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Abstract: Grassland resources occupy an important place in the national economy. However, grass-
lands in alpine regions of China are severely degraded, and the effects of land-use types on species
composition, soil nutrients, and ecosystem multifunctionality of degraded alpine grasslands are less
certain. To ascertain the effects of main land-use types (no-tillage reseeding and fertilization) on
species diversity and ecosystem multifunctionality in alpine grasslands, we investigated the changes
in these factors by subjecting specified areas. Using a standardized field survey, we measured the
cover, richness, and evenness of plants. At each site, we measured microbial diversity and twelve
soil variables critical for maintaining ecosystem multifunctionality in alpine grasslands. The results
showed that: (1) the Margalef, Shannon–Wiener, and Simpson indices of plant community, and fungal
diversity indices increased significantly in no-tillage reseeding and fertilization; (2) at the phyla
level, the relative abundances of Basidiomycota, Olpidiomycota, and Proteobacteria increased signifi-
cantly in no-tillage reseeding and fertilization, as well as, at the genus level, those of Coniochaeta,
Solirubrobacter, Pseudonocardia, and Microvirga; (3) the soil physicochemical properties (except the
C:N of soil) increased significantly in no-tillage reseeding and fertilization; (4) correlation analysis
showed that species diversity was mainly correlated with soil nutrients in control check, while it
was mainly correlated with soil physical properties in no-tillage reseeding and fertilization; (5) linear
regression analysis showed significant positive relationships between Margalef, Shannon–Wiener,
and Simpson indices of plant community and ecosystem multifunctionality. In addition, ecosystem
multifunctionality was positively related to Pielou, Shannon–Wiener, and Simpson indices of the
fungal community and it was positively related to Pielou and Shannon–Wiener indices of bacterial
community. These observations indicated that no-tillage reseeding and fertilization of degraded
alpine grasslands had the potential to improve ecosystem functions in many ways.

Keywords: species diversity; plant community; microbial community; ecosystem functions

1. Introduction

The grasslands in China cover about 400 million ha or 40.7% of the national terri-
tory, a crucial ecological barrier for terrestrial ecosystems [1], which play a central role in
maintaining national ecological security and income generation for farmers and herders.
For instance, the most widely distributed and largest terrestrial ecosystem in Qinghai is
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that of alpine grassland, a pivotal and irreplaceable element in local ecological protection.
However, climate change, overgrazing, soil erosion, rodent damage, and other phenomena
have resulted in various degrees of degradation in alpine grasslands [2]. Such damages
have been manifested by changes in soil characteristics, loss of biological diversity, and
simplification of ecosystem structure that has significantly affected ecosystem functions,
the survival of pastoralists, and development of the livestock industry. Therefore, these
reasonable improvement measures in alpine grasslands are key to improving the ecological
environment of grasslands and promoting the rational use of grasslands. Measures for
managing degraded grasslands in China are mainly reseeding, fertilizing, fencing, and
controlling rodent pests. Artificial application of organic fertilizer and no-tillage reseeding
are simple measures that require little investment and have a quick impact. They have had
obvious effects on increasing species composition and vegetation cover and improving the
yield and quality of crops [3,4]. Some studies indicated that organic fertilization could sig-
nificantly affect the nutrient element contents in soil and improve crop yield and nutrition
value in alpine grasslands [5–7]. Ma et al. [8] conducted organic fertilizer in alpine pastures,
which improved the rhizosphere nutrition conditions of crops as well as the content of
soil organic matter, total phosphorus, total potassium, available phosphorus, and available
potassium. Jin et al. [9] found that the presence of organic fertilizer enhanced soil physical
and chemical properties, as well as improving beneficial bacterial and fungal abundance
and diversity. Furthermore, Liu et al. [10] indicated that organic fertilizers could effectively
improve crop yield, soil fertility, and the condition of nitrogen limitation in arid and semi-
arid areas. No-tillage reseeding could prevent soil erosion and improve the function of
grasslands as a carbon sink, shorten the natural recovery process, improve grassland pro-
ductivity and biodiversity, and restore the multifunctionality and stability of the grassland
ecosystem [11–13]. In China, no-tillage reseeding was first carried out in the 1980s [14] and
then widely applied to grassland types such as arid and semi-arid grassland, temperate
grassland, desert grassland, lowland meadow, and mountain meadow, etc. Research on
no-tillage reseeding has mainly focused on studying the effects on grassland productivity,
plant diversity, and vegetation community characteristics. For example, Duan et al. [15]
selected five native grasses in alpine meadows on the Qinghai–Tibet Plateau for no-tillage
reseeding, which improved community stability and production; Wu et al. [16] selected
native species in the desert grassland of Ningxia for no-tillage reseeding, which increased
the aboveground biomass of the grassland community and improved community stability;
Sun et al. [17] used no-tillage reseeding of Leymus chinensis (Trin.) Tzvel. and Medicago
falcata L. in Hulunbuir grassland to maintain the species diversity and richness of grassland
ecosystem at a high level and increase the importance of Fabaceae and Poaceae in degraded
grassland. In Qinghai, the main land-use types of degraded alpine grasslands are the artifi-
cial application of organic fertilizer based on no-tillage reseeding [18]. Duan et al. [19] also
showed that the combination of no-tillage reseeding and organic fertilizer increased plant
diversity and soil nutrient content more significantly than the experimental treatments
alone. However, most of the studies only investigated the effect of no-tillage reseeding and
organic fertilizer as separate experimental treatments but did not combine the two, and the
relationships among plant, microorganisms, and ecosystem multifunctionality in degraded
grasslands under no-tillage reseeding and fertilization are not clear. We hypothesized
that no-tillage reseeding and fertilization had positive effects on plant diversity, microbial
diversity, and ecosystem functions and species diversity indices were positively correlated
with ecosystem multifunctionality in no-tillage reseeding and fertilization. Therefore, in
this study, we selected the typical degraded alpine grasslands in Gangcha County, Qing-
hai Province, and conducted no-tillage reseeding and fertilization to investigate (a) the
changes in plant communities, microbial communities, and ecosystem functions, and (b) the
relationships between species diversity and ecosystem multifunctionality.
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2. Materials and Methods
2.1. Study Site

