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Abstract: Urban land optimization in urban agglomerations plays an important role in promoting
territorial spatial planning to achieve high-quality development, land ecological suitability (LES)
is one of the important variables influencing its urbanization and needs to be considered in urban
growth simulation and modeling. This research proposed a multi-objective urban land optimization
(MULO) model based on the non-dominated sorting genetic algorithm II (NSGA-II) which integrates
the LES assessment. MULO starts with LES analysis based on a fuzzy analytical hierarchy process
(AHP) and a minimum cumulative resistance (MCR) model. Then, two-step linear regression is
used to optimize the quantity structure of built-up land. Finally, suitability and compactness are
assigned to NSGA-II as objectives to obtain optimal spatial patterns. Taking the example of the
Guangdong–Hong Kong–Macao Greater Bay Area, we found that all the newly added built-up land
in 2030 is distributed in peri-urban areas around the original settlements, with approximate clustering
in the northern part of Guangzhou and the southern part of Foshan under a balanced development
scenario. This study highlights the importance of LES in urban growth modeling, and MULO can
provide effective support for the spatial planning of urban agglomerations.

Keywords: land ecological suitability; NSGA-II; minimum cumulative resistance model; urban
agglomerations; urban land optimization

1. Introduction

Accompanied by a dense population and the demand for urban construction land [1],
the land use pattern in urban agglomerations (UAs) has changed significantly, and a large
amount of ecological space has been encroached upon [2]. Urban expansion comes at
the expense of limited land resources [3,4], which increases pressure on the ecological
environment and leads to a range of ecological problems such as soil erosion, water
pollution and air pollution [5]. Without proper regulation and control, UAs may sprawl in
a disorderly manner [6], which will further lead to ecological degradation and the waste of
land resources [7]. Thus, it is of great significance to optimize the spatial patterns of UAs
for achieving urban growth with ecological priority. The results of the optimization can
provide environmentally sustainable planning solutions for UAs development.

A reliable land use allocation model can provide a compelling reference for developing
spatial patterns that promote sustainable urban development [8,9]. In recent decades, land
use optimization has become an important research topic [10,11]; it is essentially about
achieving the optimal distribution of urban expansion, which is divided into two main
steps: quantity prediction and spatial arrangements [12]. Quantity prediction can be
achieved by linear regression based on time series of land use changes and other statistical
data [13]. However, how to make spatial arrangements to meet the goal of balanced, high-
quality development is a complex, multi-objective trade-off problem [14,15]. The conflicting
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characteristic among objectives leads to a situation where one solution chosen by a decision
maker may be not acceptable to another designer or in a changed environment [16]. Thus,
in multi-objective optimization problems, it is useful to obtain alternative Pareto-optimal
solutions. Advances in computing technologies over recent decades facilitated various
optimization algorithms, and the non-dominated sorting genetic algorithm II (NSGA-II)
is widely used due to its ability to obtain Pareto sets under multiple nonlinear objectives,
which is widely known in the optimization field for its good robustness and global search
capability [17–19]. Verma et al. (2021) pointed out that NSGA-II showed better performance
for optimizing land use planning to accommodate sustainability [20]. Ramezanian et al.
(2022), Maleki et al. (2021) and Pan et al. (2023) have implemented these models based
on NSGA-II to find optimal patterns of urban land as well as rural settlements [17,21–23].
Considering the superiority of NSGA-II, this paper explores the optimal spatial allocation
of UAs based on NSGA-II.

