Comprehensive Evaluation of Ecological-Economic Value of Guangxi Based on Land Consolidation
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Research Methods
3.1. Land Consolidation and Ecological-Economic Values
3.2. Ecological-Economic Value Calculation
3.2.1. Ecological Value Calculation
3.2.2. Economic Value Calculation
3.3. Bivariate Spatial Autocorrelation
3.4. Standard Deviation Ellipse
3.5. Trends in Ecological-Economic Values
4. Results
4.1. Temporal Changes in Ecological-Economic Values
4.2. Spatial Distribution of Eco-Economic Values
4.3. Bivariate Spatial Autocorrelation of Ecological-Economic Values
4.4. Standard Deviation Ellipse Analysis of Ecological-Economic Values
4.5. Trends in Ecological-Economic Values before and after Land Consolidation
5. Discussion
5.1. Impact of Land Use Change on eco-Economic Value before and after Land Consolidation
5.2. Optimization of Land Consolidation Zoning under Ecological-Economic Value Matching
5.3. Summary of the Effects of Land Use Change and Landform Type on Eco-Economic Values
5.4. Limitations and Future Development
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, L.D.; Hong, Y.X.; Chen, X.H. Can Green Economy and Ecological Welfare Achieve Synergistic Development? The Perspective of the “Two Mountains” Theory. Int. J. Environ. Res. Public Health 2022, 19, 6460. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Liu, J.L. Implications of “Two Mountains” Theory on China’s Green Development. Chin. J. Urban Environ. Stud. 2019, 7, 1975008. [Google Scholar] [CrossRef]
- Li, L.L.; Zeng, Y.W.; He, Y.M.; Qin, Q.X.; Wang, J.H.; Fu, C.L. Developing village-based green economy in an endogenous way: A case study from China. Int. J. Environ. Res. Public Health 2022, 19, 7580. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.J.; Li, X.C. Exploration and Analysis on the way of building green lifestyle. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; p. 012037. [Google Scholar]
- Hao, Z.Y.; Wamg, C.X.; Bai, M.G.; Deng, X.G.; Dou, W.G.; Yu, S.k. ‘Two Mountains’ theory: Chinese practice and promotion of the theories about human-environment relationship. China Popul. Resour. Environ. 2022, 32, 136–144. [Google Scholar]
- Wang, H.; Jiang, X.M.; Chen, J.C.; Song, W.M. A Theoretical Explanation for the Relationships between “Green Hills” and “Golden Hills”. Chin. Rural Econ. 2017, 4, 2–12. [Google Scholar]
- Zheng, R.B.; Huang, Y.J.; Chen, M.Z.; Ma, X.N.; Chen, J.; Tang, X.L. Research progress of land consolidation in China. Resour. Sci. 2022, 44, 1785–1798. [Google Scholar] [CrossRef]
- Du, X.D.; Zhang, X.K.; Jin, X.B. Assessing the effectiveness of land consolidation for improving agricultural productivity in China. Land Use Policy 2018, 70, 360–367. [Google Scholar] [CrossRef]
- Qu, Y.B.; Jiang, G.H.; Li, Z.T.; Tian, Y.T.; Wei, S.W. Understanding rural land use transition and regional consolidation implications in China. Land Use Policy 2019, 82, 742–753. [Google Scholar] [CrossRef]
- Basista, I.; Balawejder, M. Assessment of selected land consolidation in south-eastern Poland. Land Use Policy 2020, 99, 105033. [Google Scholar] [CrossRef]
- Cienciała, A.; Sobura, S.; Sobolewska-Mikulska, K. Optimising Land Consolidation by Implementing UAV Technology. Sustainability 2022, 14, 4412. [Google Scholar] [CrossRef]