The study area was located in Jiermeng Township, Gangcha County, Haibei Tibetan
Autonomous Prefecture, Qinghai Province (99◦28′53′ ′ E, 37◦18′27′ ′ N, about 3400 m above
sea level), at the junction of three counties in Haibei Gangcha County, Haixi Tianjun County,
and Hainan Gonghe County. The climate type is plateau continental climate, with a long
cold period, and short cool temperate period, no obvious four seasons, windy, and a
big temperature difference between day and night. The annual average temperature is
−0.6~5.7 ◦C, the annual average precipitation is 324.5–522.3 mm, the annual evaporation
is 1500.6–1847.8 mm and the annual sunshine hours are 3 037 h, cold in winter, warm
and cool in summer and autumn, and there is no absolute frost-free period. The natural
grassland type is mainly alpine grassland. The soil type was subalpine grassland soil,
with a thickness of 25–30 cm. The dominant species were Stipa purpurea Griseb, Carex
alatauensis S. R. Zhang, Elymus breviaristatus (Keng) Keng f, Sibbaldianthe bifurca (L.) Kurtto
and T. Erikss, and Knorringia sibirica (Laxm.) Tzvelev.

2.2. Experimental Design

Based on the classification criteria of degraded grasslands specified by Ma et al. [20],
light to moderately degraded grassland with vegetation cover of 30–50%, slope less than
25◦, thick soil layer, and obvious degradation characteristics were selected for the study.
The field plots were set up for two treatments: no-tillage reseeding and fertilization and
control check without any addition. Each treatment had three replicates (5 ha each), and
a total of six plots. No-tillage reseeding methods were as follows: (1) no-tillage seeder
and high-horsepower power machine were used for operation in late April 2021; (2) the
seeding method was cross-seeding and the operation was carried out twice; (3) the seeds
were selected from a mixture of Elymus breviaristatus (Keng) Keng f. and Poa araratica
Trautv. in a ratio of 3:1, which were native grasses in Qinghai Province; (4) the total seeding
amount was 60 kg·ha−1 and the seeding depth was 0.5–2 cm. Fertilizer type was organic
fertilizer (organic matter ≥ 45%, total nutrients (N + P2O5 + K2O) ≥ 5%, water ≤ 30%):
922.5 kg·ha−1 [18].

