
Citation: Cronan, D.; Trammell, E.J.;

Kliskey, A. From Uncertainties to

Solutions: A Scenario-Based

Framework for an Agriculture

Protection Zone in Magic Valley

Idaho. Land 2023, 12, 862. https://

doi.org/10.3390/land12040862

Academic Editors: Paola Gullino and

Federica Larcher

Received: 19 February 2023

Revised: 25 March 2023

Accepted: 7 April 2023

Published: 11 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

From Uncertainties to Solutions: A Scenario-Based Framework
for an Agriculture Protection Zone in Magic Valley Idaho
Daniel Cronan 1,2,* , E. Jamie Trammell 2,3 and Andrew Kliskey 2,4

1 Department of Landscape Architecture, College of Environmental Science and Forestry (ESF),
State University of New York, Syracuse, NY 13210, USA

2 Center for Resilient Communities, Moscow, ID 83844, USA
3 College of Environmental Science, Southern Oregon University, Ashland, OR 97520, USA
4 Landscape Architecture Program, College of Art and Architecture, University of Idaho,

Moscow, ID 83844, USA
* Correspondence: drcronan@esf.edu

Abstract: As growth in the western U.S. continues to lead to the development of land, pressure is
being exerted on agricultural production, and could lead to the loss of prime agricultural land. A
wide array of perspectives concerning agricultural protection requires a variety of possible solutions.
Diverse and plausible scenarios, driven by stakeholders, can be modeled by researchers to guide
potential solutions to address key challenges within a region. This paper addresses one stakeholder-
defined social-ecological system (SES) solution in the context of southern Idaho, one of the fastest-
growing states in the U.S.: agricultural protection zoning. This project demonstrates a method
for incorporating an Agriculture Protection Zone (APZ) within a suite of scenarios showing land
protection opportunities across a range of future conditions and challenges. The results, by way
of a Geodesign framework, entail suitability analyses through a series of weighted raster overlays
to analyze scenario-based solutions. The suite of scenario solutions was compared to demonstrate
effective proportions of the APZ. The analysis of the results, as a solution gradient, aim to inform
policy makers, planners, and developers about the efficiencies of various APZ delineations as well as
a methodology to demonstrate the impact of solutions based on assumptions of stakeholder-informed
future scenarios.

Keywords: agroecology; scenarios; alternative futures; agriculture protection zoning; landscape planning

1. Introduction

Iterative modeling and stakeholder input for social-ecological systems (SES) can
dictate nuance through multiple understandings of future trajectories of change in areas
fraught with land use conflict [1]. With increases in development, the urban–rural fringe,
preserved for future development or preservation of natural resources, is subject to this
friction. Within rapid development and growth in southern Idaho, agriculture is at risk of
impact. Measuring impact through a range of scenarios can provide a method to address
space in land use contention. Multiple alternative future possibilities to these externalities
necessitate a process designed to incorporate models of future anticipatory scenarios [2],
impacts of this change, and responses through a suite of plausible actions which may
be implemented by a community [3–5]. Scenarios, alternative futures, and solutions for
the Magic Valley in southern Idaho, comprising nine agricultural-based counties, have
been demonstrated through recent work on ‘socio-ecological futures’ [6,7]. To further
expand possible solutions in the context of the Alternative Futures project, this paper
demonstrates a policy-driven solution across food-energy-water (FEWS) scenarios as an
example of stakeholder responses to uncertainty [8] and addresses this through stakeholder-
driven solutions to protect and conserve agricultural land uses within the rural–urban
interface. Within current research, demonstrations of applied solutions to address land use
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conflicts within the rural urban interface and FEWS networks are seldom demonstrated
through scenarios [6]. This research provides an example of embedded solutions through
stakeholder-driven guidance for operationalizing this intervention. This paper also seeks
to demonstrate a method to craft and validate solutions within the context of an alternative
futures project [9–11] through a SES framework. The results indicate clear geospatial
delineations of areas of potential agricultural protection. The results of this paper, intend
to inform SES researchers about research pathways and a workflow for replicability. This
framework also intends to provide policymakers and local planners with a solution gradient
to demonstrate and plan for similar policy interventions for the future of the region and for
similar FEWS, RUI, and SES challenges.