Due to the increasing ecological pressure caused by urban expansion, land ecological
suitability (LES) has become an important objective for land use optimization [24–26], it
provides science-based analysis to reconcile natural and social development according
to ecological principles and methods [27,28]. The aim of LES assessment is to identify
the most suitable land for future development in order to reduce the negative ecological
impacts of human activities [29], which relies on multi-dimensional support for regional
topography, ecology and socio-economic conditions [30,31]. The analytical hierarchy
process (AHP) is one of the broadest techniques in the LES evaluation, and the fuzzy
AHP, an AHP method developed with fuzzy logic theory, is often used to estimate the
weights of the criterion [30,32–34]. To access landscape connectivity and construct an
ecological security pattern, many scholars contributed to urban ecological planning by
using a minimum cumulative resistance (MCR) model to delimit different urban functional
zones suitable for urban development or ecological protection [35–39]. The advantage
of MCR is that it considers both the influence of resistance factors and the distance to
the source in the process of urban expansion. Although LES has been used to measure
ecological conservation status in some optimization studies [40–42], most studies have
generally been at the local scale and lack the consideration of landscape connectivity at
the regional scale, which is important for the sustainable and high-quality development
of UAs. Thus, in this paper, the MCR model was used to delimit the different functional
zones suitable for ecological protection or construction development and then attempt to
incorporate LES results in spatial optimization to minimize the ecological impacts.

The aim of this paper is to construct an LES-based multi-objective urban land optimiza-
tion (MULO) model to provide a spatial optimization allocation scheme for the high-quality
development of UAs. Considering that the Guangdong–Hong Kong–Macao Greater Bay
Area (the GBA) is an essential part of the Chinese economy, its rapid urbanization has led
to drastic land changes, resulting in a fragile ecological environment [4]. The GBA urgently
needs development planning based on the principle of ecological priority, as a method
to improve regional competitiveness and ecological security. Therefore, this paper takes
the GBA as the study area. In the rest of the paper, the study area and data sources are
first described, followed by a description of a MULO model based on NSGA-II (Figure 1).
This is followed by an analysis of a case study of the GBA and, finally, by a discussion
and conclusions.
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2.1. Study Area 

The Guangdong–Hong Kong–Macao Greater Bay Area (the GBA) is one of the main 
bay areas encompassing a world-class city cluster such as the New York metropolitan 
area, the San Francisco Bay Area and the Tokyo Bay Areas. This urban agglomeration is 
one of the most prosperous and urbanized regions in China, which includes nine main-
land cities and two special administrative regions, namely, Guangzhou (GZ), Shenzhen 
(SZ), Zhuhai (ZH), Zhaoqin (ZQ), Huizhou (HZ), Jiangmen (JM), Dongguan (DG), Foshan 
(FS), Zhongshan (ZS), Hong Kong (HK) and Macao (MO), located in the south of China 
(Figure 2). As of 2020, the overall resident population of the GBA exceeds 86 million. With 
a total gross domestic product (GDP) of 11.4 × 1012 Yuan in 2020, the GBA ranks among 
the top metropolitan areas in China in terms of economic strength, where the economic 
volume and population density are mainly concentrated in HK, SZ and GZ, and the re-
gional economic level basically shows a gradient-decreasing trend from the bay area to 
the hinterland. 

Figure 1. Workflow procedure of the multi-objective urban land optimization (MULO) model, which
includes FAHP, MCR model and NSGA-II.

2. Materials and Methods
2.1. Study Area

The Guangdong–Hong Kong–Macao Greater Bay Area (the GBA) is one of the main
bay areas encompassing a world-class city cluster such as the New York metropolitan area,
the San Francisco Bay Area and the Tokyo Bay Areas. This urban agglomeration is one
of the most prosperous and urbanized regions in China, which includes nine mainland
cities and two special administrative regions, namely, Guangzhou (GZ), Shenzhen (SZ),
Zhuhai (ZH), Zhaoqin (ZQ), Huizhou (HZ), Jiangmen (JM), Dongguan (DG), Foshan (FS),
Zhongshan (ZS), Hong Kong (HK) and Macao (MO), located in the south of China (Figure 2).
As of 2020, the overall resident population of the GBA exceeds 86 million. With a total
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gross domestic product (GDP) of 11.4 × 1012 Yuan in 2020, the GBA ranks among the top
metropolitan areas in China in terms of economic strength, where the economic volume and
population density are mainly concentrated in HK, SZ and GZ, and the regional economic
level basically shows a gradient-decreasing trend from the bay area to the hinterland.
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Figure 2. Location map of the GBA, with nine mainland cities and two special administrative regions
(JM—Jiangmen, GZ—Guangzhou, SZ—Shenzhen, ZH—Zhuhai, ZQ—Zhaoqin, HZ—Huizhou, DG—
Dongguan, FS—Foshan, ZS—Zhongshan, HK—Hongkong, MC—Macao).