2.3. Sampling and Computing Method
2.3.1. Plant Diversity

In August 2021, four plant quadrats of 0.5 m × 0.5 m were randomly placed in each
treatment for a survey, and the name, coverage, abundance, and height of plant species in
the quadrats were recorded. Each index was investigated as follows: coverage was obtained
by visual estimation to obtain total community coverage and species coverage; abundance
was obtained by investigating the number of plants; natural height was measured by
randomly selecting five plants of the same species (if there were less than 5 plants, all of
them were measured); plant diversity was expressed using Margalef (H), Shannon–Wiener
(H′), Simpson (D), and Pielou evenness (P) [21]:

H =
S− 1
ln N

(1)

H′ = −∑S
i=1 Pi ln Pi (2)

D = 1−∑S
i=1 P2

i (3)

P =
H′

ln S
(4)

where S is the number of species, N is the total number of plant individuals in the quadrat,
and Pi is the importance value of species i. The importance value of species = (relative
coverage + relative height + relative abundance)/3.
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2.3.2. Microbial Diversity

After mowing all plants in the quadrats, we used a soil auger (3 cm inner diameter)
to collect 0–10 cm of soil by taking three drills along the diagonal. Three replicates were
collected from each quadrat, mixed to form a composite soil sample, and stored at −80 ◦C
for DNA extraction. DNA was extracted using a DNA kit (Omega Bio-Tek, Norcross,
GA, USA) following the manufacturer’s instructions. The DNA was determined on the
platform of Shanghai Paisano Biological Co. for high throughput sequencing, and the
DNA concentration and quality were detected using 0.8% agarose gel electrophoresis. For
the bacterial community, 338F/806R primer sets (338F: ACTCCTACGGGAGGCAGCA;
806R: GGACTACHVGGGTWTCTAAT) were used to amplify (triplicate reactions for each
sample) the 16S V3–V4 region. For the fungal community, the ITS5f/ITS2 primer pair
(ITS5F: GGAAGTAAAAGTCGTAACAAGG; ITS2R: GCTGCGTTCTTCATCGATGC) was
selected to amplify the ITS_V1 region of the rRNA gene. The amplification conditions were
pre-denaturation at 95 ◦C for 5 min, denaturation at 95 ◦C for 15 s, and annealing at 60 ◦C
for 30 s, for a total of 40 cycles [22]. The 16S rRNA amplicons and ITS amplicons were
pooled separately and then sequenced with the Illumina MiSeq instrument. The sequence
data were filtered, chimera checked and operational taxonomic unit (OTU) clustered,
and taxonomy assignment was performed by QIIME (v1.9.0) pipeline. The sequence
information of each treatment was categorized according to barcodes and clustered into
OTUs for species classification, and the OTU similarity was set to 97%. Taxonomy was
identified for each OTU using the Ribosomal Database Project Classifier trained on the
Greengenes and UNiversal Intracellular Targeted Expression databases for bacterial and
fungal sequences [23].

2.3.3. Selection of Ecosystem Functions

In recent studies on ecosystem multifunctionality, the selection of evaluation indicators
mostly refers to Maestre et al. [24]. Since soil–vegetation was an interdependent and
reciprocal feedback complex, and soil was the nutrient and seed bank of the ecosystem, soil
indicators can largely reflect multiple functions of the ecosystem. The indicators related
to soil fertility maintenance are OC, TN, TP, AN, AP, AMN, and NN; indicators related
to water conservation are SWC and CP. The indicators related to nutrient transformation
and cycling are pH, C:N, and BP [25]. These indicators are simple and easy to measure in
production practices and relate to various aspects of soil water, fertilizer, gas, heat, and
multiple ecosystem functions [26].