The research objectives of this paper are (a) to describe the development of suitability
analysis for APZ delineations for each scenario, (b) to compare and analyze scenario-
specific boundaries, and (c) to propose a framework for cross-scenario solution analysis. As
a synthesis of analyzed possible areas for agriculture protection, a gradient was generated
from the cross-scenario analysis. This framework is aimed at providing a scaffolding for
further development of similar approaches for applying solutions to alternative futures
projects. As a goal of the project, we intend to answer the following research question: “How
can scenario-based analysis inform solutions in the context of a Geodesign framework?”
The following sections provide context, background, and rationale for addressing the
research objectives.

1.1. Social Ecological Systems Solutions in Scenario Projects

A SES can be defined as decision spaces for addressing complex social patterns to
manage and adapt to changes [12] within the biophysical systems in which humans manage
and influence change [13,14]. Adapting to uncertainty and surprise [7,15] plays an integral
role in the decision-making process through integrated methodologies and frameworks.
However, if the adaptation and adoption of solutions is accepted by local governance
(e.g., decision-makers, stakeholders, and land managers), plausibility and success of in-
terventions can be achieved [16,17]. Alternative futures analysis [4,5,15] is an example of
a mixed-method approach for eliciting this acceptance or trust [16,18] through creation
of a suite of stakeholder-driven, research-based scenarios. Scenarios, as representations
of future trajectories, ultimately demonstrate how stakeholders envision the future of an
area, region, or landscape [19]. Within anticipatory and exploratory scenario projects, these
understandings of the future are supported by computational scenario modeling efforts to
demonstrate how shifts in thinking might unfold at various timesteps. However, due to
the utility and purpose of citizen-driven scenarios, solutions are seldom integrated within
the process due to perceptions of prescriptiveness [20,21]. Limitations within the process
restrict solutions and systems-level interventions as mechanisms to address negative im-
pacts. Within the Innovations at the Nexus of Food, Energy, and Water Systems (INFEWS)
project in Magic Valley, researchers achieved this integration of solutions per each scenario
as the interventions reflected stakeholder-defined values and interest [6,7,22–24].

1.2. The Urban–Rural Fringe in Magic Valley Idaho

The urban–rural fringe is subject to a range of significant and adverse effects at various
landscape and regional scales [25]. For sustainable regional systems and land use planning,
the urban–rural fringe remains a contentious space operating as a buffer between rural
communities and urban areas with higher density [26]. Sprawl and various development
types can play a significant role in various issues that may occur due to increased devel-
opment and systematic shifts in growth or conservation trends. These fringe areas are
typically used as a reserve for future development [27]; however, with informed planning
and efficiency, various fringe areas (otherwise known as the rural–urban interface (RUI))
can be viewed as a solution space to many issues in our built environment [26,27]. Due to
these impacts, landscapes, viewed as SESs that incorporate social and built environments,
have the potential to support adaptive responses to environmental and development sus-
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tainability challenges. To better understand the demands, limits, and thresholds of areas
impacted, we developed and tested plausible scenarios to measure potential futures facing
these areas. The scenario project’s intent was also to quantify the capability for ensuring
sustainable growth for urban, natural, and agricultural areas.

Adaptive capacity, vulnerability, and feasibility studies [28–30] can provide planners
and researchers with an understanding of systems-level limits, perimeter extents, and
thresholds for growth for urban areas [26,31]. However, by conducting these studies, we
subject our research efforts to building out our future projects to the extent or boundary
of the study area. These studies provide the landscape threshold or carrying capacity [31]
which, in a high-development scenario, the absolute capacity of the urban–rural fringe will
be built out to its extent. Within this research, we propose a methodology to determine a
gradient as a range for areas that are feasible or suitable for policy intervention within the
urban–rural fringe.

