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Abstract: Accompanied by China’s rapid economic growth, significant urban greening has occurred
in Chinese cities, in particular in the urban core areas. In contrast, rapid urbanization and economic
growth also led to a high probability of vegetation degradation in urban fringe regions. However,
these significant spatial differences in urban greenness associated with economic growth in Chinese
cities are not well understood. This study explored the spatiotemporal characteristics of the nighttime
light (NTL) and annual maximum enhanced vegetation index (EVImax) in urban areas from 2001 to
2020. A strong decoupling status between economic growth and urban greenness on the national scale
was found. Overall, 49.15% of urban areas showed a decoupling status. Spatially, this percentage
of urban areas with a decoupling status would significantly decrease when the long-term average
NTL surpasses 51. Moreover, this significant threshold of decoupling status was found in 189 cities
out of 344 (54.65%) in China. This threshold in each city showed significant spatial heterogeneity
but can mostly be attributed to the gradient in the long-term average precipitation (Pmean) of each
city during the period of 2001–2020. Specifically, a spatial increase in Pmean of 100 mm responded
to a decrease in the threshold of 0.4 DN (p < 0.01). In contrast, there was no significant correlation
between the threshold and the economic growth status of each city. Our results provide valuable
insights for coordinating the development of urban greening and economic growth.

Keywords: urban ecosystems; economic growth; urban greening; decoupling relationship; threshold
effects; nighttime light; climate change

1. Introduction

Urbanization is a complex and multifaceted process involving demographic, economic,
and environmental processes. At present, China’s urbanization has become a notable global
event, regarded as one of the two key factors deeply influencing urban sustainable develop-
ment in the 21st century [1–3]. Risk from urban environmental pollution and degradation
is becoming an explicit threat to human health because of rapid economic growth and
urbanization [4,5]. Moreover, much of the literature has also shown that economic devel-
opment improves urban greening [6–9]. These complexities of the economy–environment
relationship in urban areas are compromising the goal of sustainable urbanization [10–12].
However, few studies have examined these complexities of economy–environment dynam-
ics because of the different levels of socioeconomic development and green space.

Economic growth contributes to the goals of achieving sustainable urban development.
Hence, obtaining accurate information on the spatial dimensions of economic activities
is important for understanding the urban economic status. The statistical data, however,
only provide numeric records for specific administrative regions and the accurate spatial
distribution of economic status only in urban areas. Fortunately, nighttime light data
(NTL) provide a spatial insight into the intensity of artificial light at night on the Earth’s
surface and are widely used to monitor various variables, including urbanization, density,
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and economic growth [13,14]. Many studies have shown that the NTL can provide us
with effective proxy measures of spatially explicit dynamics of economic activity in urban
areas [14–16]. For example, Shi et al. [17] showed that the NTL data can be a powerful tool
for modeling socioeconomic indicators. More recently, Chen et al. [18] calculated a global
1 km× 1 km gridded revised real GDP based on calibrated nighttime light data. Therefore,
we employed the NTL to monitor economic growth in urban areas in China.

As a major part of sustainable urban development, vegetation plays an important role
in providing ecological services in urban areas [7,19–21]. Previous studies have shown
that two major driving factors affect vegetation dynamics in urban areas [19,22,23]. Firstly,
climate factors such as temperature and precipitation provide the necessary conditions
for vegetation growth [22,24,25]. Meanwhile, economic growth or human activities also
influence essential ecosystem functions, which are also regarded as an important driver of
vegetation dynamics in urban areas [26–28]. In recent decades, a large amount of resources
were invested to improve the urban environment in China [29,30]. As a result, prevalent
vegetation greening was observed in urban environments, particularly in the urban core
areas [7,22,31–33]. For example. Li, Wu, Liang, and Li [22] found that urban areas with
greening trends account for about 63% of the Yangtze River Delta. Sun, Chen, Li, and
Huang [7] also showed that China accounts for 32% of greening of built-up areas in 841 large
cities globally. In contrast, previous studies demonstrated that economic growth and rapid
urbanization also induced vegetation degradation in surrounding urban areas [27,28,34–36].
This ecosystem degradation resulting from economic growth and urbanization is still an
obvious threat to urban sustainable development [11].

