evaluated during the two
cultivation years, from December 2019 to July 2021, by remote sensing using the Normalized
Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI).

The NDVI is directly related to the photosynthetic capacity and, therefore, to the
energy absorption of plant canopies [26], thus proving to be an excellent predictor of pro-
ductivity and yield [27]. The NDWI maximizes the reflectance of open water features while
minimizing those related to the photosynthetic capacity, thus detecting water presence on
cultivated land [28,29].

https://imagej.nih.gov/ij/download.html
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Table 1. Main phenological and developmental stages of wheat during rotations of year 1 (2018–2019)
and 2 (2020–2021). F1, F2, F3 refer to the phenological temporal windows where the NDVI was
evaluated in data modeling.

Stage Feekes Scale Date (Year 1) Date (Year 2)

Emergence (F1) 1 November 2018 December 2020
Tillering 2 February 2021

Beginning of stem elongation (F2) 6 February 2019 March 2021
Beginning of heading 10.1 Beginning of May 2021

Flowering (F3) 10.5 May 2019 Mid of May 2021
Ripening 11.4 July 2021

The NDVI (Equation (1)) and NDWI (Equation (2)) were estimated for the study area
on all available passes of the satellites of the Copernicus Sentinel-2 (S-2) mission using the
spectral reflectance of the central wavelengths of the near-infrared band (ρNIR), and visible
bands green (ρgreen) and red (ρred):

NDVI =
ρNIR − ρred
ρNIR + ρred

(1)

NDWI =
ρgreen − ρNIR

ρgreen + ρNIR
(2)

These spectral reflectances are themselves ratios of the reflection over the incoming
radiation in each spectral band. The S-2 satellites aim at providing multispectral data with
a 5-day revisit frequency and 10 m spatial resolution [30]. Cloud and cirrus formations
were detected and removed through the quality assurance metadata provided, and the
resulting pixels were masked from the calculation of the indexes. The NDVI was spatially
averaged at the plot level at each available date for the duration of the two cultivation years
(2018/2019 and 2020/2021).

2.1. Modeling
2.1.1. Model 1: Temporal Control

Before experimentation, the factors (Vulnerability and Practice) of the experimental
design were tested to reveal any prior effect on the yield of the experimental plots. Since
no data on grain yield were available in 2019, we used the NDVI as a proxy for the
photosynthetic activity and productivity of wheat.

A linear mixed-effects model tested the effect of experimental factors as explanatory
variables on the NDVI during year 1. To account for the variability of the NDVI values along
the phenological development of wheat, three key phenological windows were extracted
from the continuous year 1 data (Table 1): emergence (F1), beginning of stem elongation
(F2), and flowering (F3). Each phenological window occupied approximately 1 month. The
NDVI was computed on each pixel and averaged at the plot level. Phenological windows
(F1, F2, F3) were treated as random effects. The contrast for the Vulnerability factor was
V0 level (no vulnerability to flood), contrast for the Practice factor was COF level (control).
A total of 54 NDVI values were entered into Model 1. The deviance table (Type II Wald
X2 tests, Table 2) and fixed effects parameters estimation (Figure 5) showed no significant
effect neither of Vulnerability nor Practice on year 1 NDVI.

Model evaluation was performed using the lme4 package [31] for R statistical lan-
guage [32]. The confidence level of each fixed effect was computed with the multcomp
package [33].
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Table 2. Model 1, deviance table of the fixed effects for the average NDVI at plot level during year 1
(df: degrees of freedom). No experimental design factors affected the NDVI before experimentation
took place.

Factor X2 df Pr (>X2)

Vulnerability 0.83 2 0.66
Phenology 0.67 1 0.41

Figure 5. Model 1: coefficients and confidence intervals of fixed effects during year 1. Fixed effects
include Vulnerability (V0, V1, V2 levels) and Practice (APF, COF levels). Contrasts were level V0
for the Vulnerability factor and COF for the Practice factor. Red colored effects are not significant
at p < 0.001 level. Vulnerability and Practice did not significantly affect the average NDVI during
cultivation year 1.