- Ertunç, E.; Muchová, Z.; Tomi´c, H.; Janus, J. Legal, Proceduraland Social Aspects of Land Valuation in Land Consolidation: A Comparative Study for Selected Central and Eastern Europe Countries and Turkey. Land 2022, 11, 636. [Google Scholar] [CrossRef]
- Bonadonna, A.; Rostagno, A.; Beltramo, R. Improving the landscape and tourism in marginal areas: The case of land consolidation associations in the North-West of Italy. Land 2020, 9, 175. [Google Scholar] [CrossRef]
- Thapa, G.B.; Niroula, G.S. Alternative options of land consolidation in the mountains of Nepal: An analysis based on stakeholders’ opinions. Land Use Policy 2008, 25, 338–350. [Google Scholar] [CrossRef]
- Erisman, J.W.; Eekeren, N.V.; Wit, J.D.; Koopmans, C.; Cuijpers, W.; Oerlemans, N.; Koks, B.J. Agriculture and biodiversity: A better balance benefits both. AIMS Agric. Food 2016, 1, 157–174. [Google Scholar] [CrossRef]
- Miura, K.; Izumi, H.; Saito, Y.; Asato, K.; Negishi, J.N.; Ito, K.; Oomori, A. Assessment of a unionid freshwater mussel (Pronodularia japanensis) population in an agricultural channel during the 4 years following reintroduction. Landsc. Ecol. Eng. 2018, 14, 157–164. [Google Scholar] [CrossRef]
- Podhrázská, J.; Kučera, J.; Doubrava, D.; Doležal, P. Functions of windbreaks in the landscape ecological network and methods of their evaluation. Forests 2021, 12, 67. [Google Scholar] [CrossRef]
- Farley, J. Ecosystem services: The economics debate. Ecosyst. Serv. 2012, 1, 40–49. [Google Scholar] [CrossRef][Green Version]
- Häyhä, T.; Franzese, P.P. Ecosystem services assessment: A review under an ecological-economic and systems perspective. Ecol. Modell. 2014, 289, 124–132. [Google Scholar] [CrossRef]
- Fang, Y.P.; Zhu, R. Economic Geographical Philosophy of Transformation from “Lucid Water and LushMountains” to “Invaluable Assets”: Logical Framework and Southwestern Demonstration. Econ. Geogr. 2021, 10, 192–199. [Google Scholar]
- Shan, W.; Jin, X.B.; Ren, J.; Wang, Y.C.; Xu, Z.G.; Fan, Y.T.; Gu, Z.M.; Hong, C.Q.; Lin, J.H.; Zhou, Y.K. Ecological environment quality assessment based on remote sensing data for land consolidation. J. Clean. Prod. 2019, 239, 118126. [Google Scholar] [CrossRef]
- Styles, D.; Börjesson, P.; D’Hertefeldt, T.; Birkhofer, K.; Dauber, J.; Adams, P.; Patil, S.; Pagella, T.; Pettersson, L.B.; Peck, P.; et al. Climate regulation, energy provisioning and water purification: Quantifying ecosystem service delivery of bioenergy willow grown on riparian buffer zones using life cycle assessment. Ambio 2016, 45, 872–884. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, J.; Yan, S.C.; Guo, Y.Q.; Li, J.R.; Sun, G.Q. The effects of land consolidation on the ecological connectivity based on ecosystem service value: A case study of Da’an land consolidation project in Jilin province. J. Geog. Sci. 2015, 25, 603–616. [Google Scholar] [CrossRef]
- Sklenicka, P. Applying evaluation criteria for the land consolidation effect to three contrasting study areas in the Czech Republic. Land Use Policy 2006, 23, 502–510. [Google Scholar] [CrossRef]
- Liu, G.Y.; Yang, Q.; Huang, X.X.; Liu, C.; Chen, Y.; Zhang, W. Value Measurement and Dynamic Analysis of China’s “Two Mountains” from 2000 to 2020. J. Beijing Norm. Univ. Nat. Sci. 2022, 58, 241–252. [Google Scholar]
