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Abstract: Changbai Mountain is an important part of the development and opening pilot area of
Changjitu. It is the birthplace of Songhua River, Yalu River, and Tumen River, and is known as the
source of the three rivers. Millions of people live in the basin. A volcanic eruption accompanied by
earthquakes would lead to a large number of landslides, debris flows, and show a chain effect, the
formation of a secondary geological disaster chain, which is a serious threat to people’s lives and
property safety. This paper selected indexes from three aspects: the hazard of earthquake-induced
geological disaster chain, the exposure and vulnerability of disaster-bearing bodies, and the risk
assessment of earthquake-induced geological disaster chain. The sensitivity values of each influence
factor were calculated by the certainty factor (CF) using the support vector machine, and then, the
susceptibility assessment was obtained. The cumulative displacement calculated by the Newmark
model represented the potential risk intensity. We considered the Changbai Mountain volcanic
earthquake–landslide disaster chain as an example. The results of risk assessment showed that the
extremely high and high risk areas were mainly located within the 12 km radius of Tianchi Lake,
and the other areas in the study area were mainly associated with very low to low risk values. The
verification results showed that the receiver operating characteristic (ROC) curve area was 0.8373,
indicating that the method was very effective in the identification and assessment of seismic hazard
chain risk. In these high-risk areas, relevant countermeasures should be formulated to prevent the risk
of geological disasters, strengthen the implementation of regional disaster prevention and reduction
work, and ensure the safety of residents’ lives and property.

Keywords: Changbai Mountain Nature Reserve; CF-SVM model; Newmark model; risk assessment

1. Introduction

The phenomenon of secondary disasters being caused by some kind of primary dis-
aster is considered to be a disaster chain; the casualties and property damage related to
disaster chains are deemed to be greater than those resulting from the primary source
disasters themselves [1]. Therefore, disaster chain risk assessment became one of the urgent
core issues to be addressed in current international research. Landslides, rockfalls, and
debris flows are usually triggered by extreme rainfall or earthquakes [2,3]. In the geological
disaster chain, a landslide caused by rainfall or an earthquake is one of the most dangerous
geological disaster chains in mountainous areas and will cause a large number of casualties
and significant economic losses [4–7]. Landslides are quite common and catastrophic in
China, due to intense tectonic movements caused by the Himalayan orogeny. In 2016, more
than 80 people died in the Xinmo landslide in Sichuan province [8,9]. Landslides caused by
heavy rainfall in Su village, Zhejiang Province, killed 27 people [10]. In 2008, a devastating
earthquake with a magnitude of 8.0 occurred in Wenchuan, Sichuan Province, China, which
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triggered a series of disaster chains, such as the earthquake–landslide–reservoir disaster
chain and earthquake–landslide–debris flow disaster chain, causing a total of 69,225 ca-
sualties [11,12]. In 2013, a 7.0 magnitude catastrophic earthquake occurred in Lushan,
Sichuan Province, China, which triggered many landslides and caused a large number of
casualties [13]. Nowadays, a large number of scholars in China and abroad have carried out
much research on geological hazard chains and summarized a large number of methods,
such as probability analysis based on data and risk assessment model construction through
Bayesian network [14]. Research on disaster chain mechanism based on field investigation
and remote sensing interpretation was conducted [15–17]. In addition, logistic regression,
support vector machines, random forests, and neural network in machine learning and
deep learning can be used to analyze the prone probability of a disaster chain [18–22]. A
large number of numerical simulation models, such as Massflow, RAMMS-DEBRIS FLOW,
and TRIGRS, were applied to predict disaster chains and analyze the formation mechanism
by simulating the spatial distribution of landslides or debris flows initiated under the trig-
ger of rainfall or other factors [23–26]. Li and Xue combined the certainty coefficient and the
support vector machine to conduct susceptibility evaluation of geological disasters [26,27].
The finite element method, pseudo-static analysis, and Newmark are commonly used in sec-
ondary disasters caused by earthquakes [27–29]. By identifying potential areas of unstable
slopes caused by earthquakes and calculating cumulative dislocations, the Newmark model
evaluates the related hazard of the earthquake–landslide disaster chain [30–32]. Hazard
assessment mainly includes two aspects: the spatial probability and the time probability of
disaster occurrence. Spatial probability refers to what is likely to happen under the condi-
tions of induced events, i.e., susceptibility. The time probability is the frequency or intensity
of the inducing factor. In many articles, CF-SVM models were often used to assess the
sensitivity of single hazards without considering the riskiness of hazard chains. Second, the
CF-SVM model does not adequately reflect the nature of earthquake effects on secondary
hazards, nor does it calculate the hazard intensity of earthquake hazards well. Based on the
above deficiencies, this study proposed a volcanic earthquake–collapse–landslide disaster
chain risk evaluation model on the basis of a CF-SVM model and the Newmark model.
The risk evaluation model was constructed according to natural disaster risk formation
theory from the perspective of the overall disaster chain. The CF-SVM model can be used
to analyze the chain probability (susceptibility) between adjacent hazard events and to
analyze the hazard intensity of earthquakes on secondary hazards based on the permanent
displacement calculated from the Newmark model, because the permanent displacement
obtained from the Newmark model can better describe the impact of earthquakes on sec-
ondary hazards. The effectiveness of this evaluation method was verified by using the
seismic-landslide hazard chain caused by the volcanic eruption of Changbai Mountain as a
case study. Through the earthquake hazard chain risk assessment model and case study,
the chain probability of the hazard environment, the hazard intensity of the hazard factors,
the vulnerability of the carrier, and the exposure of the carrier were considered on the basis
of natural hazard risk theory. In this paper, the susceptibility between adjacent disaster
events was obtained by combining the certainty coefficient and support vector machine,
and the hazard intensity of earthquake to secondary disasters was analyzed according
to the permanent displacement calculated by the Newmark model. The process of the
comprehensive model of earthquake disaster chain risk identification is shown in Figure 1.
The seismic and landslide disaster chain caused by the volcanic eruption on Changbai
Mountain was taken as a case study to verify the effectiveness of the method.
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terrain and continental and Pacific air currents, vertical zonation is obvious in this region. 
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acterized by long and cold winters, warm and short summers, and slow and fleeting 
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is concentrated in June to August. The precipitation in three months accounts for more 
than 60% of the total annual precipitation, and most of it is heavy rain. 
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all terrain is centered on the volcanic cone, which decreases sharply to the four sides. The 
top center of the cone is Tianchi Volcanic Lake, with an elevation of 2189.7 m above sea 
level. Due to the local fault movement, volcanic seismic activity showed an obvious up-
ward trend since 2002. Due to the many eruptions in the history of Changbai Mountain, a 
large amount of pyroclastic deposits were distributed around the Tianchi Lake, especially 
on both sides of the Erdaobai River main gully. Changbai Mountain is a famous tourist 
area and national nature reserve, which attracts many tourists. More than 20,000 people 
(local residents and tourists) were affected by secondary disasters in the region. Due to 
the many historical eruptions of Changbai Mountain volcanoes, a large amount of vol-
canic debris accumulation was distributed around Tianchi, especially on both sides of the 
main gorge of the Erdao Bai River, and the soft rocks and loose accumulation were eroded 
by flowing water, the valley was undercut, and the front edge of the slopes on both sides 