2. Methods and Materials

Within Idaho’s Magic Valley (Figure 1), population growth and development have
the potential to become the drivers of change to impact agricultural systems within the
RUI. With a decadal population growth rate of 19.91% since 2010, the region is projected
to have a population of 221,703 (19.2 people per square mile) as of 2027 compared to its
2010 population of 185,790 inhabitants [32]. Due to this influx, the demand for low-density
residential development has impeded on the urban–rural fringe, primarily consisting of
highly productive agricultural land. To remediate effects of this rapid change in regions
with similar issues, solutions and networks have been adopted. The following sections
present these solutions.
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Figure 1. This figure gives context for Magic Valley Idaho as well as current population and projected
population for urban areas within the region. Magic Valley urban areas (depicted as red histograms)
showcase the population proportionately in the context of the region.

2.1. Best Management Practices in Agroecology

Best Management Practices (BMPs) are a tool that can assist with addressing issues
and challenges within SES as structural or policy interventions. Within the context of
agroecological systems, biophysical as well as agrarian needs require place-based influence
and buy-in from individuals who manage those particular systems [16,33]. Agricultural
BMPs require proper planning, siting, sizing, and permitting based on federal as well as
local agencies (e.g., Idaho Department of Environmental Quality, NRCS, USDA NASS). A
stakeholder group, comprising local experts, has the ability to conceptualize, validate, and
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operationalize these BMPs as well as their networks through scenario permutations [11];
however, justification of land use and land cover change per each scenario must be justified
through iterative spatio-temporal modeling efforts [34,35]. Within the INFEWS project,
a solution set was developed which comprised a categorization of two different types of
BMPs: structural BMPs and policy-driven BMPs. The following sections provide back-
ground and explanation of one of the stakeholder-defined BMPs: the Agriculture Protection
Zone (APZ).

2.1.1. Current Agriculture Protection Zoning

Throughout the western United States, effects of urban sprawl have caused detrimen-
tal impacts to water, soils, and ecosystems within the natural and built environment. Urban
stream syndrome [36], erosion, stream turbidity, and conversion of prime agricultural land
to low-density residential land contribute to these impacts and cause myriad issues within
the RUI and contiguous areas. To address this protection of critical agrarian land, permitted
uses and restrictions have been utilized through various methods and an exemplary case
study [37]. As a synthesis of these methods and planning tools, it can be assumed that
exclusive agricultural zoning, entailing strict land use regulations and limitations specifi-
cally for agriculture and agricultural-based operations, has a low success rate due to its
exclusionary nature. However, sliding scale zoning (maximum and minimum residential
lot sizes specified) [37,38] and combination approaches allow for the creation of agriculture
protection districts to develop a ratio-based proportion [39] of residential-to-preserved
permanent agriculture within a given area.

2.1.2. Agriculture Protection Zoning Effectiveness

These approaches address and ameliorate growth patterns within the RUI; however,
leapfrog development can potentially occur within these areas [40] as well as changing in
zoning ordinances due to reduced land values [39]. Due to this impact, many states have
evoked agricultural protection zoning through agricultural district laws and guidelines [41]
which protect farmlands of state-wide importance. Agricultural protection zoning districts
require farmland of state-wide importance as a criterion for suitable areas for an APZ.
Additionally, standard design principles are typically found, and are occasionally added
depending on regional needs, in the suitability [39,42] of agriculture projection zoning:
(a) prime agricultural land and soils, (b) soils of statewide importance, (c) land capability
classes (for example, category I–VIII from the NRCS-USDA [43]), and (d) proximity to
supporting infrastructure (crops, dairies, processors, supporting businesses, roadways).
The suitability mapping utilized within this study expands upon these criteria specific to
each scenario.