- Chen, M.; Ji, R.T.; Liu, X.; Liu, C.W.; Su, L.H.; Zhang, L.J. Gross ecosystem product accounting for ‘Two Mountains’ Bases and transformation analysis: Thecase study of Ninghai County. Acta Ecol. Sin. 2021, 41, 5899–5907. [Google Scholar]
- Kong, F.B.; Cheng, W.J.; Xu, C.Y.; Lu, Y.; Shen, Y.Q. Economic Conversion Efficiency of Forest Ecological Capital in National Pilot Area of China and Its Influencing Factors. Sci. Silvae Sin. 2023, 59, 1–11. [Google Scholar]
- Cheng, W.J.; Kong, F.B.; Xu, C.Y. Study on the Conversion Efficiency of Forest Regulating Ecological Products Value in the National Pilot Areas. Issues For. Econ. 2022, 42, 354–362. [Google Scholar]
- Zhang, L.; Hu, B.; Zhang, Z.; Liang, G.D. Research on the spatiotemporal evolution and mechanism of ecosystem service value in the mountain-river-sea transition zone based on “production-living-ecological space”—Taking the Karst-Beibu Gulf in Southwest Guangxi, China as an example. Ecol. Indic. 2023, 148, 109889. [Google Scholar] [CrossRef]
- Demetriou, D. The assessment of land valuation in land consolidation schemes: The need for a new land valuation framework. Land Use Policy 2016, 54, 487–498. [Google Scholar] [CrossRef]
- Janus, J.; Markuszewska, I. Land consolidation—A great need to improve effectiveness. A case study from Poland. Land Use Policy 2017, 65, 143–153. [Google Scholar] [CrossRef]
- Luo, W.B.; Timothy, D.J. An assessment of farmers’ satisfaction with land consolidation performance in China. Land Use Policy 2017, 61, 501–510. [Google Scholar] [CrossRef]
- Zhong, L.N.; Wang, J.; Zhang, X.; Ying, L.X. Effects of agricultural land consolidation on ecosystem services: Trade-offs and synergies. J. Clean. Prod. 2020, 264, 121412. [Google Scholar] [CrossRef]
- Zhang, B.B.; Niu, W.H.; Ma, L.Y.; Zuo, X.Y.; Kong, X.B.; Chen, H.B.; Zhang, Y.F.; Chen, W.; Zhao, M.J.; Xia, X.L. A company-dominated pattern of land consolidation to solve land fragmentation problem and its effectiveness evaluation: A case study in a hilly region of Guangxi Autonomous Region, Southwest China. Land Use Policy 2019, 88, 104115. [Google Scholar] [CrossRef]
- Angel, H.Z.; Stovall, J.P.; Williams, H.M.; Farrish, K.W.; Oswald, B.P.; Young, J.L. Surface and subsurface tillage effects on mine soil properties and vegetative response. Soil Sci. Soc. Am. J. 2018, 82, 475–482. [Google Scholar] [CrossRef][Green Version]
- Justyna, W.L.; Przemyslaw, L.; Katarzyna, S.M. The proposed algorithm for identifying agricultural problem areas for the needs of their reasonable management under land consolidation works. Comput. Electron. Agric. 2019, 152, 333–339. [Google Scholar]
- Vicenç, C.; Ortiz, O.; Alcañiz, J.M. Sewage sludge as an organic amendment for quarry restoration: Effects on soil and vegetation. Land Degrad. Dev. 2018, 29, 2568–2574. [Google Scholar]
- Feng, W.L.; Li, Y.R. Measuring the ecological safety effects of land use transitions promoted by land consolidation projects: The case of Yan’an City on the Loess Plateau of China. Land 2021, 10, 783. [Google Scholar] [CrossRef]
- Lyu, R.F.; Clarke, K.C.; Zhang, J.M.; Feng, J.L.; Jia, X.H.; Li, J.J. Dynamics of spatial relationships among ecosystem services and their determinants: Implications for land use system reform in Northwestern China. Land Use Policy 2021, 102, 105231. [Google Scholar] [CrossRef]