2.2. Data Collection

In this study, different sorts of data were collected (Table 1). The land use data are
derived from the Resource and Environmental Science and Data Center, with a resolution
of 1 × 1 km. The land use is classified into six categories: Cropland, Forest, Grassland,
Built-up land, Unused land and Water. This is consistent with the general classification of
land use optimization at the regional scale [3,12,17,43]. In addition, all raster data were
resampled to a resolution of 1 × 1 km.

Table 1. Details of data used in the study.

Type Name Source

Vector data
Boundary of the GBA The Resource and Environmental Science and Data Center

(https://www.resdc.cn/, accessed on 1 January 2022)

Ecological control area The website of the Ministry of Natural Resources of the People’s
Republic of China (http://g.mnr.gov.cn/, accessed on 1 June 2022)

Road network Openstreet Map

Raster data

Land use map The Resource and Environmental Science and Data Center
(https://www.resdc.cn/, accessed on 12 June 2022)NDVI

Geomorphological type data

DEM
Shuttle Radar Topography Mission (SRTM,
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp, accessed on
1 December 2022)

Population density WorldPop (https://www.worldpop.org, accessed on
12 December 2022)

https://www.resdc.cn/
http://g.mnr.gov.cn/
https://www.resdc.cn/
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
https://www.worldpop.org
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2.3. Multi-Objective Urban Land Optimization (MULO) Model

The multi-objective urban land optimization (MULO) model consists of two steps. The
first step was to evaluate the LES in the study area by fuzzy AHP and the MCR method.
The urban landscape dynamics is modeled as two processes: ecological land expansion and
urban land expansion. An LES evaluation method based on the MCR difference between
the two processes is established. Then, LES zoning was set as an objective in NSGA-II. The
processes are described in the following sections.

2.3.1. Minimum Cumulative Resistance (MCR) Model

MCR refers to the cost spent in moving a species from the source to the destination [44].
It mainly includes three parts: the resistance planes, resistance coefficient and source.
Equation (1) is used to calculate MCR.

MCR = fmin

i=m

∑
j=n

Dij × Ri (1)

Dij represents the distance of species A from source j to landscape unit i; Ri represents
the resistance coefficient of landscape unit i to the movement of the species A in the
horizontal plane.

In the MCR model, the first step is to establish the resistance plane. Combining the
studies of many scholars [7,45,46], ten resistance factors were selected from three categories
to build the resistance evaluation system, namely, topography, ecology environment and
human disturbances.

Considering the different effects of different resistance factors on the expansion process,
the fuzzy analytic hierarchy process (FAHP) was used to determine the weight of each
resistance factor, which can provide researchers with a flexible decision-making process
that considers both quantitative and qualitative aspects [6]. The opinions of individual
experts were first surveyed, and then the experts were asked to score their preference
values for each resistance factor and criterion using Sattty’s 1–9 ratio scale [47,48]; then,
pair-wire comparisons were made, and the weights of each resistance factor were obtained
by preparing comparison matrices and normalizing the matrix values.

CR =
CI
RI

(2)

The CR allows us to determine the number of errors generated when providing expert
judgments. A small CR represents less inconsistency in the judgment matrix. Generally, if
a CR value is below 0.1, it indicates that the weight is considered acceptable. In the final
calculation, the CR of the three categories was below 0.1, which means that the resistance
factors and their weights passed the consistency test. The grading spatial distribution of
the various resistance factors and their corresponding weights are shown in Figure 3 and
Table 2, respectively.
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Table 2. The value of resistance assignment for built-up land and non-built-up land.

