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Abstract: Ensuring sufficient food production and guaranteeing the safety and quality of food are
crucial aspects of food security, how to achieve the balance between food production efficiency and
environmental protection is an urgent problem and challenge to be solved. This study introduced
an assessment system for the green production efficiency of grain, and measured China’s green
production efficiency of grain by using the slacks-based measurement (SBM) model, kernel density
estimation, and Tobit regression model. The findings show the following: (1) From 2000 to 2019,
China’s green production efficiency of grain showed an overall upward trend, while in different
regions it was shrinking. The central region has the fastest growth rate, the western region and the
northeast region have the same growth rate, and the eastern region has the slowest growth rate.
(2) According to the kernel density estimation, China’s green production efficiency of grain increased
year by year, and the national development was relatively balanced from 2000 to 2104. However,
there are obvious regional differences from 2014 to 2019; the eastern and northeastern regions are
relatively balanced, and the central and western regions have further expanded over time. (3) From
the perspective of whole country, the regional financial support for agriculture and the urbanization
rate have a significant positive impact on the green production efficiency of grain, while the crop
disaster affected area and agricultural output value have a significant negative impact on green
production efficiency. (4) From the regional perspective, the impact of different factors on the level of
green production efficiency of grain varies.
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1. Introduction

Global food security has long been one of the major issues in global development. Cur-
rently, the world is facing the challenges of the COVID-19 pandemic, climate change and
regional conflicts resulting in immense challenges and difficulties for global food security.
Food security not only refers to the assurance of food production but, more importantly,
to the guarantee of food quality and safety. Specifically, food security is a state where all
individuals have physical, social, and economic access to sufficient, safe, and nutritious
food to meet their dietary needs for an active and healthy life. Green and healthy food
refers to food that is free from harmful substances and non-toxic to human health. For
example, during the cultivation process, toxic pesticides and chemical fertilizers should
not be used to ensure that harmful substances are not present in food. Simultaneously,
adhering to environmental protection principles during food production and reducing
the environmental impact are essential aspects of food security. Food security not only
affects the health of each individual but also the health and stability of the entire society.
Therefore, ensuring food security requires not only guaranteeing the production but also
emphasizing the safety of green and healthy food. Effectively promoting coordinated devel-
opment between food production and ecological protection and fundamentally changing
the traditional resource-dependent food production method has become an urgent practical
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issue to address [1]. Green food production efficiency reflects the output-to-input ratio of
food production, including environmental impacts. The greater the value, the stronger
the green food production efficiency, making it the “key pulse” of the green development
of the food industry. Actively implementing the concept of green development in food
production necessitates transforming and adjusting the existing resource-intensive and
environmentally damaging food production methods to achieve a higher level of green
food production efficiency. Thus, scientifically measuring China’s green grain production
efficiency and examining the spatiotemporal differentiation characteristics and influencing
factors of China’s green grain production efficiency are of great significance for ensur-
ing China’s food security, improving green grain production, alleviating poverty [2], and
stabilizing the world’s food supply.

Scholars’ research on food production efficiency mainly focuses on measurement
methods, regional differences, and influencing factors. In terms of efficiency measurement
research, various methods and models have been employed. Some scholars have conducted
institutional diagnostics for food security in Africa, proposing effective solutions to food
security from a technological perspective [3]. Originating from the water–energy nexus,
the DEA model is primarily utilized to measure grain production efficiency [4,5]. In China,
Zheng used the stochastic frontier approach (SFA) model to measure grain production
efficiency [6], while Sun employed the super-efficiency model, investigating the coupling
relationship between water and food resources to measure China’s grain production effi-
ciency [7]. Bao analyzed the green total factor productivity of grain in the Poyang Lake
Basin [8]. Regarding regional differences in grain production efficiency, some Chinese schol-
ars have studied variations in grain production efficiency levels across different regions.
For example, Liu investigated the crop production level and potential in the northwest
region of China from a water resources perspective [9,10]. Yu examined the differences in
grain production between the northern and southern regions of China [11]. Other scholars
have studied the differences in grain production efficiency within various river basins, such
as the study on agricultural green production efficiency and input–output efficiency in
Yangtze river [12,13]. In terms of research on factors influencing grain production, differ-
ent scholars have adopted diverse perspectives when studying countries and regions at
different developmental levels. Research on developing countries primarily focuses on
traditional influencing factors. For instance, some scholars have investigated the impact of
climatic conditions on grain production in Bangladesh [14,15]. In India and Bangladesh,
land fragmentation has resulted in low land intensification, which is an important reason
for the low grain production efficiency in these regions [16,17]. In South Africa and Iran,
the low utilization and high consumption of water resources poses potential crises for grain
production in these areas [18,19]. Research on developed countries mainly concentrates
on higher-level factors such as agricultural intensification [20], public participation [21],
environmental effects [22], water resources planning [23], and the relationship between
water, energy, food, land, and climate [24]. Some scholars have focused on the influence
of traditional factors on grain production efficiency, such as water resources [25], climate
change [26], and fertilizer use [27]. Others have considered new influencing factors, such as
external connections [28] and urban factors [29]. Additionally, some scholars have begun to
recognize the spatial spillover effects of grain production efficiency and have used spatial
econometric models to study their influencing factors [30,31].