- Lu, X.H.; Jiang, B.; Liu, M.Q.; Li, Y.Y.; Chen, D.L. A Study on the Gains and Losses of the Ecosystem Service Value of the Land Consolidation Projects of Different Properties in Hubei Province: An Empirical Comparison Based on Plains, Mountains and Hills. Land 2021, 11, 1015. [Google Scholar] [CrossRef]
- Zhou, Z.K.; Liu, D.F.; Sun, Y.Y.; He, J.H. Predicting joint effects of multiple land consolidation strategies on ecosystem service interactions. Environ. Sci. Pollut. Res. 2022, 29, 37234–37247. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Zhao, W.; Gu, X.K. Changes resulting from a land consolidation project (LCP) and its resource–environment effects: A case study in Tianmen City of Hubei Province, China. Land Use Policy 2022, 40, 74–82. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, T. Land consolidation design based on an evaluation of ecological sensitivity. Sustainability 2018, 10, 3736. [Google Scholar] [CrossRef][Green Version]
- Xiao, P.N.; Zhao, C.; Zhou, Y.; Feng, H.Y.; Li, X.G.; Jiang, J.H. Study on land consolidation zoning in hubei province based on the coupling of neural network and cluster analysis. Land 2021, 10, 756. [Google Scholar] [CrossRef]
- Janus, J.; Markuszewska, I. Forty years later: Assessment of the long-lasting effectiveness of land consolidation projects. Land Use Policy 2019, 83, 22–31. [Google Scholar] [CrossRef]
- Jin, X.B.; Xu, X.X.; Xiang, X.M.; Bai, Q.; Zhou, Y.K. System-dynamic analysis on socio-economic impacts of land consolidation in China. Habitat Int. 2016, 56, 166–175. [Google Scholar] [CrossRef]
- Crecente, R.; Alvarez, C.; Fra, U. Economic, social and environmental impact of land consolidation in Galicia. Land Use Policy 2002, 19, 135–147. [Google Scholar] [CrossRef]
- Wang, L.; Wu, X.Q.; Guo, J.B.; Zhou, J.X.; He, L. Spatial-temporal pattern of vegetation carbon sequestration and its response to rocky desertification control measures in a karst area, in Guangxi Province, China. Land Degrad. Dev. 2023, 34, 665–681. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Wang, K.L.; Liu, H.Y.; Zhang, C.H.; Yue, Y.M.; Qi, X.K. Effect of ecological engineering projects on ecosystem services in a karst region: A case study of northwest Guangxi, China. J. Clean. Prod. 2018, 183, 831–842. [Google Scholar] [CrossRef]
- Spangenberg, J.H.; Görg, C.; Truong, D.T.; Tekken, V.; Bustamante, J.V.; Settele, J. Provision of ecosystem services is determined by human agency, not ecosystem functions. Four case studies. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 40–53. [Google Scholar] [CrossRef][Green Version]
- Ulgiati, S.; Zucaro, A.; Franzese, P.P. Shared wealth or nobody’s land? The worth of natural capital and ecosystem services. Ecol. Econ. 2011, 70, 778–787. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Yi, J.L.; Guo, J.; Lin, J.; Ou, M.H. Territorial spatial equilibrium under the concept of ecologicalcivilization: An analytical framework based on two kinds of wealth. Geograpjical Res. 2022, 41, 945–959. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhang, C.S.; Xiao, Y.; Lu, C.X. The value of ecosystem services in China. Resour. Sci. 2015, 37, 1740–1746. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhen, L.; Zhang, L.M. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Han, J.Z.; Hu, Z.Q.; Wang, P.J.; Yan, Z.G.; Li, G.S.; Zhang, Y.H.; Zhou, T. Spatio-temporal evolution and optimization analysis of ecosystem service value-A case study of coal resource-based city group in Shandong, China. J. Clean. Prod. 2022, 363, 132602. [Google Scholar] [CrossRef]