Figure 1. The risk assessment process of the earthquake disaster chain.

2. Study Area

The Changbai Mountain Protection and Development Zone is located in the south-
eastern mountainous area of Jilin Province. It is under the jurisdiction of the Management
Committee of Changbai Mountain Protection and Development Zone of Jilin Province,
covering an area of 3278 km2. The geographical coordinates are 127◦28′–128◦16′ east lon-
gitude and 41◦42′–42◦25′ north latitude (Figure 2). The climate in Changbai Mountain
is a semi-humid continental climate in the middle temperate zone. Due to the influence
of terrain and continental and Pacific air currents, vertical zonation is obvious in this
region. The temperature and precipitation are controlled by altitude. The region’s climate
is characterized by long and cold winters, warm and short summers, and slow and fleeting
spring and autumn. The average annual precipitation is 1407.6 mm, and the precipitation
is concentrated in June to August. The precipitation in three months accounts for more
than 60% of the total annual precipitation, and most of it is heavy rain.

Changbai Mountain has a unique topographic and geomorphic landscape. The overall
terrain is centered on the volcanic cone, which decreases sharply to the four sides. The top
center of the cone is Tianchi Volcanic Lake, with an elevation of 2189.7 m above sea level.
Due to the local fault movement, volcanic seismic activity showed an obvious upward
trend since 2002. Due to the many eruptions in the history of Changbai Mountain, a large
amount of pyroclastic deposits were distributed around the Tianchi Lake, especially on
both sides of the Erdaobai River main gully. Changbai Mountain is a famous tourist area
and national nature reserve, which attracts many tourists. More than 20,000 people (local
residents and tourists) were affected by secondary disasters in the region. Due to the many
historical eruptions of Changbai Mountain volcanoes, a large amount of volcanic debris
accumulation was distributed around Tianchi, especially on both sides of the main gorge
of the Erdao Bai River, and the soft rocks and loose accumulation were eroded by flowing
water, the valley was undercut, and the front edge of the slopes on both sides of the river
formed an open sliding space, and the volcanic earthquakes caused deformation of the
mountain, and landslides occurred when the rock structure of the slope was damaged,
which seriously threatened the safety of people’s lives and properties [33].
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3. Data and Methods
3.1. Certainty Factor

The certainty factor (CF) is essentially a probability function. It was first proposed by
Shortliffe [34] and improved by Heckerman [35] for analyzing the sensitivity of various
factors affecting the occurrence of certain event [36]. Based on existing debris flow disaster
events, and assuming that the conditions of future debris flow disasters are the same as
those that have occurred, the contribution degrees of different sections or categories within
each impact factor were calculated. The CF model can analyze the sensitivity of debris
flow disaster factors and complete the susceptibility evaluation of debris flow disaster. The
calculation formula is:

CF =

{ PPa−PPs
PPa(1−PPs)

PPa ≥ PPs
PPa−PPs

PPs(1−PPa)
PPs ≥ PPa

(1)

where CF is the certainty factor of debris flow disaster occurrence, ppa is the ratio of debris
flow disaster area in evaluation factor a to the area occupied by evaluation factor a, a is a
certain level in any indicator; pps is the prior probability of debris flow disaster occurring
in the whole study area, specifically represented by the ratio of the total area of debris flow
disaster in the whole study area to the total area of the study area. The CF value calculated
based on the above formula is −1–1, and the calculated result is regular, indicating that this
unit is the prone area of debris flow disaster. Otherwise, if the calculated result is negative,
it means that debris flow disaster is not easy to occur in this unit. Soil properties and faults
have important effects on earthquake-induced landslides, but the data obtained are difficult
to obtain because of the small distribution of faults in the study area and their distribution
in the boundary areas. Therefore, fault and soil indicators were not added. Slope, aspect,
relief intensity, lithology, elevation, topographic wetness index (TWI), earthquake intensity
(EI), rainfall, fractional vegetation cover (FVC), land use type (LUT), distance to river (DTR),
and terrain roughness(TR) were selected as evaluation indexes to obtain the susceptibility
index and normalize it into the spatial probability of earthquake-debris flow chain. The
data sources are shown in Table 1. Indicators are selected as shown in Figure 3.
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Table 1. Data source.

Evaluation Index Data Type Resolution Data Source

Elevation raster data 30 m Geospatial data cloud

Land use type raster data 30 m
National Center for
Basic Geographic

Information

Rainfall raster data 30 m
National Data Center

for Meteorological
Sciences

Fractional vegetation cover Landsat 8 OLI/TIRS 30 m
Satellite remote

sensing cloud for
natural resources

Slope raster data 30 m Geospatial data cloud

Distance to river vector data 30 m Geospatial data cloud

Aspect raster data 30 m Geospatial data cloud

Lithology vector data 30 m Geological cloud

Relief intensity vector data 30 m Geospatial data cloud

Topographic wetness index vector data 30 m

Resources and
Environmental

Sciences and Data
Center, Chinese

Academy of Sciences

Earthquake intensity raster data 30 m Google earth pro

Terrain roughness vector data 30 m

Resources and
Environmental

Sciences and Data
Center, Chinese

Academy of Sciences

Population vector data 30 m

Resources and
Environmental

Sciences and Data
Center, Chinese

Academy of Sciences

Gross national product vector data 30 m

Resources and
Environmental

Sciences and Data
Center, Chinese

Academy of Sciences

Building density vector data 30 m
National Center for
Basic Geographic

Information

Road density vector data 30 m
National Center for
Basic Geographic

Information

Age level vector data 30 m

Resources and
Environmental

Sciences and Data
Center, Chinese

Academy of Sciences
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3.2. Support Vector Machine (SVM)

Based on the theory of machine learning, support vector machines (SVMS) were first
proposed by VAPNIK in the 1960s when studying small samples [37]. They are considered
to be the best theory for small sample estimation and predictive learning at present and
are widely used in disaster sensitivity assessment [38]. The classification of data points
can be realized by calculating the distance between the data points and the hyperplane,
and the reliability of the result is positively correlated with the distance. In the case of
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fewer samples, the low-dimensional nonlinear data can be mapped to the high-dimensional
space, and the optimal hyperplane can be used to separate the two types of data and ensure
the maximum separation interval [39,40]. Taking the binary classification problem as an
example, the training sample is assumed to be (xi, yi), xi∈xn, yi∈Y, Where I = (1,2,3, . . . ,
l), n is the eigenspace of sample X, yi = ±1. The goal of SVM is to find a hyperplane with
n-dimensional feature space and w normal vector, namely WTX+ b = 0, separating the two
types of data points correctly, while keeping the classification spacing as wide as possible.
In order to meet the above classification requirements, this problem can be converted into a
minimum value problem with constraints [41]:

min
1
2
‖w‖2 (2)

s.t. yi

(
wTxi + b

)
≥ 1, i = 1, 2, . . . , m

This problem can be converted into a convex quadratic programming problem. In the
case of linear indivisibility, by introducing a relaxation variable ξ i ≥ 0 and penalty factor
C, the convex quadratic programming problem becomes:

min
1
2
‖w‖2 + C ∑m

i=0 ξ i (3)

s.t. yi

(
wTxi + b

)
≥ 1− ξ, i = 1, 2, . . . , m

In the formula (3), C > 0 is a constant, and its size determines the punishment degree
of wrong sampling.