Existing research has systematically investigated the content and themes related to the
green production efficiency of grain, providing crucial theoretical and empirical support
for further study in this area. However, research on the green efficiency of grain production
remains insufficient. Scholars have not taken into account environmental consumption
during the grain production process and have used traditional methods to measure grain
production efficiency, which does not adequately consider green factors [32]. Although
some researchers have noted regional differences, they lack a grasp of the long-term trends
of these differences. This paper aims to fill these gaps in the following ways: (1) This study
focuses on utilizing the knowledge of the undesirable output SBM model and Tobit model
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for measurement while incorporating carbon emission-related knowledge to construct a
green efficiency evaluation system for grain production. (2) From a macro perspective, the
undesirable output SBM model is employed to investigate the green efficiency of provincial-
level grain production in China. (3) The panel fixed-effects Tobit model is applied to
analyze and explore the driving effects of external factors on the green efficiency of grain
production in China. This approach can provide new insights for improving China’s grain
production green efficiency and can guide the transformation and upgrading of the world’s
grain production.

2. Data Sources
2.1. Selection of Measurement Indicators

In the face of global warming and the threat of various uncertain events, only by
accelerating the green, ecological, and sustainable development of society and the economy
can we guarantee food security. The green production of grain mainly considers how
pollutants and carbon emissions in the production process, such as pesticides, fertilizers,
and machinery inputs, should be reasonably controlled to guide green and low-carbon
development. Based on the reality of in China, we construct the index system of grain
green production efficiency, as shown in Table 1. In terms of input indicators, this paper
selected land, fertilizer, machinery, pesticides, and water resources for measurement. In
terms of expected output, this paper selected total grain production for measurement, and
in terms of non-expected output, we selected total carbon emissions and total pollution
emission outputs as representative values. The total carbon emissions were calculated from
irrigated, fertilizer use, pesticide use, agricultural film use, and diesel fuel; the formula for
measuring carbon emissions is as follows:

E = ∑ Ei = ∑(Gi × δi) (1)

Table 1. Green grain production efficiency evaluation index system.

Primary Indicators Secondary Indicators Variables and Descriptions

Inputs

Labor input
[Number of rural population × (total agricultural
output value/total agricultural, forestry, animal

husbandry and fishery output value)]/10,000 people
Land input Grain sown area/khm2

Fertilizer input Fertilizer application/million tons
Mechanical input Total power of agricultural machinery/million tons

Pesticide input Pesticide use/million tons
Water input Water input volume/million tons

Expected output Total grain production Total grain production/million tons

Non-expected output Carbon output Total carbon emissions/million tons
Pollution emission output Total pollution emissions/million tons

In Equation (1), E represents the total carbon emissions in grain production; Ei repre-
sents the carbon emissions of the first carbon source; Gi represents the original amount for
each carbon emission source; and δi is the carbon emission coefficient of the above carbon
emission sources. The emission coefficients of the above carbon emission sources are as fol-
lows: pesticide, 4.3941 kg/kg; fertilizer, 0.8956 kg/kg; agricultural film, 5.18 kg/kg; tillage,
3.126 kg/km2; agricultural machinery power, 0.18 kg/kW; and irrigation, 266.48 kg/hm2.