2.2. Stakeholder Engagement through Geodesign

We engaged with a group of key individuals who shared interests aligning with
the objectives of our project, specifically understanding and reducing impacts to water
and agricultural systems with regard to Magic Valley. The stakeholder advisory group
(SAG) comprised twelve regional experts including representatives from the following
organizations, sectors, and agencies: a canal company executive, municipal water engi-
neers, food processing managers and executives, a rural planning NGO member, Native
American Tribe representatives, and dairy industry advocates. Stakeholder meetings were
held twice per year, totalling seven workshops; however, individual follow-up sessions
were conducted to gain further clarification regarding input. Stakeholders were provided
compensation for their time. A full description of challenges and accomplishments of the
process is presented within Kliskey et al., 2023 [6].

Regional stakeholders [7] helped define the criteria utilized to model suitability of the
APZ policy-intervention within a food-energy-water scenario planning process [6] and the
research team developed a method to validate its utility. Stakeholder-defined criteria were
put into a suitability analysis within the context of a broader alternative futures analysis [7].
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The suitability analysis included weighted criteria to denote the feasibility of optimal
locations for an APZ for each scenario. Weights were based on criteria and narratives
validated by a stakeholder group [7]. The alternative futures analysis then weighed the
LULC impacts of an APZ across the entire suite of scenario solutions. The combination of
the suitability analyses and the alternative futures analysis provided plausibility as well as
effectiveness of the solution catered to southwest Idaho.

We modeled the impact of the APZ suitability approach (Figure 2) using the Steinitz
Geodesign framework [21] by developing the following models:

(a) Process Model—the APZ suite of suitability models evaluated by indicators of total
agricultural land;

(b) Change Model—a composite APZ (including each scenario APZ boundary) to align
projected agricultural land for each Alternative Future circa 2050 [7];

(c) Impact Model—this model is a comparison of the current agricultural lands with
the APZ Suite to determine effectiveness of the APZ under the assumptions of each
scenario;

(d) Decision Model—the decision model, as a ‘low to high’ suitability gradient of feasible
APZ areas, provides a synthesis of the process to demonstrate a range of the composite
APZ along with the agriculture projection zoning.
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Figure 2. Figure 2 demonstrates the methodological process utilized within this research aligning
Geodesign models with key aspects of the methodology within this study.

2.3. Suitability Analysis for the APZ

Suitability analysis for the Agriculture Protection Zone (APZ) refers to areas that
may potentially operate as agricultural reserve districts. This delineation intends to limit
low-density residential areas and other zoning ordinances which may encroach on highly
productive agricultural land. Suitable areas, per each scenario-specific criteria set, were con-
figured using ESRI ArcGIS Pro weighted raster overlay tools [44], first during stakeholder
meetings and then finalized by the research team.

2.4. Materials and Data Sources

For the suitability analysis, Cropland Data Layer (CDL) [45] raster datasets were
aggregated to generate the ‘crops allocated’ and ‘minimum acreage’ criteria in the suitability
analysis for each scenario. The ‘Top Commodity Crops’ were defined by stakeholders as
being corn, barley, spring wheat, winter wheat, alfalfa, sugar beets, and potatoes. ‘Crops
of Community Importance’ were validated as being ‘Top Commodity Crops’ along with
sorghum, oats, and dry beans. Both categories were processed from CDL data classes. For
data consistency, CDL datasets from 2019 were used to generate the alternative futures used
within the suite of FEWS scenarios. USA SSURGO Farmland Classes [43] were processed to
generate the ‘Soils of Importance’ criterion. ‘Land Capability Classes’ were also generated
from USA SSURGO [43]. Land capability classifications are groupings of soils based on their
ability to produce and support commonly cultivated crops. Lower numeric classifications
denote less susceptibility for each soil to deteriorate over time. Class I soils have few
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limitations that restrict their use. Class II soils have very severe limitations that reduce the
choice of plants or that require very careful management, or both. Class III soils have severe
limitations that reduce the choice of plants or that require special conservation practices,
or both. Class IV soils have very severe limitations that reduce the choice of plants or that
require very careful management, or both [43]. Classes 5–8 were not included within this
analysis due to their restricted use for wildlife, forestland, or pasture land use allocations.
Because of these restrictions, our stakeholder suggested only using Classes I–IV, being that
these types allow for agricultural practices.