The model is convex quadratic programming (global extremum of local extremum
and quadratic constraint of objective function). It can be solved directly with the existing
optimization package, but there can be a more efficient method. Using the Lagrange
multiplier method, the optimization problem of two parameters is transformed into one
parameter optimization problem, and then the model is solved. The Lagrange multiplier
method is used to transform the constraints into objective functions, that is, Lagrange
multiplier αI > 0 is added to each constraint. The Lagrange function is obtained as
follows [42]:

L(w, b, α) =
1
2
‖w‖2 + ∑m

i=1 αi

(
1− yi

(
wTxi + b

))
(4)

Solving Equation (4) yields the optimal classification function:

wTx + b =
(
∑m

i=1 αiyixi

)T
x + b = ∑m

i=1 αiyi〈xi, x〉+ b (5)

SVM uses kernel functions to solve nonlinear classification problems. At present,
the commonly used kernel functions of SVM mainly include linear kernel, polynomial
kernel, radial basis kernel, and Sigmoid kernel function. Radial basis kernel function is
widely used in disaster sensitivity evaluations [43], but for different research purposes, the
prediction accuracy of four kernel functions should be compared, and the optimal kernel
function should be selected to establish a SVM prediction model.

3.3. Newmark Model

The theoretical basis of the Newmark model is the limit equilibrium theory. It is
considered that the permanent deformation of the slider is caused by the destruction of the
block along the sliding surface under the seismic load. When the acceleration applied at the
sliding surface exceeds the critical acceleration in its limiting equilibrium state, the block
slides along the destruction surface, that is, the slide is not displaced when the seismic
acceleration value is less than the critical acceleration ac, the displacement of the slider is
generated by a fraction greater than the critical acceleration [44], quadratic integration of
the difference between the load acceleration at and the critical acceleration ac yields the
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cumulative shift value DN. Jibson, using 2270 strong vibration records from 30 earthquakes
around the world, established an empirical model with the critical acceleration ac and Arias
intensity Ia as the parameters. The formula was described as follows [45]:

logDN = 2.401logIa − 3.481logac − 3.230± 0.656 (6)

Arias intensity is a physical measure of the total intensity of the ground motion and
refers to the sum of the squares of the vibration acceleration recorded by the instrument,
expressed by Ia, in m·s−1. Wilsongave the empirical formula of the value based on 43
seismic records [46]:

Ia = 0.9T(amax)
2 (7)

where amax is the seismic peak acceleration; T is the Dobre duration, the expression is
lgT = 0.432M − 1.83, and M is the seismic magnitude calculated at the Richter scale.
According to the seismic intensity attenuation formula, the seismic intensity I corresponding
to different epicenter distances r can be obtained in eastern China:

I = 4.493 + 1.454M− 1.792ln(r + 16) (8)

amax’s relationship to the seismic intensity formula can be expressed as [47]:

I = 3.322log(amax) + 0.033 (9)

In combination with formulas (8) and (9), the grid data files of PGA parameters of
the study area were generated in Arc GIS software, and the results of the calculation were
replaced into formula (7).

The calculation of the critical acceleration ac is usually based on the comparison of the
static conditions of the slide and the seismic dynamic conditions, using the infinite slope
method, namely [48]:

ac = (Fs − 1)g sin α (10)

where α is the slope foot; the expression for Fs is as follows:

Fs =
c

γhsinα
+

tanϕ

tanα
− mγwtanϕ

γtanα
(11)

ϕ is the internal friction angle (◦); c is the cohesion force (kPa); γ is the geotechnical
body mass degree (N·m−3); γw is the severity of water (N·m−3); h is a slider thickness (m);
and m is the ratio of the thickness of the slide immersed in water to the slide thickness. The
parameter values for these rock masses are listed in Table 2.

Table 2. Classification of engineering rock mass grade and its parameter value (GB50218T-2014,
China).

Rock Group c/Mpa ϕ/(◦) γ
(
kN/m3)

Hard rock >0.22 >37 >26.5

Second hard rock 0.12–0.22 29–37 >26.5

Second soft rock 0.08–0.12 19–29 24.5–26.5

3.4. Risk Assessment Model of Earthquake-Induced Landslide Disaster Chain

In this study, hazard and vulnerability were considered in the earthquake disaster
chain risk evaluation model. We defined hazard as the influence of the activity scale, and
the frequency of the hazard factors on the disaster body. Disaster chain hazard analyses
included a susceptibility analysis of the disaster chain (chain probability) and a hazard
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intensity analysis of the disaster chain (the sum of the hazard intensities of each disaster
event). Combining the sensitivity results, the hazard was calculated using Equation (12).

H = S× C (12)

where H is the hazard value of disaster chain, H is the hazard of disaster chain, S is the
susceptibility, and C is the hazard intensity.

According to the formation mechanism of natural disaster risk, the natural disaster
risk index method was used to establish the risk degree. The specific calculation formula is
as follows:

R = HWh ×VWv × EWe (13)

Formula: R is the risk index of earthquake-induced landslide disaster chain, the greater
the value represents the greater the disaster risk; the values of H, V, E indicate the hazard,
vulnerability, and exposure of earthquake-induced landslide disaster chain, respectively;
Wh, Wv, and We are the weights of each factor, which were calculated by the variation
coefficient method as 0.1549, 0.4149, and 0.4302.