Pollution emissions mainly refer to the surface source pollution in the process of
grain production, especially in the excessive use and residual pollution of agricultural
chemicals, such as fertilizers, pesticides, agricultural films, etc. In this paper, we use the
amount of nitrogen fertilizer, phosphorus fertilizer, pesticides, and agricultural films lost to
characterize the pollution emission of arable land used for grain production, and measure
the carbon emissions by means of the following formula:
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W = ∑ Wi = ∑(Hi × θi) (2)

In Equation (2), W is the total pollution emission of grain production; Wi is the
pollution emission of the first source;Hi is the original amount for each pollution emission
source; and θi is the pollution emission coefficient. The pollution emission coefficient refers
to the “National Pollution Source Census Production and Emission Coefficient Manual”.

2.2. Construction of Impact Factor Indicators

Based on the reality of grain production in China, this paper considers the effects on
the green production efficiency of grain in terms of rural residents’ living standards, the
natural conditions of agricultural production, local government financial support policies
for agriculture, the regional economic structure, and the urbanization level [33]. The level of
the living standards of rural residents is significantly related to grain production, while the
living standard of rural residents depends largely on income. In particular, the higher the
wage income of rural residents, the more farmers tend to engage in non-farm production,
and non-farm production activities may cause the abandonment of arable land, which
is detrimental to agricultural production. The ratio of wage income to the per capita
disposable income of rural residents is thus chosen as the influence factor and expressed
as WI. In terms of the natural conditions of agricultural production, grain production
is significantly constrained by the natural environment, especially the threat of natural
disasters such as waterlogging and drought, which seriously affects grain production
efficiency. The share of crop disaster affected area was chosen as the impact factor and
expressed as CAA. In terms of the government’s financial support policies for agriculture,
financial support policies directly stimulate the input of agricultural production factors and
affect the development efficiency of agriculture, and so the proportion of the expenditure
on agriculture in the general budget of regional finance is chosen as the influence factor and
expressed as RAF. In terms of regional economic structure, regional economic development
is the basis of agricultural development, leading to the improvement of grain production
capacity, and so the proportion of the total output value of agriculture was chosen as the
impact factor and expressed as TOVA. In terms of the urbanization rate, urbanization
regulates the resources needed for grain production through land, labor, capital, and other
factors, and changes the traditional agricultural organization system by adjusting the
structure of grain production, thus changing grain cultivation as well as green production
methods. At the same time, the transfer of rural labor, the “non-grain” use of arable land,
and the emission of pollutants from towns and industries accompanying urbanization will
also have a negative impact on grain production, so the urbanization rate was chosen as
the impact factor and expressed as UR.

In this paper, the panel data of 31 provinces in China from 2000 to 2019 were used
as the sample, and the data for evaluation indicators and impact factors were obtained
from “China Rural Yearbook” and “China Statistical Yearbook” from 2001 to 2020. The
descriptive statistics of impact factor variables are shown in Table 2.

Table 2. Impact factor system and descriptive statistics.

Impact Factor Variable Description Average Value Standard Deviation Maximum Value Minimum Value

WI Wage income/disposable
income per rural resident (%) 0.373 0.143 0.791 0.062

CAA Crop-affected area/crop
sown area ratio (%) 0.231 0.161 0.936 0

RAF
Regional agricultural

finance/local financial
expenditure (%)

0.097 0.040 0.279 0.009

TOVA Total output value of
agriculture/regional GDP (%) 0.204 0.102 0.602 0.076

UR Urbanization rate (%) 0.506 0.157 0.896 0.209



Land 2023, 12, 852 5 of 14

3. Methods
3.1. Super-Efficient SBM Model

We used the super-efficient slacks-based measurement (SBM) model to measure the
efficiency of the green production of grain [34]. The super-efficient SBM model combines
the advantages of the SBM model and the super-efficient data envelopment analysis (DEA)
model, which can incorporate non-desired outputs into the model while differentiating
and comparing effective decision units, thus avoiding the loss of information on effective
decision units. The formulas for the super-efficient SBM model incorporating non-desired
outputs are as follows:

ρ∗ = min
1 + 1

m

i=1
m

∑
D−i
xih

1− 1
s1+s2

r=1
s1

∑ Dg
r

yg
rh
+

k=1
s2

∑
Db

k
yb

kh


(3)

s.t.
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ij + Dg

r , r = 1, · · · , s1

yb
kh ≥

j=1,j 6=h
n

∑ λjyb
kj − Db

k , k = 1, · · · , s2

1− 1
s1+s2

r=1
s1

∑ Dg
r

yg
rh
+

k=1
s2

∑
Db

k
yb

kh

 > 0

D− ≥ 0, Dg ≥ 0, Db ≥ 0

(4)