- Wang, A.Y.; Liao, X.Y.; Tong, Z.J.; Du, W.L.; Zhang, J.Q.; Liu, X.P.; Liu, M.S. Spatial-temporal dynamic evaluation of the ecosystem service value from the perspective of “production-living-ecological” spaces: A case study in Dongliao River Basin, China. J. Clean. Prod. 2022, 333, 130218. [Google Scholar] [CrossRef]
- Yu, H.C.; Chen, F.; Yin, D.Y.; Han, X.T.; Mu, S.G.; Lei, S.G.; Bian, Z.F. Effects of mining activities and climate change on land ecosystem in Gobi mining area: A case study of Zhundong Coal Base. J. China Coal Soc. 2021, 46, 2650–2663. [Google Scholar]
- Qiu, H.H.; Hu, B.Q.; Zhang, Z. Impacts of land use change on ecosystem service value based on SDGs report—Taking Guangxi as an example. Ecol. Indic. 2021, 133, 108366. [Google Scholar] [CrossRef]
- Li, W.Q.; Wang, W.L.; Chen, J.H.; Zhang, Z.M. Assessing effects of the Returning Farmland to Forest Program on vegetation cover changes at multiple spatial scales: The case of northwest Yunnan, China. J. Environ. Manag. 2022, 304, 114303. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, W.; Qianzeng, X.U.; Zhu, X. Monitoring and evaluation of benefits of project of returning farmland to forests in henan province. Asian Agric. Res. 2022, 14, 4. [Google Scholar]
- Wang, M.H.; Bai, Z.K.; Dong, X.N. Land consolidation zoning in Shaanxi province based on the supply and demandof ecosystem services. China Land Sci. 2018, 32, 73–80. [Google Scholar] [CrossRef][Green Version]
- Peng, J.; Yang, Y.; Xie, P.; Liu, Y.X. Zoning for the construction of green space ecological networks in Guangdongprovince based on the supply and demand of ecosystem services. Acta Ecol. Sin. 2017, 37, 4562–4572. [Google Scholar]
- Gu, K.K.; Yang, Q.Q.; Cheng, F.; Chu, J.L.; Chen, X.H. Spatial differentiation of Anhui province based on the relationship be-tween supply and demand of ecosystem services. J. Ecol. Rural Environ. 2018, 34, 577–583. [Google Scholar]
- Xie, Y.C.; Zhang, S.X.; Lin, B.; Zhao, Y.J.; Hu, B.Q. Spatial zoning for land ecological consolidation in Guangxibased on the ecosystem services supply and demand. J. Nat. Resour. 2020, 35, 217–229. [Google Scholar]
- Ouyang, Z.; Song, C.; Zheng, H.; Polasky, S.; Daily, G.C. Using gross ecosystem product (gep) to value nature in decision making. Proc. Natl. Acad. Sci. USA 2020, 117, 201911439. [Google Scholar] [CrossRef]
- Zhu, J.; Ma, S.G.; Hong, W.K.; Dong, X.; Dong, P.D. The development path of rural village industry revitalization by the comprehensive land consolidation: A case study of Puhe Village. J. Northwest Univ. Nat. Sci. Ed. 2022, 52, 15. [Google Scholar]
- Hao, C.Z.; Wu, S.Y.; Zhang, W.T.; Chen, Y.Q.; Ren, Y.F.; Chen, X.; Wang, H.; Zhang, L.B. A critical review of Gross ecosystem product accounting in China: Status quo, problems and future directions. J. Environ. Manag. 2022, 322, 115995. [Google Scholar] [CrossRef]
- Aronson, J.; Goodwin, N.; Orlando, L.; Eisenberg, C.; Cross, A.T. A world of possibilities: Six restoration strategies to support the United Nation’s Decade on Ecosystem Restoration. Restor. Ecol. 2020, 28, 730–736. [Google Scholar] [CrossRef]