Resistance Factor
Grade

Weight
V IV III II I

Topography (S1)
Slope (S11) <2 2–5 5–10 10–25 >25 0.04
Landscape (S12) Plain - Hill - Mountain 0.02
Elevation (S13) 0–40 40–80 80–120 120–160 >160 0.03
Ecology environment (S2)
NDVI (S21) <0.2 0.2–0.4 0.4–0.6 0.6–0.8 >0.8 0.14

Land use (S22) Built-up land Grassland,
unused land Cropland Forest Water 0.19

Ecological protection area (S23) - - - - Ecological red
line 0.24

Distance to Water (S24) 1 1–2 2–3 3–4 >4 0.12
Human Disturbance (S3)
Distance to urban (S31) 0–0.5 0.5–1 1–1.5 1.5–2 >2 0.05
Distance to highway (S32) 0–1 1–2 2–3 3–4 >4 0.09
Population density (S33) >1000 700–1000 400–700 200–400 0–200 0.08

“Source” refers to the landscape type that promotes the ecological process. It represents
the starting point for outward expansion. When studying the expansion process of built-up
land, existing built-up land was used as a “source” whereas forest and water were set as
the “source” for the ecological land expansion process.

The method of evaluating the LES is based on the MCR difference between the two pro-
cesses, which can be expressed by the formula:

MCR = MCRE −MCRB (3)

where MCRE represents the expansion resistance surface of non-construction land for eco-
logical protection whereas MCRB represents the expansion resistance surface of construction
land for economic development. MCR is the differential resistance surface between the two.

After obtaining the result of MCR, the natural break method of ArcGIS was used to
reclassify the zoning results into four categories for LES: the ecological protection zone, the
ecological buffer zone, the suitable construction zone and the prior construction zone.

2.3.2. Land Use Optimization Model
Objective

The ecological quality of each land unit plays an important role in selecting appro-
priate locations to find new urban land. Although ecosystem services value (ESV) is the
main objective for ecological evaluation, it is based on land use structure without spatial
analysis capability [3]. Unlike ESV, suitability is an objective with spatial properties that
can be used to analyze the ecological status [12]. In addition, compactness is also a spa-
tial objective for allocation to enhance urban intensification and social equality [49,50],
which have been shown to be in conflict with suitability objectives [51]. To facilitate the
optimization process, the whole region is rasterized into I rows and J columns, with a
total of 509 × 417 = 212,253 cells, each with an area of 1 km2 in size. The eight-neighbor
method was used to evaluate the compactness index, i.e., to calculate the number of grids
corresponding to the same attribute around each grid [23]. The suitability objective is
calculated by counting the corresponding suitability values of newly added built-up land.

The formula is as follows:

(Max) Ocomp =
k

∑
k=1

Nk − N′k (4)
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(Max) Osuit =
k

∑
k=1

SuitkXk (5)

K represents the total number of cells in the region. Nk and N′k are the numbers of
cells with the same land use type in the k-cell’s eight neighborhoods in solution and initial
pattern, respectively. Suitk represents the suitability value in the k-cell. Xk = 1 when cell i is
newly added built-up land; otherwise, Xk = 0.

The Non-Dominated Sorting Genetic Algorithm II (NSGA-II)

NSGA-II includes five parts: initialization, non-dominated sorting, selection, crossover
and mutation. In the NSGA-II, population represents the initial land use pattern set, chro-
mosome represents one land use pattern, and gene refers to the cell in the land use pattern.

1. After simulating the total built-up land in 2030, the population is created by assigning
land use to other land uses randomly.

2. Through the non-dominated sorting, crowding distance was used to determine the
rank of chromosomes by calculating the average Euclidean distance of the chro-
mosomes of each objective function [52]. Solutions in the same rank are considered
equally important, and solutions in a smaller rank are better than those in a larger rank.

3. A roulette is used to select chromosomes for subsequent steps. When the rank of an
individual is higher, it has more chance to be selected.

4. After determining the crossover probability, some of the genes at the same position in
the two selected parents will be exchanged for their land use types, and then form
two temp offspring.

5. After determining the mutation probability, some of the genes in the temp off-
spring will be randomly changed to different land use types to form a new offspring
(Figure 4).
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Constraints

This model places restrictions on the slope, the available land use types and the
total area of basic farmland and future built-up land in 2030 to meet the requirements of
land use planning. Lopez proposed that linear regression between urban and population
growth offered more reliable predictions of urban growth in fast-growing regions [6,13].
For projecting growth tendencies in the GBA, population data and historical land use data
from 1995–2020 were used as the basis to forecast the total area of built-up land of the GBA
in 2030. This area was then used as a constraint when optimizing the expansion scale for
the target year.