In the formulas, ρ∗ is the green grain production efficiency index, there are n decision
units in the grain production process, m represents the input elements, s1 represents the
desired outputs, s2 represents the non-desired outputs, and there are three sets of vectors,
with x ∈ Rm being inputs, yg ∈ Rs1 being expected outputs, and yb ∈ Rs2 being non-
expected outputs. Additionally, we define the matrix X = [x1, · · · , xn] ∈ Rm×n as slack
variables for inputs,Yg =

[
yg

1 , · · · , yg
n

]
∈ Rs1×n as slack variables for desired outputs, and

Yb =
[
yb

1, · · · , yb
n

]
∈ Rs2×n as slack variables for non-desired outputs. D−, Dg, andDb are

weight vectors.

3.2. Kernel Density Estimation

Kernel density estimation is a nonparametric method for estimating probability density
functions, which has the advantage of not requiring any parametric model assumptions
and being able to describe the distribution pattern and evolution characteristics of random
variables with continuous density profiles [35]. The functional equation is as follows:

f (x) =
1

nh

n

∑
i=1

K
(

xi − x
h

)
(5)

The dominant Gaussian kernel function in academia estimates the time-series dynamic
evolution of production efficiency. The position of the center of gravity of the curve can
portray the evolution characteristics of the size of efficiency values, the height of the main
peak of the curve can portray the evolution characteristics of the difference of efficiency
values, the number of peaks of the curve can portray the evolution characteristics of the
multi-polarity of efficiency values, the length of the trailing curve can portray the evolution
characteristics of efficiency values in the high (low)-efficiency value area, and the thickness
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of the trailing curve can portray the evolution characteristics of the percentage of high
(low)-efficiency values.

3.3. Panel Tobit Regression Model

Due to the calculation of green grain production efficiency values in this study being
based on truncated data, ranging from 0 to 1, directly using the efficiency values measured
by the undesirable output SBM model as explanatory variables in constructing a least
squares model may not yield consistent estimates. Therefore, when studying green grain
production efficiency, it is more appropriate to use the Tobit model, which is suitable for
censored or segmented dependent variables, to empirically test the external driving fac-
tors [36]. Consequently, this study establishes a panel Tobit regression model to empirically
analyze the influencing factors of regional differences in green grain production efficiency.
The model is as follows:

yit = c + δ1WIit + δ2CAAit + δ3RAFit + δ4TOVAit + δ5URit + εit (6)

where: yit is the explained variable; xit is the explanatory variable; δk is the regression
coefficient of each explanatory variable; c is the constant term; and εit is the random error
term that obeys the distribution.

To better understand the process of this study, we drew a technical flowchart of the
research methodology, as show Figure 1.
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4. Results
4.1. Measurement Results of Green Production Efficiency

We calculated the green grain production efficiency of all provinces in China. As
shown in Table 3, Beijing, Shanghai, Hainan, Chongqing and Qinghai are at a high level,
with an average annual green grain production efficiency greater than 0.9, while Hebei,
Shandong and Henan are at a low level, with an average annual green grain production
efficiency lower than 0.3, and the rest of the provinces have an average annual green grain
production efficiency between 0.4 and 0.8. Overall, there are obvious differences in green
grain production efficiency among the three provinces, but the differences in neighboring
provinces are gradually narrowing.

Table 3. Provincial green production efficiency of grain from 2001 to 2019.

Province 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 Average

Beijing 0.88 0.90 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.98 0.94
Tianjin 0.77 0.80 0.84 0.86 0.89 0.91 0.92 0.94 0.95 0.96 0.88
Hebei 0.01 0.03 0.06 0.10 0.15 0.22 0.29 0.36 0.44 0.51 0.20

Liaoning 0.70 0.75 0.79 0.82 0.85 0.88 0.90 0.92 0.93 0.94 0.84
Shanghai 0.91 0.92 0.94 0.95 0.96 0.97 0.97 0.98 0.98 0.98 0.95
Jiangsu 0.21 0.28 0.36 0.43 0.51 0.57 0.64 0.69 0.74 0.78 0.51