2.3.4. Measurement of Ecosystem Functions

We used a soil auger (5 cm inner diameter) to collect 0–10 cm of soil by taking three
drills along the diagonal. Three replicates were collected from each quadrat, mixed to form
a composite soil sample, stones and plant roots were removed, and then returned to the
laboratory for determination of the soil’s physicochemical properties. Soil organic carbon
(g·kg−1, OC), total nitrogen (g·kg−1, TN), total phosphorus (g·kg−1, TP), available nitrogen
(mg·kg−1, AN), available phosphorus (mg·kg−1, AP), ammonia nitrogen (mg·kg−1, AMN),
nitric nitrogen (mg·kg−1, NN), soil water content (%, SWC), capillary porosity (%, CP), pH,
C:N, and bulk porosity (%, BP) were measured using standard methods [27].

2.3.5. Assessing Ecosystem Multifunctionality

Before calculating the ecosystem multifunctionality, we standardized the ecosystem
functions to be between 0 and 1 with min–max normalization and then used the average
method to calculate the ecosystem multifunctionality [28,29]. The calculation formula is as
follows:

F(xi) =
xi −min

max−min
(5)
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where xi represents the original value of ecosystem function i, max is the maximum value
of ecosystem function i, and min is the minimum value of ecosystem function i.

EMF =
∑n

i=1 F(xi)

n
(6)

where F(xi) represents the standardized value of ecosystem function i, n is the number of
ecosystem functions.

2.3.6. Statistical Analysis

The Kolmogorov–Smirnov test and Shapiro–Wilk test were used to test whether
the data conformed to the normal distribution, and for the data that obeyed the normal
distribution, the independent samples T test was used to compare the differences between
treatments, and for the data that did not obey the normal distribution, the nonparametric
Mann–Whitney test was used, with the significance level set at p < 0.05. Correlation analysis
was performed between plant and microbial diversity and ecosystem functions. We also
analyzed the relationship between species diversity and ecosystem multifunctionality using
linear regression. All analyses were performed in the software SPSS 25.0. The visualization
of the data was performed using Origin 2021.

3. Results
3.1. Effects of Main Land-Use Types on Plant Diversity, Microbial Diversity, and Soil Microbial
Community Structure

Plant diversity, microbial diversity, and soil microbial community structure varied
widely between treatments. Compared with control check, the Margalef, Shannon–Wiener,
and Simpson indices of plant community increased significantly in no-tillage reseeding
and fertilization (p < 0.05). However, there were no significant differences in the Pielou
index of plant community between treatments (p > 0.05, Table 1). The results showed that
the coverage of soil microbial community ranged from 99.06 to 99.98%, indicating that
the sequencing results represent the true picture of the microorganisms in samples. The
fungal diversity indices in no-tillage reseeding and fertilization were significantly higher
than those in control check (p < 0.05), but the changes in bacterial diversity indices in
different treatments were not significant (p > 0.05, Table 2). In no-tillage reseeding and
fertilization, the Margalef index of plant community showed a positive correlation with
the Shannon–Wiener index of the bacterial community (p < 0.05). In the control check,
the Margalef, Shannon-Wiener, and Simpson indices of the plant community were posi-
tively correlated with the Pielou, Shannon–Wiener, and Simpson indices of the microbial
community (p < 0.05) (Table 3).

Table 1. Changes in plant diversity under main land-use types (mean ± SD).

Treatment
Index

Margalef Shannon–Wiener Simpson Pielou

NF 1.34 ± 0.17 a 1.81 ± 0.18 a 0.80 ± 0.06 a 0.88 ± 0.05 a

CK 0.67 ± 0.22 b 1.16 ± 0.25 b 0.65 ± 0.10 b 0.88 ± 0.07 a

Notes: NF: no-tillage reseeding and fertilization. CK: control check. Different lowercase letters within the same
column represent significant differences between different treatments (p < 0.05).