2.1.2. Model 2: Detection of Anomalous Trends on NDVI

Anomalous photosynthetic activity of wheat in the experimental plots was evaluated
during the three key phenological windows: F1, F2, F3 (as defined in Model 1), in both
years (Table 1). A linear mixed-effects model was fitted to the NDVI values as a response
variable, with Vulnerability, Practice, and Phenological factors as fixed effects and year
(1 and 2) as a random intercept. Contrasts for Vulnerability and Practice factors were those
of Model 1, and contrast for the Phenological factor was F1 (emergency stage level). The
NDVI was calculated on each pixel and averaged at the plot level. A total of 133 NDVI
values were entered into the final modeling phase.

The optimal model was selected by comparing Akaike’s Information Criteria indicator
and log-likelihood of four models: (i) a null model (only random component); (ii) a
complete model (all fixed effects and their interactions); (iii) a first nested model with
no interactions among factors; and (iv) a second nested model found by removing the
insignificant Practice factor (Table 3). Model selection and evaluation were performed using
the lme4 package [31] for R statistical language [32]. The deviance table (Type II Wald X2

tests, Table 4) was computed using the car package [34]. Fixed effects estimation is shown
in Table 5 and Figure 6. The confidence level of each fixed effect was calculated with the
multcomp package [33].

Table 3. Model 2, analysis of variance for the NDVI mixed-effects models. The optimal model
(“Nested no practice”, shown in boldface) was selected according to the lowest AIC and greatest
log-likelihood (K: number of parameters; LL: log-likelihood; df: degrees of freedom).

Model K AIC LL Deviance X2 df Pr (>X2)

Null 3 2113 −1054 2107
Complete 20 1807 −883 1767 3.19 9 0.96

Nested, no interactions 8 1807 −895 1791 316 5 0
Nested, no practice factor 11 1792 −885 1770 21 3 0
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Table 4. Model 2, deviance table of the “Nested, no Practice factor” optimal model for the average
NDVI at plot level (df: degrees of freedom).

Factor X2 df Pr (>X2)

Vulnerability 5.721 2 0.0057
Phenology 1982 2 0.0000

Vulnerability × Phenology 22.74 4 0.0001

Table 5. Model 2, estimation of fixed effects for the “Nested, no Practice factor” NDVI optimal
mixed-effects model. Contrasts are level V0 for the Vulnerability factor and F1 for the Phenology
factor (F1: emergency phase, F2 stem elongation phase, F3 flowering phase). Significant explanatory
variables at p < 0.001 level are shown in boldface. Adjusted p values reported.

Estimate Std. Error z-Value Pr (>|z|)

Intercept 2355 250.2 9.414 <0.001
Vulnerability, level V1 −143.7 240.1 −0.599 0.993
Vulnerability, level V2 365.2 235.6 1.550 0.521
Phenology, level F2 5404 245.3 22.03 <0.001
Phenology, level F3 6244 246.7 25.31 <0.001

Vulnerability, level V1 × Phenology, level F2 −590.5 349.9 −1.688 0.426
Vulnerability, level V2 × Phenology, level F2 −1505 346.8 −4.339 <0.001
Vulnerability, level V1 × Phenology, level F3 241.5 349.9 0.690 0.984
Vulnerability, level V2 × Phenology, level F3 −689.4 346.8 −1.988 0.251

Figure 6. Model 2, coefficients and confidence intervals of fixed effects (NDVI optimal model “Nested-
no practice”). Fixed effects include the Vulnerability (V0, V1, V3 levels) and Phenological stages (F1,
F2, F3 levels). Contrasts are level V0 for the Vulnerability factor and F1 for the Phenology factor.
Cyan-colored effects are significant at p < 0.001 level.