Zhejiang 0.37 0.44 0.51 0.58 0.64 0.70 0.75 0.79 0.82 0.85 0.63
Fujian 0.59 0.65 0.70 0.75 0.79 0.83 0.86 0.88 0.90 0.92 0.78

Shandong 0.03 0.05 0.09 0.14 0.20 0.27 0.34 0.42 0.49 0.56 0.24
Guangdong 0.36 0.44 0.51 0.58 0.64 0.70 0.74 0.79 0.82 0.85 0.63

Hainan 0.90 0.92 0.93 0.94 0.95 0.96 0.97 0.97 0.98 0.98 0.95
Shanxi 0.38 0.45 0.53 0.59 0.65 0.71 0.75 0.79 0.83 0.86 0.64

Jilin 0.65 0.70 0.75 0.79 0.83 0.86 0.88 0.90 0.92 0.93 0.81
Heilongjiang 0.51 0.58 0.64 0.70 0.75 0.79 0.82 0.85 0.88 0.90 0.73

An Hui 0.10 0.16 0.22 0.29 0.37 0.44 0.52 0.58 0.65 0.70 0.39
Jiangxi 0.57 0.63 0.68 0.73 0.78 0.81 0.85 0.87 0.89 0.91 0.76
Henan 0.05 0.09 0.14 0.20 0.27 0.35 0.42 0.50 0.57 0.63 0.31
Hubei 0.39 0.47 0.54 0.60 0.66 0.72 0.76 0.80 0.84 0.86 0.65

Huanan 0.28 0.36 0.43 0.50 0.57 0.64 0.69 0.74 0.78 0.82 0.57
Guangxi 0.30 0.38 0.45 0.52 0.59 0.65 0.71 0.75 0.79 0.83 0.58

Inner Mongolia 0.69 0.73 0.78 0.81 0.85 0.87 0.89 0.91 0.93 0.94 0.83
Chongqing 0.85 0.88 0.90 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.93

Sichuan 0.41 0.48 0.55 0.62 0.68 0.73 0.77 0.81 0.84 0.87 0.66
Guizhou 0.65 0.70 0.75 0.79 0.82 0.85 0.88 0.90 0.92 0.93 0.81
Yunnan 0.27 0.34 0.42 0.49 0.56 0.63 0.68 0.73 0.78 0.81 0.56

Tibet 0.76 0.80 0.84 0.86 0.89 0.91 0.92 0.94 0.95 0.96 0.88
Shanxi 0.40 0.48 0.55 0.61 0.67 0.72 0.77 0.81 0.84 0.87 0.66
Gansu 0.47 0.54 0.60 0.66 0.72 0.76 0.80 0.83 0.86 0.89 0.70

Qinghai 0.93 0.94 0.95 0.96 0.97 0.98 0.98 0.98 0.99 0.99 0.97
Ningxia 0.79 0.82 0.85 0.88 0.90 0.92 0.93 0.94 0.95 0.96 0.89
Xinjiang 0.52 0.59 0.65 0.70 0.75 0.79 0.83 0.86 0.88 0.90 0.74

In terms of the time-series evolution of national green grain production efficiency, as
we can see in Table 4 and Figure 2, China’s overall green grain production efficiency has
steadily increased from 0.4808 in 2000 to 0.8673 in 2019, with an average annual growth
rate of 1.93%. The green production efficiency of grain in the eastern region increased from
0.4820 in 2000 to 0.8106 in 2019, with an average annual growth rate of 1.75%. The central
region increased from 0.2657 in 2000 to 0.7642 in 2019, with an average annual growth rate
of 2.45%. The efficiency in the western region increased from 0.5864 in 2000 to 0.9008 in
2019, with an average annual growth rate of 1.75%. That of the northeast region increased
from 0.5914 in 2000 to 0.9102 in 2019, with an average annual growth rate of 1.59%. It can
be seen that the central region has the fastest growth in green grain production efficiency,
the western and eastern regions have comparable growth, and the increase rate in northeast
region ranks the last. In terms of the disparity between regions, green grain production
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efficiency increased more significantly in the western region. It can be seen that the green
production efficiency of grain in the whole country and different regions is improving year
by year, and the gap between regions is narrowing year by year.

Table 4. National and regional green production efficiency of grain from 2000 to 2019.