4. Geological Hazard Susceptibility Assessment Results
4.1. Correlation Analysis of Evaluation Factors

When selecting evaluation factors to evaluate the vulnerability of geological disas-
ters, each evaluation factor may have a correlation, but the evaluation factor with high
correlation is often not representative, resulting in redundancy of the evaluation factors,
which affects the accuracy of the evaluation model, which is likely to affect the accuracy
of the evaluation results. Based on this, the Pearson correlation coefficient method was
used to analyze the correlation of each evaluation factor, and the evaluation factors with
high correlation were eliminated, while those with no correlation or low correlation were
retained. The Pearson correlation coefficient method is a statistical method used to express
the degree of correlation between several variables, which is usually expressed by r. The
size of r represents the degree of correlation of factors. The larger the value of r, the higher
the degree of correlation. The solution formula is as follows:

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
(14)

In the formula, n represents the number of samples, xi and yi represent the observed
values of sample variables, and x and y represent the mean values of samples.

The degree of linear relationship between two variables is generally described by the
correlation coefficient r, |r| > 0.95 represents a significant correlation, |r| ≥ 0.8 represents
a high correlation, 0.5 ≤ |r| < 0.8 represents a moderate correlation, 0.3 ≤ |r| < 0.5
represents a low correlation, |r| < 0.3 represents an extremely weak, which was considered
irrelevant. P is the probability of significance, p > 0.05 indicates no significant difference;
0.01 < p < 0.05 indicates that the correlation is significant and is marked with * in the
figure; p < 0.01 indicates a significant correlation, marked with ** in the figure. The blue
section of the figure indicates positive correlation, and the red section indicates negative
correlation. From Figure 4, the correlation coefficient between slope and topographic
fluctuation was 0.99 positive correlation, with high correlation, and p < 0.01 significant
difference; the correlation coefficient between elevation and rainfall was 0.95 positive
correlation, with high correlation, and p < 0.01 significant difference. As seen in Figure 4,
the remaining factors were medium or low degree correlation, or basically unrelated. Slope
and annual average rainfall are important indicators to evaluate earthquake and landslide
geological disasters, and so, the relief intensity and elevation were eliminated. Finally,
10 evaluation factors affecting the development of earthquake and landslide geological
disasters in Changbai Mountain were determined.
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4.2. Susceptibility Assessment Based on CF-SVM

The basic idea of using the CF-SVM model to evaluate the vulnerability of geological
disasters is: the sensitivity values of each influence factor calculated by the CF method
(Table 3) are taken as the classification data of the SVM model, and the training data is
used to train the SVM, to realize the vulnerability evaluation of geological disasters in
the whole study area. According to the known geological disaster hidden danger units,
the downsampling method is used to cluster the non-geological disaster hidden danger
units. At the clustering center, the number of units consistent with the number of geological
disaster hidden danger units are selected as the non-geological disaster hidden danger
units, and the two parts of data are taken as the sample data. A total of 104 landslide
points and non-landslide points were generated in the study area, and the values of the
four risk zoning maps after reclassification were extracted into the attributes of these 104
disaster points in ArcGIS as sample data. In the sample data, 70% of cells were randomly
selected as training data and 30% of cells were randomly selected as validation data.
The radial basis function was selected as SVM kernel function. The optimal parameter
combination was determined by the cross validation method, and the optimal SVM model
was established to predict the whole study area. The geological hazard susceptibility index
of the study area was calculated, and then, the natural discontinuity method was adopted
to divide the whole study into five susceptibility intervals: extremely high susceptibility
area, high susceptibility area, medium susceptibility area, low susceptibility area, and very
low susceptibility area. The geological hazard susceptibility zoning table and geological
disaster susceptibility zoning map were obtained.

Table 3. Certainty Factor.

Evaluation
Index Grade Grading

Area Ratio
Disaster

Point Ratio PPa PPs(1−PPa) CF Frequency
Ratio

Slope/(◦)

0–5 0.5677 0.2692 0.0075 0.0073 −0.5297 0.4742

5–10 0.2531 0.1923 0.0120 0.0118 −0.2432 0.7596

10–15 0.0758 0.0769 0.0160 — 0.0145 1.0144

15–25 0.0695 0.2115 0.0481 — 0.6820 3.0420

25–65 0.0337 0.25 0.1173 — 0.8789 7.4085
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Table 3. Cont.