2.5. APZ Suitability Criteria per Each INFEWS Scenario

The criteria used within the weighted raster overlay procedure were conducted using
stakeholder input from workshops and interviews in the INFEWS project [7]. Criteria
changed per each scenario, so multiple weighted raster overlays were conducted. Two of
the scenarios did not have an APZ applied and, therefore, the procedure was not run for
two scenarios (see Scenario 2 & 4 in Table 1). The criteria utilized are as follows: crops
allocated, minimum acreage, soils of importance, and land capability classes. Exclusion
areas included urban areas consisting of residential, commercial, industrial areas, public
facilities, and the Area of City Impact (AOCI) for the communities in Magic Valley. The
AOCI is a statewide code instituted by Idaho state government that requires cities to define
a preferred growth boundary, defined by each county, for areas where a city is expected to
grow in the future [46].

Table 1. The information below showcases the scenarios produced within the INFEWS project aligned
with the data processed. Columns depict the criteria utilized for analysis, and rows depict each
scenario nuance within the process elucidated from stakeholder feedback.

Scenario Crops Allocated Minimum Acreage Soils of Importance Land Capability
Classes

Scenario 1:
Business as Usual Top Commodity Crops Greater than 40 Acres Soils of Statewide

Importance Classes I–IV

Scenario 2:
The Courts Call No APZ

Scenario 3:
Locavore

Top commodity crops
and community

importance
Greater than 25 Acres Prime Agricultural

Soils Classes I–IV

Scenario 4:
Population Boom No APZ

Scenario 5:
Megadrought

Top commodity crops
and dairy agriculture Greater than 40 acres Prime Agriculture Soils Classes I–IV

Scenario 6:
Happy Valley

Top commodity crops
and dairy agriculture Greater than 40 acres Prime Agriculture and

Transitional Soils Classes I–IV

A solution suite of APZ boundaries per each scenario was generated using ESRI’s
weighted raster overlay tools [44] (Table 1). Weights for suitability analysis were designated
from interviews and workshops with stakeholders. Weights were then applied to the
weighted raster overlay to indicate a range from suitable to less suitable areas for APZ
delineations (Table 2). These delineations were used to process a ‘Composite APZ Analysis’.
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Table 2. The table below demonstrates weights produced within the suitability analysis. Columns
depict the weights and criterion utilized for analysis, and rows depict each variation of change in the
suitability analysis.

Weights Crops Allocated Minimum
Acreage Soils of Importance Land Capability

Classification

1 Top Commodity
Crops - Soils of Statewide

Importance -

2 - - - Class IV

3
Top commodity crops

and community
importance

Greater than
25 Acres

Prime Agricultural
Soils Class III

4 - - - Class II

5 Top commodity crops
and dairy agriculture

Greater than
40 Aces

Prime Agriculture
and Transitional

Soils
Class I

3. Results
3.1. Composite APZ Analysis Outputs

To create a composite of all identified APZ areas, the weighted raster overlays were
combined into a single raster with an associated gradient to define areas of aligned APZ
boundaries (Figure 3). This analysis identified the most common areas for APZ designation,
used later for consensus generation among the stakeholders.
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This ‘Decision Model’ (Figures 2 and 3) as presented through the Composite APZ
Output demonstrates a range of areas which can provide policy delineations for agricultural
protection in a range of various scenarios. For example, within a ‘Megadrought Scenario’,
areas designated as ‘high’ and ‘medium’ can be preserved to protect the integrity of the
systems, whereas within a ‘Happy Valley Scenario’, ‘high–low’ designations fall within the
APZ boundary.