Year National Eastern Central Western Northeast

2000 0.4808 0.48201903 0.265736971 0.586434755 0.591456067
2001 0.507 0.50253171 0.296820571 0.6136397 0.621470267
2003 0.5588 0.52318008 0.328835 0.640023664 0.650087
2004 0.5841 0.54392558 0.361516071 0.6654594 0.677231467
2005 0.6089 0.56472724 0.394594443 0.689844409 0.702858967
2006 0.6331 0.58553822 0.427802814 0.713100718 0.726950833
2007 0.6565 0.6063036 0.4608827 0.735173391 0.749510967
2008 0.6793 0.62695943 0.4935905 0.756028918 0.7705619
2009 0.7011 0.64743344 0.525702943 0.775653009 0.7901412
2010 0.7221 0.66764658 0.5570209 0.7940481 0.808298567
2011 0.7422 0.68751598 0.5873725 0.811230827 0.8250924
2013 0.7793 0.70695802 0.616614229 0.827229591 0.840587633
2014 0.7964 0.7258915 0.644631457 0.842082236 0.8548535
2015 0.8126 0.74424083 0.671337629 0.855833864 0.867961367
2016 0.8277 0.76193836 0.696672614 0.868534873 0.879983733
2017 0.8418 0.77892645 0.720600686 0.880239327 0.890992433
2018 0.855 0.79515837 0.743107629 0.891003509 0.9010582
2019 0.8673 0.81059913 0.764198243 0.900884645 0.9102495
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4.2. Analysis of Time-Series Dynamic Evolution Characteristics

The kernel density model can portray the time-series evolutionary characteristics of
the national green production efficiency of grain, and the results are shown in Figure 2. As
shown in Figure 3a, from the position of the center of gravity of the kernel density curve, it
can be seen that it migrated to the right from 2004 to 2019, indicating that China’s green
grain production efficiency increased year by year during this period. In terms of the height
of the curve crest, the crest rises slowly from 2004 to 2014, indicating that the inter-regional
green grain production efficiency increased and the gap narrowed. The crest rises abruptly
from 2014 to 2019, indicating that the inter-regional green grain production efficiency gap
showed a tendency to widen. In terms of the number of peaks, there is one peak from 2004
to 2014, indicating that the national green grain production efficiency was in a roughly
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balanced state during this period; however, the two peaks from 2014 to 2019 indicate a
polarization trend in green grain production efficiency. In terms of the degree of curve
trailing, the left side of the curve trailing is larger than the right side, and the right side of
the curve trailing shows a shortening trend, indicating that the provinces in the high-value
area have improved their green grain production efficiency.
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Figure 3b–e show the kernel density estimation curves of green grain production
efficiency in the eastern, central, western, and northeastern regions, respectively. The
results show the following characteristics: (1) The position of the center of gravity of the
curve shifted to the right from 2004 to 2019, indicating that the green grain production
efficiency of all four regions improved year by year during this period. (2) From the height
of the main crest of the curve, the crests of the central region, the western region and the
northeastern region slowly increased from 2000 to 2019, indicating that the green grain
production efficiency among these three regions increased. (3) In terms of the number
of wave peaks, one wave peak appears in each region from 2004 to 2014, indicating that
the national green grain production efficiency was in a roughly balanced state during
this period. However, two wave crests appear in the western region from 2014 to 2019,
indicating a polarization trend of green grain production efficiency in the western region.
(4) In terms of the degree of curve trailing, the degree of trailing on the left side of the
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curve is greater than that on the right side in the central, western and northeastern regions,
and the trailing on the right side shows a shortening trend, indicating that the green grain
production efficiency improved in the high-value areas of these regions.

4.3. Regression Results

The results of the analysis of the impact factors were calculated using a panel Tobit
regression model for green grain production efficiency, and the results are shown in Table 5.
At the same time, the regression results were tested for the presence of individual effects to
determine whether fixed effects or random effects estimation should be used. According to
the LR test results, individual effects existed in the national and regional functional grain
areas, so the random effects panel Tobit regression model was used. All Wald test results of
the regressions passed the significance test (p < 0.01), indicating that the overall model fit
was good.

Table 5. Panel Tobit regression results and tests.