- Wei, F.; Yang, Y.; Zhao, Y.; Di, B.; Ma, C. The implementation effects of a nationwide sloping farmland soil erosion control project in china. J. Resour. Ecol. 2017, 8, 341–351. [Google Scholar] [CrossRef]
- Wang, R.Y.; Tan, R. Efficiency and distribution of rural construction land marketization in contemporary China. China Econ. Rev. 2020, 60, 101223. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, L.Y.; Liu, Y.S. Land consolidation boosting poverty alleviation in China: Theory and practice. Land Use Policy 2019, 82, 339–348. [Google Scholar] [CrossRef]
- Wei, B. Using “three-dimensional space resources” for fenlong technology to improve grain ecology and expand human living spaces. Asian Agric. Res. 2020, 12, 7. [Google Scholar]
- Zhao, S.; Wu, X.; Zhou, J.; Pereira, P. Spatiotemporal tradeoffs and synergies in vegetation vitality and poverty transition in rocky desertification area. Sci. Total Environ. 2020, 752, 141770. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, W.; Yu, L.; Zhang, D. Multidimensional poverty alleviation effect of different rural land consolidation models: A case study of Hubei and Guizhou, China. Land Use Policy 2022, 123, 106399. [Google Scholar] [CrossRef]
- Ling, Z.Y.; Li, Y.S.; Jiang, W.G.; Liao, C.M.; Ling, Y.R. Dynamic change characteristics of “production-living-ecological spaces” of urban agglomeration interlaced with mountains, rivers and sea: A case study of the Beibu Gulf Urban Agglomeration in Guangxi. Econ. Geogr. 2022, 42, 18. [Google Scholar]
- Gu, X.K. Ecological effect of different types land consolidation in Hubei Province of China. Chin. J. Appl. 2012, 23, 2263–2269. [Google Scholar]
- Guo, L.X.; Zhao, W.; Wang, L.N.; Zhang, L.L. Study on regional ecological sService value change based on the pattern of land consolidation: A case of Hubei Province. Areal Res. Dev. 2012, 31, 145–150. [Google Scholar]
- Jiang, B.; Lu, X.H. Regional ecological service value gains and losses of different types of land consolidation projects: An empirical comparison based on project, county and municipal scales. Hubei Soc. Sci. 2018, 6, 42–50. [Google Scholar]
- Zhang, Z.F. Estimation of gains and losses of ecosystem services value with land consolidation. Trans. Chin. Soc. Agric. Eng. 2008, 24, 69–72. [Google Scholar]
- Yu, Q.; Wang, Z.Q.; Yang, J. Study of ecological service value gain and loss in land consolidation projects: An empirical comparison based on plains, hills and mountains. Sci. Technol. Manag. Land Resour. 2014, 31, 5–21. [Google Scholar]
- Pašakarnis, G.; Maliene, V. Towards sustainable rural development in Central and Eastern Europe: Applying land consolidation. Land Use Policy 2010, 27, 545–549. [Google Scholar] [CrossRef]
- Lisec, A.; Primožič, T.; Ferlan, M.; Šumrada, R.; Drobne, S. Land owners’ perception of land consolidation and their satisfaction with the results-Slovenian experiences. Land Use Policy 2014, 38, 550–563. [Google Scholar] [CrossRef]
- Demetriou, D.; Stillwell, J.; See, L. Land consolidation in cyprus: Why is an integrated planning and decision support system required? Land Use Policy 2012, 29, 131–142. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.S. Rural land engineering and poverty alleviation: Lessons from typical regions in China. J. Geogr. Sci. 2019, 29, 643–657. [Google Scholar] [CrossRef][Green Version]