Table 3 identifies how many acres fell into each of the four categories of APZ agreement
across the scenarios.

Table 3. The following table depicts the four values (low to high) generated from the composite
APZ boundary.

APZ Agreement Acres (Area) Hectares (Area)

Low 201,629.23 81,596.45
Low to Medium 819,833.96 331,775.03

Medium 183,586.32 74,294.75
High 1,362,596.23 551,423.13

3.2. APZ Suite and Composite APZ Output Comparison

Comparing the scenario-defined APZs and the composite APZ suggests that the
scenario-specific APZ boundaries, validated by stakeholders and processed through suit-
ability analysis, are proportionally larger than the composite APZ impact areas (high- to
low-priority areas) (Figure 4). A ‘Low to Medium’ category was included to capture the
large amount of intermediate acreage which fell between the adjacent categories.
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The comparison of the scenario-specific APZ boundaries to the composite APZ evalua-
tion demonstrates that each agricultural protection zone allocated will conserve both areas,
denoted as being a ‘High-Impact Area’ and ‘Medium-Impact Area’ within the Composite
APZ outputs combined (Figure 5). In short, ‘Low to Medium’ and ‘Low’ impact areas in a
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scenario with a high likelihood of drought (e.g., Megadrought scenario) or reliance on local
agriculture (e.g., Locavore scenario) may be removed from the agricultural protection zone
by decision-makers based on impact. Providing a gradient of high-priority APZ to low-
priority APZ defines areas due to crop rotation, changes in land use planning and zoning,
and changes in ownership and/or water rights allocations [47] which, in turn, may help to
prioritize decision-making under various circumstances related to the scenario conditions.

These results provide significant guidance for decision-making through an applied
framework for denoting various scenario allotments for the protection of agricultural
areas and an evaluation of these results by way of comparison to a composite suitability
analysis. Application of similar scenario-based Geodesign frameworks [21] can provide
improvements to local and regional understandings of landscape systems, implications
of planning, and the potential impacts of decision-making through the purview of other
scenarios, or alternative futures. The results of this project intend to provide evidence
of the application of the Geodesign framework [21] to address agriculture protection
and conservation by (a) understanding system processes (Process Models), (b) denoting
nuance through scenario specific modeling efforts (Change Models), (c) evaluating impacts
across all scenarios, and (d) activating these impacts into a geospatial solution gradient
(Decision Models).
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4. Discussion
4.1. Solutions for Agroecological Systems in Magic Valley

Defining challenges indicated by stakeholder groups through participatory action
research projects allow for co-creation of knowledge recognized in land suitability in
agroecology as well as agroforestry [48–50]. Furthermore, solutions from participatory
action research integrated in agroecology relies on two key principles which were applied
in this FEWS project [51]: (a) address barriers limiting agroecological planning practices,
and (b) assess the performance of agroecological management strategies. These objectives
were achieved through the application of an iterative framework for development and
impact measurement of solutions. The research developed through this methodology
demonstrates this process for solution development through the APZ solution set and the
geospatial composite APZ as an impact indicator.
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4.2. Magic Valley INFEWS Agricultural Protection Zone Gradient

The outcomes of applying the suitability analysis combined with an outcome metric
composed of an analytical approach (composite APZ) of all alternative futures circa 2050
were used to generate a possible APZ gradient. Similar approaches to creating geospatial
policy and structural solutions can be applied to projects with similar conditions utilizing
stakeholder input to guide solutions. As utilized in the project, modeling through a Geode-
sign Framework [21] can be applied as a formalized methodology to activate stakeholder
input into qualitative responses to critical issues on the landscape and in planning policy.
However, a critical component is the integration of stakeholder feedback into the process
iteratively. Stakeholder responses to validate and demonstrate (a) the likelihood of potential
futures, (b) solutions to critical issues, and (c) criteria for suitability of solutions aid within
the scenario planning and development process. Without this input, validity of the project
and solutions, such as the APZ delineations, may remain hindered in plausibility and
viability to local decision-making and planning.