Evaluation
Index Grade Grading

Area Ratio
Disaster

Point Ratio PPa PPs(1−PPa) CF Frequency
Ratio

aspect/(◦)

−1–0 0.1142 0.0576 0.0079 0.0157 −0.4990 0.5049

0–22.5 0.1043 0.0961 0.0145 0.0156 −0.0799 0.9211

22.5–67.5 0.0854 0.0961 0.0178 — 0.1131 1.1253

67.5–112.5 0.0680 0.0192 0.0044 0.0157 −0.7204 0.2827

112.5–157.5 0.0655 0 0 0.0158 −1 0

157.5–202.5 0.0942 0.0192 0.0032 0.0157 −0.7986 0.2039

202.5–247.5 0.1108 0.1730 0.0247 — 0.3653 1.5614

247.5–292.5 0.1205 0.1730 0.0227 — 0.3081 1.4353

292.5–337.5 0.1189 0.1730 0.0230 — 0.3180 1.4556

337.5–360.0 0.1177 0.1923 0.0258 — 0.3938 1.6329

Topographic
wetness

index
(TWI)

2.8–6 0.1415 0.2692 0.0301 — 0.4819 1.9022

6–8 0.5565 0.4807 0.0136 0.0156 −0.1380 0.8638

8–10 0.1632 0.1538 0.0149 0.0156 −0.0584 0.9424

10–15 0.1205 0.0961 0.0126 0.0156 −0.2050 0.7975

15–24 0.0181 0 0 0.0158 −1 0

Fractional
vegetation

cover
(FVC)

0.0–0.2 0.0638 0.1923 0.0475 — 0.6774 3.0106

0.2–0.5 0.0273 0.0769 0.0443 — 0.6534 2.8109

0.5–0.8 0.2822 0.2307 0.0129 0.0156 −0.1874 0.8176

0.8–0.9 0.3090 0.2884 0.0147 0.0156 −0.0708 0.9332

0.9–1.0 0.3174 0.2115 0.0105 0.0156 −0.3393 0.6664

Rainfall/(mm)

<7000 0.0840 0 0 0.012456035 −1 0

7000–8000 0.6276 0.1923 0.0038 0.012408498 −0.6962 0.3063

8000–9000 0.2461 0.5384 0.0272 — 0.5497 2.1879

9000–10000 0.0387 0.2115 0.0680 — 0.8272 5.4625

>10000 0.0034 0.0576 0.2069 — 0.9516 16.6164

Land use
type

Cultivated
land 0.0139 0 0 0.0158 −1 0

Wood land 0.8906 0.8269 0.0146 0.0156 −0.0755 0.9284

Grass land 0.0757 0.0961 0.0200 — 0.2128 1.2690

Waters 0.0017 0 0 0.0158 −1 0

Construction
land 0.0145 0 0 0.0158 −1 0

Snow cover 0.0033 0.0769 0.3637 — 0.9718 23.0417

Lithology

Basalt 0.7952 0.6538 0.0129 0.0156 −0.1828 0.8221

Glutenite 0.1336 0.0769 0.0090 0.0156 −0.4300 0.5757

Trachyte 0.0552 0.25 0.0714 — 0.7907 4.5235

Granite 0.0158 0.0192 0.0191 — 0.1765 1.2141

Earthquake
intensity

VII 0.1871 0.3269 0.0275 — 0.4326 1.7472

VI 0.6868 0.6730 0.0154 0.0155 −0.0236 0.9798

V 0.1260 0 0 0.0158 −1 0
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Table 3. Cont.

Evaluation
Index Grade Grading

Area Ratio
Disaster

Point Ratio PPa PPs(1−PPa) CF Frequency
Ratio

Distance to
river/(m)

<500 0.0461 0.0192 0.0071 0.0168 −0.5878 0.4162

500–1000 0.0473 0 0 0.0169 −1 0

1000–1500 0.0488 0.0192 0.0066 0.0168 −0.6101 0.3939

1500–2000 0.0499 0.0192 0.0065 0.0168 −0.6189 0.3851

>2000 0.8076 0.9423 0.0197 — 0.1453 1.1666

Terrain
roughness

<10 0.3686 0.7115 0.0306 — 0.4896 1.9298

10–25 0.4202 0.2692 0.0101 0.0157 −0.3630 0.6406

25–45 0.1399 0 0 0.0159 −1 0

45–100 0.0586 0.0192 0.0052 0.0158 −0.675 0.3277

>100 0.0124 0 0 0.0159 −1 0

As can be seen from Table 4, from the very low frequency area to the very high
frequency area, the combined frequency ratio of the extremely high and high prone areas
reached 82.49% of the total frequency ratio, which indicates that the deterministic coefficient
(CF) model was also effective and feasible to evaluate the probability of geological disasters
in Changbai Mountain. As seen in Figure 5, the sum of the geological disaster area in
the red very high prone area and the orange high prone area accounted for 20.49% of the
total area, the area ratio in the yellow middle prone area was 12.78%, and the area in the
green low prone area and very low prone area was 66.73%. When the frequency ratio is
>1, it indicates that this factor had a positive effect on landslide development, and that
the frequency ratio had a greater influence [49]. The Fr method assumes that areas with
similar geological conditions have a similar probability of geological disasters. The Fr value
can quantitatively represent the relative degree of the influence of environmental factors
on the occurrence of geological disasters [50]. An Fr value greater than 1 indicates that
the environmental factor attribute interval is beneficial to the development of geological
disasters, and the greater the value, the greater the impact on the development As seen in
Table 4, when the susceptibility of CF evaluation model increased from low to high, the
frequency ratio gradually increased, which is in line with the evaluation law. When the
frequency ratio is greater than 1, the probability of geological disasters gradually increases.