Most of fungal sequences belonged to the phyla Ascomycota, Basidiomycota, and
Mortierellomycota. At the fungal phyla level, the relative abundance of Ascomycota de-
creased significantly in no-tillage reseeding and fertilization (p < 0.05). In addition, the
abundance of Kickxellomycota and Zoopagomycota presented in CK and did not present
in no-tillage reseeding and fertilization (Figure 1A). At the genus level, the dominant fungi
included Archaeorhizomyces, Mortierella, Acremonium, Didymella, and Pseudogymnoas-
cus. An abundance of Gibberella, Alternaria, Coniochaeta, Ilyonectria, Cephalotrichum,
Didymella, and Tricharina presented in the control check, whereas Dermoloma presented
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in no-tillage reseeding and fertilization (Figure 1B). Moreover, the relative abundance
of Coniochaeta increased significantly in no-tillage reseeding and fertilization (p < 0.05).
Most of bacterial sequences belonged to the phyla Actinobacteria, Proteobacteria, and Aci-
dobacteria. The relative abundance of Proteobacteria increased significantly in no-tillage
reseeding and fertilization (p < 0.05). Moreover, the relative abundance of Chloroflexi in-
creased significantly in control check (Figure 1C). At the genus level, the dominant bacteria
differed significantly in treatments. For example, the relative abundance of Solirubrobac-
ter, Pseudonocardia, and Microvirga increased significantly, whereas KD4-96 decreased
significantly in no-tillage reseeding and fertilization (p < 0.05) (Figure 1D).

Table 2. Changes in microbial diversity under main land-use types (mean ± SD).

Category Treatment
Index

Chao1 Pielou Shannon–Wiener Simpson Coverage/%

Fungi NF 460.22 ± 29.56 a 0.69 ± 0.03 a 6.08 ± 0.18 a 0.95 ± 0.01 a 99.98
CK 351.14 ± 60.73 b 0.64 ± 0.07 b 5.33 ± 0.51 b 0.93 ± 0.02 b 99.97

Bacteria
NF 4299.04 ± 431.27 a 0.90 ± 0.01 a 10.76 ± 0.04 a 1.00 ± 0.00 a 99.18
CK 3986.51 ± 550.43 a 0.89 ± 0.01 a 10.61 ± 0.25 a 0.99 ± 0.00 a 99.06

Note: different lowercase letters within the same column represent significant differences between NF and CK
(p < 0.05).

Table 3. Correlation analysis of plant diversity with microbial diversity under main land-use types.

Treatment Index C(F) P(F) H’(F) D(F) C(B) P(B) H’(B) D(B)

NF

Margalef −0.33 0.43 0.43 0.40 −0.28 0.43 0.633 * 0.31
Shannon–Wiener −0.13 0.27 0.30 0.18 −0.08 0.24 0.45 −0.03

Simpson −0.03 0.18 0.21 0.05 0.02 0.13 0.33 −0.16
Pielou −0.16 0.13 0.12 0.11 −0.17 0.20 0.23 0.10

CK

Margalef −0.43 0.68 * 0.62 * 0.72 ** 0.79 ** 0.81 ** 0.81 ** 0.76 **
Shannon–Wiener −0.51 0.78 ** 0.71 ** 0.84 ** 0.85 ** 0.80 ** 0.85 ** 0.72 **

Simpson −0.54 0.74 ** 0.65 * 0.81 ** 0.72 ** 0.67 * 0.72 ** 0.58 *
Pielou 0.05 0.32 0.37 0.27 0.14 0.08 0.13 0.15

Notes: * p < 0.05, ** p < 0.01. C(F), P(F), H’(F), D(F), C(B), P(B), H’(B), and D(B): Chao1 index of fungal community,
Pielou index of fungal community, Shannon–Wiener index of fungal community, Simpson index of fungal
community, Chao1 index of the bacterial community, Pielou index of the bacterial community, Shannon–Wiener
index of the bacterial community, Simpson index of the bacterial community, respectively.