To address the insufficiencies mentioned above, the relationships between economic
growth and vegetation dynamics showed significant spatial differentiation in the urban
core and fringe areas. Moreover, due to the different levels of socioeconomic development,
the spatial differentiation within the city is uneven across different cities in China [6,7].
Although the characteristics of urban green spaces were explored in many previous stud-
ies, including their abundance, spatial distribution, vegetation dynamics, gross primary
production, etc. [31,33,37,38]. The possible spatial thresholds of the different relationships
between economic growth and greenness in the urban core and fringe areas have rarely
been considered. More importantly, the uneven spatial heterogeneity of this possible thresh-
old across different cities and its responses to economic factors or climate change remain
largely unclear. Hence, our work was mainly focused on the following questions to fill
this knowledge gap: (1) What are the possible relationships between economic growth and
urban greenness? (2) Is there a threshold that can characterize the different relationships be-
tween economic growth and greenness in different urban areas? (3) Can economic growth
influence this threshold? Understanding the mechanisms of vegetation growth and its
relationships with economic growth in urban areas is essential for maintaining ecological
service functions and promoting sustainable urban development. Our quantitative study
of the underlying relationships between economic growth and urban greenness could be
vital to achieving sustainable urban development.

2. Materials and Methods
2.1. Study Area

The spatiotemporal variations of economic growth and greenness in urban areas and
their possible relationships were analyzed in 344 prefecture-level cities in China (Figure 1).
In addition, three typical mega-urban agglomerations were selected for further analysis
of the spatiotemporal heterogeneity of economic growth and urban greenness. As the
three biggest urban agglomeration areas of China, although rapid economic growth and
urbanization have been found in these urban agglomerations, some studies have shown
that the vegetation dynamics in these urban agglomerations are different [7,22]. Hence, the
different characteristics and relationships between economic growth and urban greenness
were analyzed in these three urban agglomerations.
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Figure 1. The study area and the spatial distribution of three urban agglomerations in China.

2.2. Urban Areas Extraction

We extracted the urban areas in each city from the International Geosphere-Biosphere
Programme (IGBP) classification type dataset at a 500 m spatial resolution, which was
provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover
type product (MCD12Q1) [39]. To reduce the spurious land cover changes caused by
classification uncertainty in each year, this dataset incorporates hidden Markov models
and a state-space multitemporal modeling framework. Eventually, pixels with at least 30%
impervious surface area were classified as urban and built-up land. Moreover, to avoid the
possible decrease in greenness caused by land use changes in expanding urban areas, we
only studied the areas in each city that had been converted to urban areas before 2001. The
interannual variability of the economic growth and vegetation dynamics during the period
2001–2020 and their relationships were identified in these urban areas.

2.3. The Nighttime Lights of Urban Areas

The nighttime light data (NTL) provided a unique spatial insight into the intensity of
artificial lights, and they are widely used to monitor economic growth in urban areas. In
this study, a harmonized nighttime light dataset with digital numbers (DN) ranging from 0
to 63 at a 30-arc-second spatial resolution was used as the economic growth indicator [40].
Furthermore, pixels in urban areas with DN values below 10 were excluded due to their
uncertainties. To match the spatial resolution of urban area data, these harmonized NTL
time series data were resampled to a spatial resolution of 500 m in ArcGIS software. Firstly,
the trend of NTL values in each pixel was calculated to analyze its relationship with urban
greenness. Furthermore, the mean NTL in each pixel during the period of 2001–2020 was
calculated. The mean NTL in each pixel was used as the indicator to predict the thresholds
of the decoupling relationship in each city. Finally, the long-term average NTL in all
pixels in urban areas (NTLmean) in each city over 2001–2020 was calculated to indicate the
economic factor of the city.
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2.4. Vegetation Index Data

The enhanced vegetation index (EVI) obtained from MOD13A1 version 6.1 at 500-m
spatial resolution and a 16-day temporal resolution from 2002 to 2020 was used in our
study [41]. EVI has been found to be one of the best indicators of vegetation status in
urban areas because of its greater sensitivity and partial elimination of the effect of canopy
background in many studies [7,33,42,43]. To avoid the influence of vegetation phenology,
the annual maximum EVI (EVImax) generated from this annual EVI time series was used to
indicate urban greenness.

2.5. Climate Data

The gridded temperature and precipitation datasets with 1 km resolution from 2001 to
2020 were obtained from the Science Data Bank [44] and the National Tibetan Plateau Data
Center [45], respectively. Similarly, these datasets were resampled to a spatial resolution of
500 m to match the spatial resolution of urban area data in ArcGIS software. The long-term
average temperature (Tmean) and precipitation (Pmean) in all urban areas in each city during
the period of 2001–2020 were calculated as the climate factors of each city.