Table 4. Statistical table of prone zoning.

Model Susceptibility Division
Area/km2

Area Pro-
portion/%

Disaster
Point

Disaster Point
Ratio/% Fr

CF-SVM

Very low 1505.52 45.85 4 7.69 0.17
Low 685.73 20.88 6 11.54 0.55

Moderation 419.76 12.78 4 7.69 0.60
High 175.21 5.34 6 11.54 2.16

Very high 497.23 15.15 32 61.54 4.06
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4.3. Earthquake Intensity

Due to a lack of data, Arias intensities for the entire study area must be obtained
indirectly from seismic parameters. In 1991, Mount Pinatubo erupted with an earthquake
magnitude of 5.6, which was the largest volcano-related earthquake magnitude recorded
globally [51]. Based on this, a 6.0 magnitude earthquake can be predicted for the hypotheti-
cal eruption of Changbai Mountain volcano. According to Equation (6), the cumulative
displacement of the Newmark model can be obtained (Figure 6).
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5. Risk Assessment
5.1. Hazard Assessment

In view of the induced conditions of the seismically induced geological disaster chain,
the cumulative displacement calculated according to the Newmark model was used as
the index of the induced factor intensity of the seismically induced geological disaster
chain. Combining the sensitivity results, the hazard was calculated using Equation (12).
The calculated results were graded by natural breakpoint method to complete the hazard
assessment of earthquake-induced landslide chain (Figure 7).
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5.2. Carrier Exposure Assessment

The exposure of disaster-bearing body is a potential threat to the economic, social,
and natural environment systems, especially the agricultural, human, and ecological en-
vironments. The basic work of the exposure assessment of a disaster-bearing body is the
selection of the index and the determination of the weight of the assessment, as well as
the modeling and evaluation of the disaster-bearing body exposure assessment. In this
paper, the variation coefficient method was used to calculate the weights of various factors,
and it was integrated with the method of a comprehensive weighted evaluation model to
construct and evaluate the exposure evaluation model of a geological disaster-bearing body.
The exposure evaluation index system and weight coefficient of the earthquake-induced
slope disaster-chain-bearing body are shown in Table 5.

Table 5. Exposure evaluation index system and weight coefficient of disaster-bearing body.

Primary Factor Index Weight Coefficient

Demographic factor population 0.2272

Ecological environment factors land use type 0.2421

Socioeconomic factor gross national product 0.5307

The exposure result of the disaster-bearing body was obtained by weighted superposi-
tion after quantization of indicators, and the classification was carried out by the natural
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breakpoint method. Finally, the exposure zoning map was obtained (Figure 8). The overall
exposure of disaster-bearing bodies in the study area was low. As for the Chinan District
of Changbai Mountain, its land and economic exposure were relatively high, and the
extremely exposed areas were generally distributed here. The high-exposure areas were
mainly located in the Chixi District with moderate population and rapid economic devel-
opment, while the medium-exposure areas were mainly located in the Chibei District with
frequent human activities, and a few were located in the Chinan District. The low-exposure
and extremely low-exposure areas were located in some areas with fewer people and lower
economy in Chixi District and Chibei District.
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5.3. Carrier Vulnerability Assessment

The vulnerability of a disaster-bearing body refers to the damage or damage scope
suffered by a disaster-bearing body in a specific area, which, as a whole, reflects the
damage (vulnerability) scope of disaster. Vulnerability is the loss caused by the value
level of the recipient, including human casualties, economic losses, and loss of natural
resources. It can be observed from the definition of vulnerability of a disaster-bearing
body that the vulnerability of a disaster-bearing body refers to the material composition,
structure, and state of the disaster-bearing body. At the same time, the main body affected
by disasters includes natural factors and social economic factors. In this study, the variation
coefficient method was used to calculate the weights of each index in the vulnerability
assessment index system of the disaster-bearing body (Table 6), and the calculated results
were combined with the vulnerability assessment model of the disaster-bearing body
established according to the comprehensive weighted evaluation model to carry out the
vulnerability assessment of the earthquake-induced landslide disaster chain (Figure 9).
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Table 6. Disaster-bearing body vulnerability assessment index system and weight coefficient.

Primary Factor Index Weight Coefficient

Demographic factor Building density 0.4856

Ecological environment factors Road density 0.1690

Socioeconomic factor Age level 0.3454
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5.4. Results

According to Equation (13) and the weight values, the risk index of the earthquake–
landslide hazard chain was calculated and classified into five risk classes, including very
low risk zone, low risk zone, medium risk zone, high risk zone, and very high risk zone,
using the natural breakpoint method, and a risk zoning map was drawn (Figure 10).