4.3. Planning and Zoning Impact within the Rural–Urban Interface

Within the state of Idaho, the RUI remains an annex for various planning strategies
such as AOCI expansion areas; however, incorporation of Conservation Overlay Dis-
tricts [52] can protect land use conflicts through residential zoning for protection of areas
such as conservation subdivisions [53]. Protection of key agricultural lands within these
fringe areas can similarly be achieved with APZ suitability mapping and feasibility indices
co-created through a Geodesign framework [21].

5. Conclusions
5.1. Lessons Learned

With the onset of rapid development, areas experiencing land use conflict require
tools to understand and adapt to changes that may occur in their agroecological systems.
Scenarios and embedded solutions can provide these tools. Within the context of FEWS,
SES, and participatory scenario planning, solutions are seldom incorporated or adopted
into the scenario or model development [7]. This project provides a demonstration of a
framework for replicability as well as a solution example embedded within the scenario
process. The methodology and results in this study indicate that the proposed APZ across
scenarios may work to support a gradient of possible changes at the landscape scale (e.g.,
Magic Valley, Idaho). Suitability mapping for the delineation of geospatial policy solutions
evaluated through a composite of scenario possibilities can be used as an evaluation tool
for land use solution suitability and feasibility analysis. Further analysis is needed to test
specific variables; however, cross-scenario analyses can indicate the impacts elucidated
through stakeholder input for a complex SES. Similar frameworks utilizing stakeholder-
informed and scenario-based models can potentially be used to guide decision-making
for various solutions for similar projects facing land use conflicts with agriculture and
urban growth.

With regards to our initial research question as well as our research objectives, the
Geodesign framework can incorporate stakeholder feedback as a primary driver to inform
scenario development as well as informed solutions. Through the evaluation, we were
able to comparatively analyze findings from each Magic Valley APZ scenarios (Business as
Usual, Megadrought, Locavores, and Happy Valley) by way of a weighted overlay. The
results explain proportions of land which may vary in agriculture protection through low
water, decreased precipitation, and high development trends, however a consensus was
formed over larger proportions of the region. These results indicate that predominately
prime agriculture under the assumptions of any climate change and/or development trend
should be protected. The process developed, validated, and the embedding solutions
provides viable possibilities for a region undergoing conflict within the RUI in regard to
agroecology. Specifically, this framework depicts a solution set for agricultural protection
within a range of climate change scenarios. Stakeholder assumptions and validation of
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effective solutions for each scenario are germane to a Geodesign framework, and this
project demonstrates this informed and iterative ground truthing. In terms of replicability,
stakeholder collaboration and engagement are central to envisioning plausibility and
potential solution adoption [6,7,54]. The research within this study proves a transferable
framework for projects with similar conditions and needs.

5.2. Broader Impacts

The results indicate a plausible response to the need for a significant set of solutions
which can protect agricultural land use under the assumptions of specific scenarios. The
solutions and framework proposed in this project intend to inform policy makers, planners,
developers, and landscape architects about the efficiencies of various APZ delineations
under the assumptions of stakeholder-informed scenarios. These outputs depict modeled
landscape change with the application of an APZ solution.

Furthermore, the methodology presented in this paper provides a transferable geospa-
tial evaluation of stakeholder-informed solutions across various alternative futures and
scenarios of agroecological change. This research intends to contribute to the body of
knowledge in complex adaptive management in SES [55,56] research through participatory
methods through co-creation of stakeholder-informed, researcher-facilitated solutions to
key challenges in the RUI for rural communities.
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