3.2. Effects of Main Land-Use Types on Ecosystem Functions and Multifunctionality

Twelve ecosystem functions were examined in this study. The no-tillage reseeding
and fertilization had significant positive effects on ecosystem functions related to soil fer-
tility maintenance, i.e., OC, TN, TP, AN, AP, AMN, and NN. In no-tillage reseeding and
fertilization, the indices of soil fertility maintenance increased by 82.25%, 73.79%, 66.01%,
65.15%, 39.21%, 28.96%, and 22.58%, respectively (p < 0.05) (Figure 2A,B,D–H). Compared
with the control check, the indices of water conservation increased in no-tillage reseeding
and fertilization, i.e., CP and SWC increased by 22.70% and 15.44%, respectively (p < 0.05)
(Figure 2J,L). The pH and BP related to nutrient transformation and cycling decreased by
6.67% and increased by 11.03%, respectively (p < 0.05) (Figure 2I,K). In addition, the differ-
ences between treatments in the three main functions of soil fertility maintenance, water
conservation, and nutrient transformation and cycling were not significant. Meanwhile,
ecosystem multifunctionality showed a nonsignificant response in no-tillage reseeding and
fertilization (p > 0.05) (Figure 3A–D).
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3.3. Correlation Analysis of Plant and Microbial Diversity and Ecosystem Functions

We also analyzed the relationships between plant and microbial diversity indices
and ecosystem functions. The Pearson correlation heatmap showed significant positive
relationships between plant and microbial diversity indices and organic carbon, ammonia
nitrogen, and nitric nitrogen in control check (Figure 4A,C). The Simpson and Pielou
indices of the bacterial community were positively related to pH, and the Chao1 index
of the bacterial community was positively related to CP in the control check (Figure 4C).
In addition, Shannon–Wiener, Margalef, and Pielou indices of plant community were
positively related to CP and SWC in no-tillage reseeding and fertilization. The Shannon–
Wiener and Margalef indices of plant community were negatively related to pH in no-tillage
reseeding and fertilization (Figure 4B). The microbial diversity indices were positively
related to OC in no-tillage reseeding and fertilization. Meanwhile, Shannon–Wiener and
Simpson indices of the bacterial community were negatively related to BP in no-tillage
reseeding and fertilization (Figure 4D).
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Figure 3. Effects of main land-use types on ecosystem functions. (A), soil fertility maintenance;
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3.4. Relationship of Plant and Microbial Diversity with Ecosystem Multifunctionality

Possible relationships between plant diversity, microbial diversity, and ecosystem
multifunctionality were further uncovered based on linear regression analysis (Figures 5
and 6). The linear regression analysis showed significant positive relationships between
Margalef, Shannon–Wiener, and Simpson indices of plant community and ecosystem
multifunctionality (p < 0.05) (Figure 5A,C,D). Overall, ecosystem multifunctionality varied
with plant diversity. When evaluating the relationship between microbial diversity and
ecosystem multifunctionality, we observed ecosystem multifunctionality was positively
related to Pielou, Shannon–Wiener, and Simpson indices of the fungal community (p < 0.05)
(Figure 6B–D). In addition, ecosystem multifunctionality was positively related to Pielou
and Shannon–Wiener indices of bacterial community (p < 0.05). The Chao1 and Simpson
indices of the bacterial community had significant positive relationships with ecosystem
multifunctionality in CK (p < 0.05).
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4. Discussion
4.1. Response of Plant Diversity, Microbial Diversity to No-Tillage Reseeding and Fertilization

How plant and microbial community diversity changes during no-tillage reseeding
and fertilization is critical to maintaining sustainable ecosystem development. Our results
showed that plant diversity increased significantly in no-tillage reseeding and fertilization.
Consistent with other studies [30,31], the increase in Margalef index was mainly because
no-tillage reseeding added new grass species, broke the ecological niche of original species,
and changed the spatial pattern of plant community, increasing the number of species
and making the community composition relatively complex. The Shannon–Wiener and
Simpson indices of the plant community increased in no-tillage reseeding and fertilization,
which could be explained by the reseeded plants. In detail, the reseeded plants were more
adaptable and grew well because they were native grasses in Qinghai Province [32]. In
addition, Chen et al. [33] showed that fertilizer application can increase the soil nutrient
content in grassland, thus promoting the rhizosphere environment and improving the
survival rate and diversity of crops [34].