First, a two-step linear regression model for population size (y) over time (x) in the
GBA was developed, as shown in Figure 5a; r2 = 0.967.

y = 184.4x− 362, 270 (6)
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Next, a linear regression model for the total area of built-up land (z) over population
size (y) in 1995–2020 was developed, as shown in Figure 5b; r2 = 0.979.

z = 0.98y− 398.53 (7)

Using the above methods, the total area of built-up land that GBA should have in 2030
was 11,472 km2.

3. Results
3.1. LES Zoning of the GBA

The result of the MCR resistance plane for construction and ecological land expansion
processes are shown in Figure 6. The resistance to the expansion of ecological land is high
in Guangzhou, Dongguan and Foshan, whereas Huizhou and Zhaoqin have relatively
high resistance to construction land expansion. The spatial distribution of MCR surface
differences is shown in Figure 7a. Low values represent regions with higher ecological
suitability, whereas high values represent regions with higher construction suitability. The
LES zoning is shown in Figure 7b. In the GBA, the highest percentage of the total area
was occupied by the ecological buffer zone (43,689 km2, 69.7%), followed by the ecological
protection zone, with a total area of 9002 km2 (14.4%). The prior construction zone has the
smallest proportion with a total area of 2246 km2 (3.6%), whereas the suitable construction
zone accounts for 12.4% (7766 km2).
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In the GBA, ecological protection zones are mainly scattered in the mountainous areas
of Huizhou, Zhaoqin and Jiangmen, including important nature reserves and contiguous
basic farmland under strict state protection, of which, Huizhou has the highest percentage
of ecological protection zones (Figure 8). Ecological buffer zones are mainly mountainous
ecological barriers containing a large number of lakes, reservoirs, wetlands and other
ecological control areas. Prior construction zones are distributed in the core-urban areas
with high economic intensity and dense populations, mainly in Shenzhen, Guangzhou,
Dongguan and Foshan. Suitable construction zones are adjacent to prior construction zones,
distributed in the peri-urban areas and along the main roads, which are rich in resources,
have good geological conditions, are suitable for economic and population gathering and
are the key areas for future development. Huizhou has the highest proportion of ecological
buffer zones, whereas Shenzhen has the highest proportion of prior construction zones.
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3.2. Land Use Optimization Results
3.2.1. Model Parameters and Constraints

The optimization objectives included the maximization of suitability and the mini-
mization of compactness loss. The constraints in this case study were set based on the
following restrictions: (1) cropland retention is 8299 km2; (2) a slope greater than 25 degrees
cannot be used as built-up land (Figure 9a); (3) built-up land will increase to 11,412 km2

in 2030 based on two-step linear regression. Considering the stochastic characteristic of
the model, a 2% up and down fluctuation in the built-up land increment is considered
plausible; (4) the ecological control areas derived from the overall planning in each city
cannot convert to built-up land (Figure 9b); (5) ecological protection zones derived from
suitability zones cannot change in the process of the model; (6) water is not allowed to
change in the model.

Land 2023, 12, x FOR PEER REVIEW 11 of 16 
 

following restrictions: (1) cropland retention is 8299 km2; (2) a slope greater than 25 de-
grees cannot be used as built-up land (Figure 9a); (3) built-up land will increase to 11,412 
km2 in 2030 based on two-step linear regression. Considering the stochastic characteristic 
of the model, a 2% up and down fluctuation in the built-up land increment is considered 
plausible; (4) the ecological control areas derived from the overall planning in each city 
cannot convert to built-up land (Figure 9b); (5) ecological protection zones derived from 
suitability zones cannot change in the process of the model; (6) water is not allowed to 
change in the model. 

 
Figure 9. The constraints in the model. (a) Slope constraints where a slope greater than 15 degrees 
cannot be built-up land and a slope greater than 25 degrees can only be forest. (b) Ecological con-
trol area derived from suitability zones which cannot change in the process of the model. 