- Guo, Y.Z.; Zhou, Y.; Liu, Y.S. Targeted poverty alleviation and its practices in rural China: A case study of Fuping county, Hebei Province. J. Rural Stud. 2022, 93, 430–440. [Google Scholar] [CrossRef]
Primary Type | Secondary Type | Farmland | Forestland | Grassland | Water Area | Construction Land | Unused Land |
---|---|---|---|---|---|---|---|
Supply services | Food supply | 1995.96 | 658.67 | 858.26 | 888.20 | 0.00 | 39.92 |
Raw material supply | 778.42 | 5947.96 | 718.55 | 588.81 | 0.00 | 79.84 | |
Regulating services | Gas regulation | 1437.09 | 8622.55 | 2993.94 | 2914.10 | 0.00 | 119.76 |
Climate regulation | 1936.08 | 8123.56 | 3113.70 | 15,578.46 | −958.06 | 259.47 | |
Water Harvesting | 1536.89 | 8163.47 | 3033.86 | 32,144.93 | −2175.60 | 139.72 | |
Waste care | 2774.38 | 3433.05 | 2634.67 | 29,190.91 | 0.00 | 518.95 | |
Support services | Soil conservation | 2934.06 | 8023.76 | 4470.95 | 2395.15 | 0.00 | 339.31 |
Maintaining biodiversity | 2035.88 | 9001.78 | 3732.44 | 7105.62 | 0.00 | 798.38 | |
Cultural services | Provide aesthetic value | 339.31 | 4151.60 | 1736.48 | 9111.56 | 0.00 | 479.03 |
Total | 1995.96 | 658.67 | 858.26 | 888.20 | 0.00 | 39.92 |
Efficiency Factor | Farmland | Forestland | Grassland | Water Area | Construction Land | Unused Land |
---|---|---|---|---|---|---|
Economic efficiency coefficient | 643.43 | 28.19 | 690.04 | 1375.63 | 30,317.5 | 0 |
Eco-efficiency coefficient | 157.68 | 561.26 | 232.93 | 999.18 | −31.34 | 27.74 |
2010→2020 | 2010 | 2020 | Profit and Loss | Contribution Margin (%) |
---|---|---|---|---|
Grassland→Farmland | 56,516.88 | 38,258.62 | −18,258.25 | 0.65% |
Grassland→Construction land | 35,322.37 | −4752.51 | −40,074.88 | 1.43% |
Grassland→Forestland | 135,254.44 | 325,904.37 | 190,649.94 | 6.82% |
Grassland→Water area | 11,026.28 | 47,298.48 | 36,272.21 | 1.30% |
Grassland→Unused land | 106.50 | 12.68 | −93.81 | 0.00% |
Farmland→Grassland | 34,844.50 | 51,473.43 | 16,628.93 | 0.59% |
Farmland→Construction land | 165,096.16 | −32,814.01 | −197,910.18 | 7.08% |
Farmland→Forestland | 226,076.18 | 804,715.34 | 578,639.16 | 20.69% |
Farmland→Water area | 25,953.86 | 164,463.33 | 138,509.47 | 4.95% |
Farmland→Unused land | 336.05 | 59.12 | −276.93 | 0.01% |
construction land→Grassland | −537.63 | 3995.89 | 4533.53 | 0.16% |
construction land→Farmland | −8805.38 | 44,302.23 | 53,107.61 | 1.90% |
construction land→Forestland | −1680.37 | 30,093.36 | 31,773.73 | 1.14% |
construction land→Water area | −805.11 | 25,668.53 | 26,473.65 | 0.95% |
construction land→Unused land | −10.49 | 9.29 | 19.78 | 0.00% |
Forestland→Grassland | 423,986.24 | 175,959.65 | −248,026.59 | 8.87% |
Forestland→Farmland | 829,509.33 | 233,041.78 | −596,467.55 | 21.33% |
Forestland→Construction land | 288,817.94 | −16,127.20 | −304,945.15 | 10.90% |
Forestland→Water area | 100,600.47 | 179,093.42 | 78,492.96 | 2.81% |
Forestland→Unused land | 2482.73 | 122.71 | −2360.03 | 0.08% |
Water area→Grassland | 27,391.52 | 6385.54 | −21,005.98 | 0.75% |
Water area→Farmland | 122,243.88 | 19,291.23 | −102,952.64 | 3.68% |
Water area→Construction land | 53,566.34 | −1680.15 | −55,246.49 | 1.98% |
Water area→Forestland | 107,956.40 | 60,641.34 | −47,315.07 | 1.69% |