Microbes are the main decomposers of organic matter and play an important role in
the ecosystem nutrient cycle. Previous studies have reported that bacteria are the main
component of the soil microbial community in artificial grassland [35,36], which was
consistent with our results. The fungal diversity indices were higher in no-tillage reseeding
and fertilization than in the control check. This could be because soil microbial community
structure was affected by restoration of alpine grasslands, and the fungal community was
more sensitive to grassland succession than the bacterial community [37]. Moreover, plant
diversity had significant positive correlations with most of the microbial diversity indices
in our study. The growth of plants might promote the accumulation of litter and sufficient
nutrients in the soil, which provides more nutrient resources to soil microbes [38,39].

4.2. Response of Soil Microbial Community Composition to No-Tillage Reseeding and Fertilization

Fungal communities were overwhelmingly dominated by Ascomycota and Basid-
iomycota. Ascomycota and Basidiomycota were the predominant fungal phylum, playing
an important role in the lignin decomposition process and nutrient cycles [40]. The finding
was consistent with Rong et al. [41]. The relative abundance of Ascomycota increased in
the control check. This observation could be explained by the Ascomycota’s physiologi-
cal ability to break down the biochemical structure of plant litter in the degraded alpine
steppes [42]. Moreover, Kickxellomycota and Zoopagomycota only existed in control check,
which might be due to the soil available nutrients and water content changed in no-tillage
reseeding and fertilization, resulting in a change in the soil pH; changes in these soil indices
might reduce the importance of certain fungal community in the nutrient uptake process of
the plant, resulting in plant response to fungal changes in community composition [43,44].
The change in Proteobacteria may be because the bacteria involved in the nitrogen cy-
cle were increased categories would vary depending on the habitat, and their relative
abundance might also have a relationship with the surrounding environmental condi-
tions [45]. However, the denitrification dominated by Chloroflexi likely caused the loss of
nitrogen nutrients in the soil and accelerated grassland degradation; therefore, Chloroflexi
was more abundant in degraded grassland [46]. Meanwhile, the relative abundance of
Solirubrobacter, Pseudonocardia, Microvirga, and KD4-96 in Actinobacteria varied greatly
between different treatments. These dominant bacteria are Gram-positive bacteria that
have good adaptability to soil properties and vegetation changes in no-tillage reseeding
and fertilization.

4.3. No-Tillage Reseeding and Fertilization Impacts on Ecosystem Functions and
Multifunctionality

Soil, as the basis for a plant’s survival, affects the composition of the plant commu-
nity and the structure and function of the ecosystem [47]. Our study showed that the
application of organic fertilizer was beneficial to increasing the OC content and promoting
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plant growth, which was consistent with the results of other studies [19,48]. Meanwhile,
the dense vegetation growth and high plant diversity developed in the alpine grassland
after no-tillage reseeding could reduce the rate of soil erosion caused by wind and water
while increasing the sequestration of carbon [49]. Wang et al. [50] found that fertilization
increased the content of plant roots and root exudates and increased the TN content in soil,
which is consistent with our findings. The study areas of control check were degraded,
and the above-ground vegetation coverage and biomass were decreased, resulting in the
protective effect on soil particles also diminishing. Consequently, the impact of wind ero-
sion gradually rose, which led to a reduction in the TP content [51]. Our results indicated
moderate jamming facilitated the compensatory growth of plants, which accelerated the
mineralization rate of carbon, nitrogen, and phosphorus in the soil, thus increasing AP
and AN. This implication agrees with the conclusions made by Shao et al. [52]. The indices
for the SWC and CP were increased in no-tillage reseeding and fertilization, which were
consistent with the data obtained by Ji et al. [53] because no-tillage reseeding disturbed the
surface of the soil, resulting in reduced soil compactness and enhanced capillary porosity.
Huo et al. [54] found, in the study of alkali–saline in Jingyuan County, Gansu Province, that
adding organic fertilizer could significantly improve soil physical properties, reduced soil
bulk density, and increased soil total porosity. At the same time, plant diversity rose after
reseeding, reducing the area of exposed soil as well as causing the loss of surface soil water
from evaporation. Moreover, pH and BP, which are related to nutrient transformation and
cycling, differed between treatments. Notably, pH decreased during no-tillage reseeding,
which is consistent with the results recorded by Li et al. [55] regarding the influence of
global conservation tillage on pH. Hong et al. [56] also found that the soil pH treated with
organic fertilizer showed a downward trend. BP in no-tillage reseeding and fertilization
areas was higher, which was beneficial to the growth of plant roots. This study’s findings
showed there were no differences in soil fertility, water content, nutrient conversion, and
ecosystem multifunctionality. The calculation method used here may weaken the effect of
no-tillage reseeding and fertilization on soil single functions, resulting in nonsignificant
changes to the ecosystem [57].