A total of 50 random patterns are initially set, and a maximum of 200 iterations are 
performed in the model. The probabilities of crossover and mutation are 0.1 and 0.06, re-
spectively. To obtain the optimal pattern of balanced development in the GBA, the model 
chooses the optimal pattern when all the objective weights are 0.5. 

3.2.2. Spatial Pattern of the GBA in 2030 
Combining the optimal result in 2030 with the land use pattern in 2020, the occupa-

tion of land resources caused by urban expansion is shown in Table 3 and Figure 10. The 
newly added built-up land comes mainly from cropland, which accounts for 1612 km2 
(86.2%), followed by forest (186 km2,10%) and grassland (71 km2, 3.8%). Analyzing its 
share in the suitability zoning, the newly added built-up land accounts for 73% in the 
suitable construction zone and 27% in the prior construction zone. In terms of the built-
up land increment in each city (Table 4, Figure 11), Guangzhou and Huizhou accounted 
for the highest percentage (over 20%). Foshan and Jiangmen accounted for more than 15%, 
and the rest of the cities have less than a 10% built-up land increment. 

All the newly added built-up land is distributed in peri-urban areas around the orig-
inal settlements and along main roads. The key development zone in the GBA mainly 
includes the northern part of Guangzhou and the southern part of Foshan, and contains 
clusters of new built-up land. In fact, the 14th Five-Year Plan of Guangzhou states that 
northern Guangzhou will promote the construction of an airport cluster as well as a new 
industrial area of the northern airside economy, which is consistent with the optimal re-
sults obtained by the model (approximate cluster of newly added built-up land in north-
ern Guangzhou). In addition, the newly added built-up land in Huizhou and Jiangmen is 
scattered around the original construction area, especially in the south part. Dongguan’s 
newly added built-up land is concentrated in the junction with Shenzhen and Huizhou, 
whereas Zhaoqin is mainly distributed in the southern region near Foshan. In 2030, newly 
added built-up land will be scarce in Shenzhen, Macao and Hong Kong. 

  

Figure 9. The constraints in the model. (a) Slope constraints where a slope greater than 15 degrees
cannot be built-up land and a slope greater than 25 degrees can only be forest. (b) Ecological control
area derived from suitability zones which cannot change in the process of the model.



Land 2023, 12, 754 12 of 17

A total of 50 random patterns are initially set, and a maximum of 200 iterations are
performed in the model. The probabilities of crossover and mutation are 0.1 and 0.06,
respectively. To obtain the optimal pattern of balanced development in the GBA, the model
chooses the optimal pattern when all the objective weights are 0.5.

3.2.2. Spatial Pattern of the GBA in 2030

Combining the optimal result in 2030 with the land use pattern in 2020, the occupation
of land resources caused by urban expansion is shown in Table 3 and Figure 10. The newly
added built-up land comes mainly from cropland, which accounts for 1612 km2 (86.2%),
followed by forest (186 km2,10%) and grassland (71 km2, 3.8%). Analyzing its share in
the suitability zoning, the newly added built-up land accounts for 73% in the suitable
construction zone and 27% in the prior construction zone. In terms of the built-up land
increment in each city (Table 4, Figure 11), Guangzhou and Huizhou accounted for the
highest percentage (over 20%). Foshan and Jiangmen accounted for more than 15%, and
the rest of the cities have less than a 10% built-up land increment.

Table 3. The land use change of optimal spatial patterns in 2030.

Land Use
(km2)/Pattern Initial Pattern (2020) Optimal Patten (2030) Changed Area The Sources of Newly

Added Built-Up Land

Cropland 13,812 12,200 −1612
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Table 4. Quantity structure of the GBA in 2030.