Water area→Unused land | 2682.50 | 74.47 | −2608.02 | 0.09% |
Unused land→Grassland | 71.70 | 602.08 | 530.38 | 0.02% |
Unused land→Farmland | 14.01 | 79.61 | 65.61 | 0.00% |
Unused land→Construction land | 186.80 | −211.04 | −397.83 | 0.01% |
Unused land→Forestland | 36.92 | 747.09 | 710.17 | 0.03% |
Unused land→Water area | 61.59 | 2218.48 | 2156.89 | 0.08% |
Total | 2,638,302.60 | 2,158,927.18 | −479,375.41 | 100.00% |
2010→2020 | 2010 | 2020 | Profit and Loss | Contribution Margin (%) |
---|---|---|---|---|
Grassland→Farmland | 167,427.41 | 156,118.78 | −11,308.63 | 0.02% |
Grassland→Construction land | 104,640.11 | 4,597,457.77 | 4,492,817.66 | 6.66% |
Grassland→Forestland | 400,682.09 | 16,369.27 | −384,312.82 | 0.57% |
Grassland→Water area | 32,664.60 | 65,118.84 | 32,454.24 | 0.05% |
Grassland→Unused land | 315.49 | 0.00 | −315.49 | 0.00% |
Farmland→Grassland | 142,187.07 | 152,486.54 | 10,299.47 | 0.02% |
Farmland→Construction land | 673,694.17 | 31,743,422.29 | 31,069,728.12 | 46.04% |
Farmland→Forestland | 922,530.23 | 40,418.62 | −882,111.62 | 1.31% |
Farmland→Water area | 105,907.76 | 226,427.17 | 120,519.41 | 0.18% |
Farmland→Unused land | 1371.28 | 0.00 | −1371.28 | 0.00% |
construction land→Grassland | 520,093.67 | 11,837.56 | −508,256.11 | 0.75% |
construction land→Farmland | 8,518,092.54 | 180,780.42 | −8,337,312.11 | 12.35% |
construction land→Forestland | 1,625,548.52 | 1511.51 | −1,624,037.02 | 2.41% |
construction land→Water area | 778,844.43 | 35,339.51 | −743,504.92 | 1.10% |
construction land→Unused land | 10,150.30 | 0.00 | −10,150.30 | 0.02% |
Forestland→Grassland | 21,295.65 | 521,268.53 | 499,972.88 | 0.74% |
Forestland→Farmland | 41,663.95 | 950,954.21 | 909,290.26 | 1.35% |
Forestland→Construction land | 14,506.52 | 15,601,036.51 | 15,586,529.99 | 23.10% |
Forestland→Water area | 5052.88 | 246,569.35 | 241,516.47 | 0.36% |
Forestland→Unused land | 124.70 | 0.00 | −124.70 | 0.00% |
Water area→Grassland | 37,711.66 | 18,916.74 | −18,794.92 | 0.03% |
Water area→Farmland | 168,300.95 | 78,720.13 | −89,580.82 | 0.13% |
Water area→Construction land | 73,748.20 | 1,625,330.23 | 1,551,582.04 | 2.30% |
Water area→Forestland | 148,630.47 | 3045.85 | −145,584.63 | 0.22% |
Water area→Unused land | 3693.17 | 0.00 | −3693.17 | 0.01% |
Unused land→Grassland | 0.00 | 1783.61 | 1783.61 | 0.00% |
Unused land→Farmland | 0.00 | 324.87 | 324.87 | 0.00% |
Unused land→Construction land | 0.00 | 204,151.98 | 204,151.98 | 0.30% |
Unused land→Forestland | 0.00 | 37.52 | 37.52 | 0.00% |
Unused land→Water area | 0.00 | 3054.32 | 3054.32 | 0.00% |
Total | 14,518,877.82 | 56,482,482.13 | 41,963,604.31 | 100.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Hu, B.; Zhang, Z.; Liang, G.; Huang, S. Comprehensive Evaluation of Ecological-Economic Value of Guangxi Based on Land Consolidation. Land 2023, 12, 759. https://doi.org/10.3390/land12040759
Zhang L, Hu B, Zhang Z, Liang G, Huang S. Comprehensive Evaluation of Ecological-Economic Value of Guangxi Based on Land Consolidation. Land. 2023; 12(4):759. https://doi.org/10.3390/land12040759
Chicago/Turabian StyleZhang, Lili, Baoqing Hu, Ze Zhang, Gaodou Liang, and Simin Huang. 2023. "Comprehensive Evaluation of Ecological-Economic Value of Guangxi Based on Land Consolidation" Land 12, no. 4: 759. https://doi.org/10.3390/land12040759