2.1.3. Model 3: Effect of Experimental Factors on Yield

The effect of Vulnerability and Practice factors on crop grain yield was assessed by
performing an analysis of variance on grain yield (measured in t·ha−1) sampled in the
20 random sampling points set as the response variable, and the two experimental factors
as explanatory variables. Four ANOVA models were tested: a complete model featuring
both factors and their interaction; a nested model featuring no interactions; and two nested
models featuring either factor (Vulnerability or Practice). The optimal model was selected
according to the simplest model featuring the lowest Akaike’s Information Criteria indicator
and greatest log-likelihood (Table 6). The estimation of the parameters of explanatory
variables is shown in Table 7. Post-hoc Tukey’s Honestly Significant Difference test was
used to evaluate confidence intervals among pairwise mean differences of vulnerability
levels (Figure 7). All modeling was performed in R statistical language [32].
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Table 6. Model 3, crop yield model selection table. The optimal model (“Nested, only Vulnerability”,
shown in boldface) was selected according to the lowest AIC and greatest log-likelihood (K: number
of parameters; LL: log-likelihood; df: degrees of freedom).

Model K AIC LL

Complete 7 54.4 −15.5
Nested, no interactions 5 49.5 −17.6

Nested, only Vulnerability 4 46.0 −17.7
Nested, only Practice 3 57.4 −25.0

Table 7. Model 3, estimation of explanatory variables for the “Nested, only Vulnerability” optimal
model. Significant explanatory variables at p < 0.01 level are shown in boldface.

df Sum Sq Mean Sq F Value Pr (>F)

Vulnerability 2 7.513 3.756 9.327 0.0018
Residuals 17 6.847 0.403

Figure 7. Model 3, grain yield optimal model, 95% family-wise confidence level pairwise difference
among mean levels of vulnerability. Cyan-colored data are significant at p < 0.001 level.

3. Results

The six experimental plots were monitored using remotely-sensed NDVI as a proxy
for photosynthetic activity and the yield of two cultivations of wheat, with contrasting
farming practices and vulnerability to flooding caused by extreme rainfall events.

Both years share the typical phenological NDVI curve as a result of the phenological
development of wheat (Figure 8) in all experimental plots, specifically during the three key
phenological phases (F1, F2, F3). From bare soil during the seeding phase (November), the
average NDVI at plot level increased as seeds germinated (November and December, F1),
the stems elongated (February, March, F2), peaking during the flowering phase (May, F3).
After peaking at F3, the photosynthetic activity of wheat decreased due to the partitioning
of assimilates towards the spike.

However, the photosynthetic activity of year 2 never reached year 1 values. No
agronomic measures (such as different values for seeding density, methodology, or tim-
ings) accounted for lower activity in year 2. However, a different meteorological regime,
such as the extensive dry period that affected the area prior to seeding (from January to
September 2020), could have lowered soil moisture and delayed seed germination (F1).

Model 2 revealed that the Practice factor did not differentiate any effect on the NDVI
between agroecology plots and control plots (Figure 6). The seasonal NDVI trend was
conserved on all experimental plots at the year level, irrespective of the farming practice ap-
plied in any of the three phenological windows. As a result, Practice factors were removed
from the model, and the main drivers of the NDVI were the timing of the phenological
window, the Vulnerability factor, and their interaction.
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Figure 8. Averaged NDVI during year 1 (red color) and year 2 (cyan color) on each experimental plot
defined by the level of vulnerability to flooding (V0, V1, and V2: no, average, and extreme vulnerabil-
ity) and by agronomic practice (APF: agroecology, COF: control). Phenological stage windows are
shown as shaded boxes labeled F1, F2, F3 (emergence, stem elongation, and flowering phase).