City/Area (km2)
Built-Up Land
in 2020

Built-Up Land
in 2030

New-Added
Built-Up Proportion (%)

Guangzhou 1790 2186 396 21.2%
Shenzhen 1113 1150 37 2.0%
Zhuhai 420 451 31 1.7%
Foshan 1450 1791 341 18.2%
Jiangmen 849 1167 318 17.0%
Zhaoqin 577 718 141 7.5%
Huizhou 896 1278 382 20.4%
Dongguan 1590 1702 112 6.0%
Zhongshan 633 720 87 4.7%
Hong Kong 190 213 23 1.2%
Macao 14 15 1 0.1%

Land 2023, 12, x FOR PEER REVIEW 13 of 16 
 

 
Figure 11. The spatial distribution of newly added built-up land in 2030. 

4. Discussion 
The dramatic land changes caused by the rapid expansion of UA pose a serious threat 

to ecological security, and it is necessary to establish an optimal urban allocation model 
based on ecological impacts [6]. The aim of this study is to construct an effective model of 
optimizing urban allocation with protecting ecological land, which could provide a relia-
ble reference for promoting the rational allocation of land resources and achieving high-
quality development. 

This model combined the LES with NSGA-II to optimize the expansion of urban land 
in UAs. The model’s ability to identify ecological protection areas and the direction in 
which to prioritize urban expansion led to better spatial allocation compared to the tradi-
tional land use optimization model. Compared with the research of Pan et al. (2022), this 
paper simulated future urban growth by two-step linear regression, which is better than  
the result based on one-step linear regression [3]. Moreover, land suitability zoning was 
used as a constraint and objective to improve its performance in the selection of spatial 
allocation for ecological security. Although Xu et al. (2018) have proposed LES for model-
ing urban expansion based on cellular automaton (CA), its model relied on historical data 
without spatial optimization capability [6]. Ma et al. (2022) optimized the quantity and 
spatial structure of the GBA through suitability and compactness objectives, but its con-
straint is hypothetical, and suitability results are based on spatial environment factors 
with only four indexes, ignoring the integration of ecological and construction processes 
[12]. Compared with these studies, the MULO model gave a more refined LES result for 
ecological protection and future urban growth and can obtain optimal spatial allocation 
as a reference for a decision maker. 

In this study, the vertical and horizontal ecological processes were integrated to es-
tablish the LES zoning in the GBA, which provides the possibility to provide a dual anal-
ysis of the direction of regional ecological protection and construction expansion. Ideally, 
urban expansion is expected to be expanded in the prior construction zone and the suita-
ble construction zone first, and ecological land should be avoided by city-building activi-
ties. As governments seek planning strategies for high-quality development, it is im-
portant to map potential future trends in land resources in order to better form appropri-
ate development strategies. Additionally, this paper proposes to guide reasonable re-
gional growth based on potential ecological impacts, providing a general theoretical basis 
for maintaining high-quality development. 

However, urban growth is a complex process, although optimization study can select 
the optimal spatial distribution for regional growth, it ignores the role of historical 
changes in future urban development. It is necessary to analyze the regional historical 

Figure 11. The spatial distribution of newly added built-up land in 2030.

All the newly added built-up land is distributed in peri-urban areas around the original
settlements and along main roads. The key development zone in the GBA mainly includes
the northern part of Guangzhou and the southern part of Foshan, and contains clusters
of new built-up land. In fact, the 14th Five-Year Plan of Guangzhou states that northern
Guangzhou will promote the construction of an airport cluster as well as a new industrial
area of the northern airside economy, which is consistent with the optimal results obtained
by the model (approximate cluster of newly added built-up land in northern Guangzhou).
In addition, the newly added built-up land in Huizhou and Jiangmen is scattered around
the original construction area, especially in the south part. Dongguan’s newly added
built-up land is concentrated in the junction with Shenzhen and Huizhou, whereas Zhaoqin
is mainly distributed in the southern region near Foshan. In 2030, newly added built-up
land will be scarce in Shenzhen, Macao and Hong Kong.
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4. Discussion

The dramatic land changes caused by the rapid expansion of UA pose a serious threat
to ecological security, and it is necessary to establish an optimal urban allocation model
based on ecological impacts [6]. The aim of this study is to construct an effective model
of optimizing urban allocation with protecting ecological land, which could provide a
reliable reference for promoting the rational allocation of land resources and achieving
high-quality development.