Variables National (1) Eastern (2) Central (3) Western (4) Northeastern (5)

WI
−0.00429 −0.0963 0.338 ** 0.211 ** 0.878 ***
(0.0731) (0.123) (0.139) (0.106) (0.243)

CAA
−0.106 *** −0.00938 −0.0977 ** −0.101 ** −0.171 ***

(0.0255) (0.0434) (0.0467) (0.0419) (0.0393)

RAF
1.303 *** 0.559 *** 1.124 *** 0.756 *** 1.778 ***
(0.128) (0.212) (0.286) (0.197) (0.292)

TOVA
−0.791 *** 0.583 ** −1.229 *** −0.955 *** 0.0525

(0.0825) (0.282) (0.136) (0.131) (0.154)

UR
0.454 *** 1.475 *** 0.679 *** 0.246 *** 0.0723
(0.0468) (0.143) (0.114) (0.0701) (0.0782)

Cons
0.528 *** −0.318 ** 0.312 *** 0.769 *** 0.391 ***
(0.0579) (0.159) (0.101) (0.0747) (0.0728)

Wald Test 1295.63 *** 220.42 *** 1254.05 *** 496.69 *** 200.21 ***

LR Test 1056.37 *** 192.08 *** 205.95 *** 200.82 *** 17.27 ***

Number 620 200 120 240 60

Note: ** and *** denote 5% and 1% significance levels, respectively; numbers in parentheses are clustering robust
standard errors.

4.4. Regression Analysis of Impact Factors

We used a panel Tobit regression model to analyze the impact factors on the green
production efficiency of grain, and the results are shown in Table 5. Meanwhile, the
regression results were tested for the presence of individual effects based on the test results
to determine whether to use fixed effects or random effects for estimation. According to the
LR test results, there are individual effects for the whole country as well as for each region,
and thus the random effects panel Tobit regression model is used, and all regression results
pass the Wald test of significance (p < 0.01), indicating a good overall fit of the model.

In terms of the national regression results, the coefficients of all variables pass the
significance level test except for the wage income of rural residents (WI). Each percentage
point increase in government financial support policies for agriculture (RAF) and urbaniza-
tion rate (UR) has a positive effect by increasing the level of green production efficiency of
grain by 1.303% and 0.454%, respectively. For each percentage point increase in the natural
conditions of crop-affected area (CAA) and total output value of agriculture (TOVA), the
level of green grain production efficiency decreases by 0.106% and 0.791%, respectively,
playing a negative role.
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The regression results from different regions in the east, central, west and northeast
show in Table 5 that there are significant differences in the direction and degree of influence
of different influencing factors on the efficiency of green production of grain.

(1) In terms of the wage income of rural residents (WI), the eastern region did not
pass the significance test, while the central, western and northeastern regions passed the
significance test at the 5% and 1% levels, respectively. The wage income of rural residents
has a positive effect in the central, western, and northeastern regions, and the increase in
wage income brings about an improvement in living standards, and farmers in these regions
are more willing to invest in greening their grain production, which in turn promotes the
level of green grain production in the region.

(2) In terms of the crop disaster affected area (CAA), the eastern region did not pass
the significance test, and the central region, the western region, and the northeast region all
had significant negative effects. This may be due to the fact that the eastern region has good
farmland water conservancy facilities and strong agricultural disaster resilience, which
makes the effect on the green production efficiency of grain in this region not significant,
while in the central, western and northeastern regions, the possibility of agricultural disaster
is higher, and coupled with the general economic level of these regions, the agricultural
disaster resilience is weak, which affects the green production efficiency of grain in these
regions.

(3) From the perspective of financial support for agriculture (RAF), the regression
coefficients of the four major regions are all positive and all passed the significance level test,
indicating that financial support for agriculture has a positive contribution to the efficiency
of green grain production. Financial support for agricultural production will stimulate a
large amount of human, financial and material investment in agricultural production and
promote the technological upgrading of green grain production, thus further optimizing
the potential for improving the efficiency of green grain production. Among them, the
coefficient is highest in Northeast China, probably because there is more state-owned farms
in this region, which are more sensitive to the impact of financial support for agriculture.

(4) In terms of the share of total output value of agricultural (TOVA), it has a significant
positive contribution in the eastern region, and shows a significant negative effect in both
the central and western regions. The northeast region displays a positive significant effect,
but did not pass the significance test. This indicates that the eastern region has a high
proportion of secondary and tertiary industries, and the agricultural output value has a
limited effect on the efficiency of its green grain production. The productivity level of
the central and western regions is lower than that of the eastern regions, and the share of
agricultural output value is higher, but its agricultural technology content is not high, thus
producing a significant negative effect.