During year 2, a flooding event triggered by intense rainfall that accounted for almost
half of the year’s cumulative rainfall affected a few experimental plots (Figure 4) before
and during the stem elongation phase (F2), leading to a lag in the NDVI increase, caused
by the death of submerged wheat plants (Figure 8). The lag, which stretched to the F2
phenological phase, affected V1 and V2 plots (mildly and extremely vulnerable to flooding)
but was found to be significant only in extremely vulnerable plots (V2) when compared to
non-vulnerable ones (V0, used as contrast level), as shown in Table 5 and Figure 6 (Model
2). The NDVI increased again on all plots, irrespective of their vulnerability level during
the successive flowering phase (F3). It should be noted that no prior effect of Vulnerability
or Practice on photosynthetic activity was found the year before the flooding took place
(Model 1, Figure 5). Since Practice did not play any role in year 2 as well (Model 2), only
the spatial arrangement of the V2 and V1 plots (those completely or partially submerged
by flood) drove the NDVI lag.

Grain yield (t·ha−1), estimated on the 20 sampling points at the end of year 2 (Table 8),
confirmed that the NDVI lag on vulnerable plots during the F2 phase had a lasting effect
on yields. The optimal grain yield model (Model 3) ruled out any effect of Practice and
determined that Vulnerability was the sole factor significantly affecting yield (Tables 6 and 7,
Figure 7). In extremely vulnerable plots (V2), wheat showed a severe and substantially
lower yield than in not- (V0) and mildly-vulnerable (V1) plots (on average 1.5 t·ha−1 less
than V0, and 1.1 t·ha−1 less than V1), as shown in Figures 8 and 9. No significant difference
in yield was found in V1 plots compared to V0 plots.

Table 8. Grain yield in sampling points. Grain weight was measured from about 50 plants from each
point on a variable surface (not shown).

id Practice Level Vulnerability Level Grain Weight (g) Grain Yield (t·ha−1)

1 COF V2 66.2 1.66
2 COF V1 66.6 2.49
3 COF V1 78.0 2.18
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Table 8. Cont.

id Practice Level Vulnerability Level Grain Weight (g) Grain Yield (t·ha−1)

4 COF V1 71.1 2.00
5 COF V0 74.8 2.08
6 COF V0 68.8 1.70
7 COF V2 27.6 0.96
8 COF V1 68.9 2.54
9 COF V0 96.0 2.33
10 COF V0 90.6 2.79
11 APF V1 59.1 1.39
12 APF V1 80.0 2.04
13 APF V2 0.840 0.03
14 APF V0 111 2.84
15 APF V0 98.8 3.60
16 APF V2 5.34 0.13
17 APF V0 82.2 2.78
18 APF V0 65.0 1.87
19 APF V2 127 2.04
20 APF V0 81.6 2.31

Figure 9. Grain yield in t·ha−1 estimated on sample points (white circle) at the three different levels
of vulnerability to flooding (V0: no vulnerability, V1: mildly vulnerable, V2: extremely vulnerable).
Different capital letter near the bar (mean ± SD) indicate significant difference at the level of p ≤ 0.01.

The extreme variability in grain yields of year 2 assessed in the sampling points was
driven by a few points where yield was found to be close to 0 (Table 8, points 7, 13, 16),
and wheat had been replaced by invasive weeds. This anomaly can be traced back to the
flooding event of December 2020 and January 2021 that submerged a few of the sampling
points in V2 and V1 plots (Figure 4), causing a long lag in the photosynthetic activity that
lasted almost 60 days (clearly evident from day 60 onwards in Figure 8). A successive
increase in the NDVI (F3 phase) was detected and related to the fast growth of invasive
species that replaced dead wheat plants.

4. Discussion

Precise monitoring of crop fields using proximal or remote sensing images or tractor-
mounted sensors offers the opportunity to identify low-productivity areas and carefully
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manage the use of fertilizers, herbicides, pesticides, and irrigation water to provide a
sustainable yearly yield.