This model combined the LES with NSGA-II to optimize the expansion of urban
land in UAs. The model’s ability to identify ecological protection areas and the direction
in which to prioritize urban expansion led to better spatial allocation compared to the
traditional land use optimization model. Compared with the research of Pan et al. (2022),
this paper simulated future urban growth by two-step linear regression, which is better
than the result based on one-step linear regression [3]. Moreover, land suitability zoning
was used as a constraint and objective to improve its performance in the selection of
spatial allocation for ecological security. Although Xu et al. (2018) have proposed LES
for modeling urban expansion based on cellular automaton (CA), its model relied on
historical data without spatial optimization capability [6]. Ma et al. (2022) optimized the
quantity and spatial structure of the GBA through suitability and compactness objectives,
but its constraint is hypothetical, and suitability results are based on spatial environment
factors with only four indexes, ignoring the integration of ecological and construction
processes [12]. Compared with these studies, the MULO model gave a more refined LES
result for ecological protection and future urban growth and can obtain optimal spatial
allocation as a reference for a decision maker.

In this study, the vertical and horizontal ecological processes were integrated to
establish the LES zoning in the GBA, which provides the possibility to provide a dual
analysis of the direction of regional ecological protection and construction expansion.
Ideally, urban expansion is expected to be expanded in the prior construction zone and the
suitable construction zone first, and ecological land should be avoided by city-building
activities. As governments seek planning strategies for high-quality development, it
is important to map potential future trends in land resources in order to better form
appropriate development strategies. Additionally, this paper proposes to guide reasonable
regional growth based on potential ecological impacts, providing a general theoretical basis
for maintaining high-quality development.

However, urban growth is a complex process, although optimization study can select
the optimal spatial distribution for regional growth, it ignores the role of historical changes
in future urban development. It is necessary to analyze the regional historical development
trend in combination with prediction models such as CA. At the same time, the government
has carried out the policy of urban renewal due to the limited urban land resources in
UAs [53]. The disadvantage of the optimization model is that it is mainly used to find the
best allocation for urban expansion. Therefore, the construction of a spatial optimization
model that can identify both urban renewal and regional expansion will have a significant
impact on the actual regional planning.

5. Conclusions

The outward expansion of UAs for further socioeconomic development is necessary,
but governments also need to limit disorderly urban sprawl to reduce adverse ecological
impacts. With the support of geospatial data, social economic statistical data and remote
sensing data, a framework for a land use optimization model guided by land ecological
suitability was constructed. In this model, a multidimensional resistance factor system
with a total of 10 indicators is established. FAHP and the MCR model were used to obtain
the results of LES. Based on these results, two conflicting spatial objectives—suitability and
compactness—were set, and the optimal Pareto set was obtained by NSGA-II.

The results show that the GBA is dominated by the ecological buffer zone (69.7%),
only 16%, 10,012 km2, of land suitable for construction. The prior construction zone is con-
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centrated in the core-urban areas, including Guangzhou, Shenzhen, Foshan and Dongguan.
The suitable construction zone is adjacent to the prior construction zone, distributed in
the peri-urban areas and along the main roads. The ecological protection zones are mainly
scattered in the mountainous areas of Huizhou, Zhaoqin and Jiangmen. The optimal spatial
pattern in 2030 shows that all the newly added built-up land is distributed in the peri-urban
areas around the original settlements. The key development zone in the GBA in 2030
mainly clusters in the northern part of Guangzhou and the southern part of Foshan. In
addition, the newly added built-up land in other cities is scattered around the original
construction area, whereas newly added built-up land is scarce in Shenzhen, Macao and
Hong Kong.

The MULO model identifies the optimal spatial allocation of future UAs after under-
standing land suitability and weighing its role with compactness in spatial allocation. It is
generalizable at the regional scale, enabling the assessment of the development potential of
different regions of UAs and incorporating the utility of development potential for optimal
spatial allocation in the optimization process. The optimization results show that it can
meet the needs of urban expansion and the conservation of ecological land while staying
in line with the important strategic intent to address the problem of unbalanced develop-
ment. In conclusion, the MULO model can be an effective approach for decision makers to
optimize land management strategies to support regional sustainable development.
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