(5) In terms of urbanization rate (UR), it has a positive effect on all four regions, and
all of them passed the significance test. Urbanization can cause the factors in the region to
gather continuously and thus promotes the improvement of infrastructure, which helps to
improve the level of green grain production.

5. Conclusions
5.1. Conclusions of the Study

Based on the panel data of 31 Chinese provinces from 2000 to 2019, this paper uses
the super-efficient SBM model to measure the characteristics and regional differences of
China’s green grain production efficiency index and its influencing factors, and the results
show the following:

Firstly, from 2000 to 2019, China’s overall green production efficiency of grain showed
an upward trend, but the performance of different regions varied. The central region had
the fastest growth rate, followed by the western region, while the northeast region ranked
between the central and western regions, and the eastern region had the lowest growth rate.

Secondly, the kernel density estimation results indicate that there are significant
regional disparities in the green production efficiency of grain in China, with the eastern
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region being relatively balanced, and the central and western regions showing a further
widening trend over time. Meanwhile, the northeast region displays relative equilibrium.

Thirdly, the regression results show that, for nationally, the financial support for
agriculture and the urbanization rate has a significant positive impact on the efficiency
of green production of grain, while the crop disaster affected area and the agricultural
output have a significant negative impact. The rural residents’ wage income shows no
significant influence. For the regionally, the impact of various influencing factors on the
green production efficiency of grain differs across different regions.

Finally, China’s green production efficiency of grain has significant regional differ-
ences and can be improved through factor allocation, technology, and policy. The research
results show that China’s overall green production efficiency of grain is not high, and
the regional differences are significant. Different regions can adopt different methods
to improve their efficiency according to different influencing factors. There is room for
improvement in China’s grain production efficiency, and regions should strengthen commu-
nication and cooperation, promote the flow of factors, and continuously promote efficiency
improvement.

This study has performed valuable explorations into measuring the efficiency of green
grain production, but there are still many shortcomings that need to be further explored
and discussed in future research. The green production efficiency of grain is dependent on
climate conditions such as soil, water resources, and temperature, and neighboring regions
have similar geographical environments; therefore, the green production efficiency of grain
will show a significant spatial correlation. On the other hand, factors such as agricultural
labor, technology, and capital exhibit spatial mobility, which will further strengthen the
relationship between regional grain production. Therefore, in future research, it is necessary
not only to analyze the differences between regions but also to consider the correlation
between regions in order to provide more practical policy recommendations for improving
the green efficiency of grain production and promoting sustainable food development.

5.2. Policy Recommendations

Based on the analysis of the current level of China’s green grain production efficiency,
the comparison of regional differences and the study of influencing factors, this study
draws the following policy insights:

(1) To optimize the allocation of factors for grain production, it is necessary to promote
the reasonable circulation of labor, science and technology, capital, and other resources in
response to the natural conditions, agricultural disaster levels, and agricultural output of
specific regional grain production areas. Continuous optimization of green and low-carbon
grain production should be pursued by leveraging the complementary advantages between
regions and innovating differentiated paths for the green production of grain with unique
characteristics.

(2) Improving the design of relevant policy tools is also essential. Establishing a
standardized evaluation system for “pollution and carbon reduction” in the use of farmland
can provide institutional regulation and policy support for green and low-carbon use of
farmland. Additionally, creating an agricultural carbon trading market can reflect the
economic value of green and low-carbon agriculture and stimulate farmers’ enthusiasm
for the low-carbon use of farmland resources. Financial support for agriculture should
also be focused on developing green and circular agriculture, reducing chemical fertilizer
and pesticide use, and decreasing carbon emissions and arable land pollution. Finally,
improving the ecological compensation mechanism for arable land can increase farmers’
income and willingness to utilize arable land ecologically.

(3) To further strengthen the research and application of agricultural technologies,
investment in and research and development of agricultural ecological technologies should
be increased, especially in carbon sequestration and emission reduction on farmland
and pollution control. Technological innovations in farmland governance should also be
pursued. Additionally, big data platforms such as digital villages and smart agriculture
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can promote the digital transformation of the whole process of arable land utilization
and management.
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