Many forms of sustainable agriculture are targeted to restore soil quality [13,35]. The
agricultural practices suggested by these approaches to improve the soil status (reduced
tillage, use of cover crops, crop rotation, including leguminous species crops) release their
effects after a prolonged period. Its length depends on factors such as the soil conditions
before their introduction, the intensity of the action, the specific characteristics of the area
concerned, and the synergies among different sustainable practices. The main effects of
sustainable practices concern the improvement in ecosystem services balanced by yield
reduction. This topic has been covered thoroughly in the literature on organic farming,
which has demonstrated that conventional farming has higher yields [36,37] and yield
stability [38].

In the present study, APF appeared as a win–win strategy: it showed no significant evi-
dence of lower yields compared to conventional farming while, at the same time, it reduced
the negative impacts on the environment (i.e., lower usage of mineral fertilizers). This can
be attributed to a gradual incorporation of an agroecological approach within a traditional
scheme, respecting the structural and technical framework of the farming system of the area.
Moreover, the agroecological practices adopted were similar to the Good Agricultural and
Environmental Conditions (GAEC) defined within the so-called cross-compliance under
the CAP regulations [15]. Therefore, adherence to cross-compliance guidelines could have
a positive effect on the environment while not seriously affecting yields.

Lost yields occurred in those experimental plots that experienced flooding and sub-
mersion of wheat between the stages of emergence and tillering. One of the main effects
of waterlogging is a reduction in gas diffusion which causes low oxygen (hypoxia) or
the complete removal of oxygen (anoxia) in the root zone. This, in turn, leads to an in-
hibition of root growth/elongation, negatively affecting the emergence and elongation
of lateral roots [39,40]. The authors of [41] have shown that waterlogging modifies the
wheat–microbiota interaction, too, causing a shift toward the presence of deleterious taxa
at the expense of plant-beneficial bacterial groups. Such modification is influenced by the
phenological stage and the change in root properties during plant growth [41]. Therefore,
the stages when waterlogging takes place have a significant impact on the yield components
and the final yield. Indeed, as observed by [42], germination and tillering are critical stages
for wheat undergoing flooding stress. Fifteen days of waterlogging during tillering cause
irreversible damage to the development of secondary roots reducing their extension and the
roots’ dry weight. As a consequence, the number of spikes per plant, the number of grains
per spike, and the grain yield can be lower than the non-flooded control [42]. Because
the flooding occurred between the most sensitive plant growth stages (emergence and
tillering), our results on yield in submerged plots strengthened the experimental evidence
and provided a physiological explanation for the observed behavior.

The degree of the inherent vulnerability of soils and fields to extreme events signifi-
cantly affects the sustainability of their productivity. Specific precision farming techniques
(such as ensuring the effective management of fertilizers), which are thought to have a
positive impact on the sustainability of production and soil condition, have a lesser influ-
ence on soil resilience, even if coupled with agroecological techniques. The timing of the
occurrence of the extreme flooding event is crucial. Should it happen in later phenological
phases, the wheat would have escaped serious rot effects and death. Moreover, due to the
long-lasting effect of the flood on soil workability, no emergency seeding could take place
to replace lost wheat. As a result, food security on vulnerable land can be guaranteed only
when precision farming and agroecological cultivation techniques are coupled with water
management techniques that strengthen the resilience of vulnerable soils to floods.