4.4. The Roles of Plant and Microbial Diversity in Mediating Ecosystem Functions
and Multifunctionality

Some surveys have posited that ecosystem functions expand with increasing species
diversity [58]. From our study, it was concluded the ecosystem functions of soil water,
fertilizer, gas, and heat had different correlations with species diversity depending on
treatment. There was a strong correlation between plant diversity in the control check
and functional indices related to soil fertility, but not with those related to either water
conservation or nutrient transformation and cycling. This might be because plant commu-
nities with higher species diversity tend to also have higher productivity and increase the
input of rhizosphere microbial carbon sources [59]. By contrast, plant diversity in no-tillage
reseeding and fertilization areas was positively correlated with pH, CP, and SWC. This
meant plant diversity in degraded alpine grasslands was easily restricted by soil water and
nutrient functional indices, resulting in limited plant growth and development, species
settlement, and colonization [24,60]. Published work has observed that not only is microbial
diversity related to community productivity and stability, but also to soil functions [61,62].
Our analysis led to the conclusion that microbial diversity is closely interrelated with the
physical and chemical properties of soil, which was consistent with conclusions made in
other studies [63–65]. Experimental data showed soil functions played a role in affecting the
microbial community related to soil fertility, which agrees with the work of Luo et al. [66],
who reported microbial participation in multiple ecosystem functions when influenced by
global changes.

Except for the direct effect on ecosystem functions, no-tillage reseeding and fertiliza-
tion also mediate ecosystem multifunctionality by affecting plant and microbial diversity. In
this study, the plant diversity indices were positively correlated with ecosystem multifunc-
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tionality in no-tillage reseeding and fertilization. It was necessary to pay attention to plant
diversity because the positive correlation between this property and multifunctionality was
also confirmed in temperate grassland, microbial, and aquatic communities [67]. Ecosystem
multifunctionality of the alpine grassland ecosystem was predominantly affected by the
abundance and uniformity of the plant community after reseeding and fertilization. This
might have been caused by the community with more species possessing different ecolog-
ical niches when using limited resources, and the uniform distribution of species could
make the complementary use of resources more reasonable, thus enhancing ecosystem
multifunctionality [61]. However, when microbial diversity indices were considered, the
Shannon–Wiener and Pielou indices of the microbial community were positively correlated
with ecosystem multifunctionality, which was consistent with other studies [28,68]. This
could be attributed to the fact that richer microbial diversity promoted the decomposition
rate of waste material, increased soil organic matter content and microbial activity, and
accelerated organic decomposition and nutrient accumulation [69]. The Pielou index is
often neglected, but in our study, the Pielou index was considered to be critical for main-
taining ecosystem multifunctionality, and microbes contributed to the improvement of
soil physicochemical properties through the rational use of spatial distribution patterns
and changing the distribution of resources. Meanwhile, the Simpson index of fungal
community and Chao1 index of bacterial community were both positively correlated with
ecosystem multifunctionality in the control treatment. This relationship implies the number
of dominant species in the fungal and bacterial communities in alpine degraded grasslands
is a key limiting factor affecting ecosystem functions and stability.

5. Conclusions

No-tillage reseeding and fertilization significantly improved the diversity of plant
species and fungal communities, as well as the ecosystem functions of degraded alpine
grasslands. These effects indicate a positive contribution to the soil environment and grass-
land plant community of such regions, which can arise from a reasonable improvement
from reseeding and fertilizer. Although environmental factors did not directly affect ecosys-
tem multifunctionality, they could do so indirectly by influencing species diversity indices.
In the field of ecosystem management, the results of this study can provide a reference
for biodiversity conservation and measures to improve ecosystem multifunctionality by
regulating biodiversity in degraded alpine grasslands in Qinghai province.
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