Figure 10 shows the earthquake-landslide disaster chain risk zoning map that was
constructed according to the disaster chain risk assessment model. From visual analysis of
the earthquake disaster chain hazard map, it seemed to fit the trend of rainfall and slope.
According to the area statistics in Figure 10, other regions in the study area mainly had very
low or low risk values. The extremely high risk area accounted for 21% of the total area, the
medium risk area accounted for 38%, and the low and very low risk area accounted for 41%
of the total area. Overall, the high and medium risk areas were mainly located within 12 km
radius of Tianchi Lake, which was strongly affected by volcanic activity. Other regions had
low and very low risk values. Through the analysis of the seismic hazard chain hazard
area, it was clear that the spatial trend of the seismic hazard chain hazard area followed
the distribution of elevation and rainfall. Through the analysis of the seismic hazard
chain hazard area, it was evident that the spatial trend of the seismic hazard chain hazard
area followed the distribution of elevation and rainfall. More importantly, regarding the
development of the hazard chain, the favorable terrain for earthquake-induced landslides
was found to be high slope, and its change directly lead to the change of the surrounding
disaster environment, greatly increasing the probability of landslide occurrence. The
southern study area was less high-risk than the vicinity of Tien Chi, despite the high
steep terrain, which was probably due to the lower average annual precipitation in the
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area compared to the center of Tien Chi. The rainfall limited the occurrence of landslides;
thus, the influence of the distance of rivers in the study area was not important. The risk
assessment model of earthquake disaster chain proposed in this study provided a reference
for the prevention of and reduction in the mountain disaster chain.
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5.5. Result Verification

The ROC curve is a means to verify the accuracy of geological disaster susceptibility
evaluation. The area under the ROC curve (AUC) ranged from 0.5 to 1, and higher values
indicated better prediction ability of the model. The AUC value of less than 0.7 indicated
poor prediction effect, 0.7–0.8 indicated moderate prediction effect, 0.8–0.9 indicated good
prediction effect, and above 0.9 indicated very good prediction effect [52]. In the ROC curve,
the true positive rate represents the proportion of correctly predicted positive samples
(disaster hidden danger points) in the true positive samples, and the false positive rate
represents the proportion of negative samples (non-disaster hidden danger points) in the
true negative samples. Positive samples and negative samples are, respectively, evaluated
in this method, which makes it a relatively balanced evaluation method [53]. Figure 11
shows the ROC curve of the risk outcome. The verification results showed that the area
under the ROC curve was 0.8373, which indicated that the model predicted better.
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6. Conclusions

Previous studies mainly focused on single hazards and lacked risk evaluation of the
disaster chain as a whole. This study took landslides in the context of earthquakes as the
research object, and from the perspective of environmental risk, this paper selected indica-
tors from three aspects: (i) hazard of earthquake-induced geohazard chain, (ii) exposure
and vulnerability of the disaster-bearing body, and (iii) a risk assessment index system
and assessment model. We carried out a risk assessment study of the earthquake-induced
geohazard chain, which provided a new idea for the prevention and control study of geo-
hazards, and was of great theoretical significance and application for the timely formulation
of regional disaster prevention. It is of great theoretical significance and application value
for the timely formulation of disaster prevention and mitigation policies and ecological
construction.

In many studies, CF and SVM models were often used to assess the sensitivity of single
hazards, and even in a small number of hazard studies, the frequency or intensity of predis-
posing factors were often ignored [42,43]. The Newmark model has a good performance in
predicting earthquake-induced landslide events; however, the Newmark model is currently
used to consider rainfall factors in earthquake landslide hazard prediction. There were a
few studies, however, that used the Newmark model for predicting earthquake landslide
hazards, and the coupling effect of rainfall and earthquake was found to definitely increase
the probability of landslide occurrence [54]. Meanwhile, the probabilistic seismic landslide
hazard evaluation method based on the Newmark displacement model suffered from the
uncertainty of the evaluation model and parameters [55]. Based on the above deficiencies,
this paper adopted the Newmark model to fully respond to the intensity of earthquakes as
a consistent hazard factor, coupled the CF and SVM models to obtain the sensitivity, and
obtained the hazard assessment results of the earthquake–landslide hazard chain based
on the product of the above two. The method successfully highlighted the comprehensive
understanding of the hazard chain formation mechanism and quantitatively assessed the
hazard chain risk. Using this method, the risk assessment results of the Changbai Mountain
earthquake–landslide hazard chain were obtained.

This paper still had some defects in the risk assessment of the disaster chain. The
process of chain formation from primary to secondary disasters was complex, especially
given the vulnerability of disasters due to repeated destruction of the same (or new) risk
factors. Therefore, the lack of consideration of changes in vulnerability in earthquake
disaster chain risk assessment was a significant drawback. Secondly, the construction, road,
and other disaster carriers in the study area were more or less concentrated in one area,
which had a certain impact on the exposure assessment.
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