In past years, excess water was regulated by hydraulic systems and drainage. The
need to intensify production has led to an extreme simplification of fields by removing
all obstacles (drainage lines, ditches, convex profile) that can reduce the operability of
machines [43]. With such simplification, the increased unpredictability and intensity
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of extreme events no longer find a buffer system that could mitigate the impact of the
event. As observed by [44], plant resilience against abiotic stresses is at a maximum if
soil conditions are suitable for plant growth and development. Thus, the introduction of
agroecological practices, such as the reduction in vehicle traffic, the increase in organic
matter, and the irregular and polymorphic root systems with varying soil disrupting action,
can undoubtedly improve soil conditions and promote greater resilience to flooding [35].
These and other benefits have been recognized by policymakers who introduced some of
them into the CAP framework as rules for maintaining the land in good agronomic and
environmental conditions and for the application of the cross-compliance regime to access
direct payments of farmers [15]. To ensure a minimum level of land conservation and to
avoid the deterioration of landscapes, the Italian discipline has foreseen the protection of
characteristic landscape elements (GAEC 7), including the non-elimination (among others)
of the hydraulic–agricultural arrangements [45]. To protect the soil from erosion, the same
standard requires the maintenance of the farm’s hydraulic network and field convexity
(GAEC 5), aimed at ensuring the efficiency and functionality of draining water [45].

These agronomic techniques, developed as common knowledge over hundreds of
years, can effectively be considered adaptation measures to cope with the risk of extreme me-
teorological events whose intensity and frequency are expected to increase in the future [46].
Virtuous farmers who are more sensitive to the possible impact of their activities can, there-
fore, benefit economically and gain greater protection from extreme events through careful
soil and farm management by introducing the principles of agroecology already present in
cross-compliance provisions.

Phenology variables have been identified as some of the most sensitive to climate
conditions and, therefore, represent key indicators of crop growth and development while
playing an important role in vegetation monitoring [47]. Agroecosystems are strongly
affected by natural conditions and human activities [48–50]. Patterns in crop growth
are influenced by processes involving land use type, soil conditions, water availability,
and regional climate [50,51], and any changes in crop phenology are closely related to
these environmental controlling factors. That vegetation indexes monitored by year-long
remote sensing images correctly identified a loss of photosynthetic activity in a number of
experimental wheat plots and its subsequent recovery. We note, however, that the recovery
in photosynthetic activity resulted from the presence of weeds, which were the result of the
choice to avoid the use of herbicides and the difficulty wheat has in fully recovering after
winter waterlogging. Notwithstanding, our results confirmed that year-long multi-seasonal
images have the potential to correctly assess crop growth variability [21], particularly
in response to climate variability over single vegetation index images. However, in our
experiment, it could have led to incorrectly labeling photosynthetic activity at the flowering
stage as a wheat crop, leading to an overestimation of the potential yield.

5. Conclusions

This study hypothesized that integration between precision farming and agroecologi-
cal practices could positively impact yield in the short term on soils exposed to varying
degrees of risk from flooding. Our data were limited to a case study in Central Italy, and
although its geology, pedology, and climate features are shared with many other areas, the
results can only be upscaled to other agronomic contexts with due caution.

In a short time frame, agroecological management did not affect crop cultivation,
monitored using the NDVI, and on grain yield over conventional farming. However, even
if agroecology does not positively affect yield, it could have a positive current effect on
the environment. Long-term studies are needed to verify whether the steady adoption of
agroecological practices also leads to substantial increases in yields.

The effects of extreme climate events can hinder those due to agronomic management.
Agroecological practices, such as the reduction in vehicle traffic, the increase in organic
matter, and the irregular and polymorphic root systems obtained through crop rotation,
applied over a period of time, can undoubtedly improve soil conditions and promote
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greater resilience to flooding. These agronomic techniques can effectively be considered
adaptation measures to manage the risk of extreme meteorological events, which are
becoming more intense and frequent. Moreover, precision farming and agroecology have a
pivotal role in saving inputs and increasing sustainability. However, proper hydraulic soil
management is required to further reduce the risk. Importantly, our experiment confirmed
that the timing (in terms of the physiological stage) of an extreme flooding event is crucial,
having induced wheat rot effects and plant death.

Remote sensing image analysis over a full phenological period proved to be a cru-
cial tool to correctly assess crop growth and yield variability, particularly in response to
climate variability, over single vegetation index images, but it could lead to incorrectly
overestimating the crop yield.
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