2.6. Defining Decoupling Relationship between NTL and EVImax

The conclusion that economic development results in changes in vegetation dynam-
ics are widely accepted. In the context of urban ecological civilization construction in
China, urban greening is closely related to economic growth, as cities with high economic
growth often prioritize the improvement of the living environment by creating green
spaces [6,46–48]. However, some cities also experienced a high probability of vegetation
degradation because of the rapid economic growth [22,47]. In our study, this relationship
between vegetation degradation and economic growth in urban areas was defined as the
decoupling relationship. Based on the decoupling index between two indicators [49,50], the
different characteristics and relationships between NTL and EVImax in each pixel in urban
areas were calculated according to their interannual trends during the period of 2001–2020.
The specific classification and logic possibilities are summarized in Table 1.

Table 1. Classification of relationships between nighttime lights (NTL) and annual maximum EVI
(EVImax).

Pattern Types Status Trend of NTL Trend of EVImax

I Decoupling

Strong decoupling SigInc SigDec
Weak decoupling SigInc NsigDec
Weak decoupling NsigInc SigDec
Weak decoupling NsigInc NsigDec

II Coupling

Strong coupling SigInc SigInc
Weak coupling SigInc NsigInc
Weak coupling NsigInc SigInc
Weak coupling NsigInc NsigInc

III
Negative

decoupling

Strong negative decoupling SigDec SigInc
Weak negative decoupling SigDec NsigInc
Weak negative decoupling NsigDec SigInc
Weak negative decoupling NsigDec NsigInc

IV
Negative
Coupling

Strong negative coupling SigDec SigDec
Weak negative coupling SigDec NsigDec
Weak negative coupling NsigDec SigDec
Weak negative coupling NsigDec NsigDec

SigDec and SigInc indicate a significant decreasing or increasing trend (p < 0.05). NSigDec and NSigInc indicate
nonsignificant decreasing and increasing trends (p > 0.05), respectively.
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2.7. The Threshold Detection and Its Responses to Each Factor

A piecewise linear regression method was used to quantitatively detect the potential
turning point (TP) of economic growth [51].

y =

{
β1x + β0 + ε x ≤ α

β1x + β2(x − α) + β0 + ε x > α
(1)

where y is the percentage of urban areas; x is the long-term average NTL value during
the period of 2001–2020; α is the estimated TP of the average NTL; β0, β1, and β2 are the
regression coefficients; and ε is the residual. The linear trends before and after TP are β1
and (β1 + β2), respectively. This piecewise fitting is obtained optimally when the residual
sum of squares is minimized [52,53]. All statistical analyses were performed in R version
4.1.2 [54].

In summary, the threshold of the decoupling relationship between NTL and EVImax
was first identified along the urban spatial gradient, with different NTL values in each city.
In addition, to understand the spatial heterogeneity of the threshold and its response to
each factor, we performed a temporal partial correlation analysis and a linear regression,
in which the threshold of each city was set as the dependent variable and the long-term
average NTL (NTLmean), temperature (Tmean), and precipitation (Pmean) in all urban pixels
in each city were set as independent indicators.

3. Results
3.1. Decoupling Relationship between NTL and EVImax

A major factor contributing to the improvement of urban vegetation was economic
growth. Unfortunately, although the mean NTL in urban areas increased strongly, the
mean EVImax showed a decreasing trend. Specifically, the mean NTL in all urban areas in
China increased strongly from 2001 to 2020, with an increasing trend of 0.35 DN year−1

(p < 0.01), while the mean EVImax in all urban areas in China showed a significant decreasing
trend, with the mean EVImax decreasing by 0.6 × 10−3 per year (p < 0.01) (Figure 2). These
contrasting interannual variabilities of the mean NTL and the mean EVImax indicated a
strong decoupling status between economic growth and urban greenness. Moreover, this
decoupling status between economic growth and urban greenness was also found in each
city and urban agglomeration (Figure 3).
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pattern of the different relationships between nighttime lights (NTL) and annual maximum EVI
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Pearl River Delta urban (PRD) agglomerations. I indicates a decoupling status, II indicates a coupling
status, III indicates a negative decoupling status, and IV indicates a negative coupling status.

At the national level, 49.15% of pixels in urban areas showed a decoupling status, and
22.96% of urban areas showed a strong decoupling status. In contrast, 38.60% of pixels
in urban areas showed a coupling status, while only 13.99% of pixels showed a strong
coupling status. The percentage of urban areas with decoupling status in each city is shown
in Figure 3. More than 60% of urban areas have a decoupling status in 107 cities out of
344 (31.10%). Moreover, we found that the decoupling status in urban areas in different
mega-urban agglomerations clearly showed spatial heterogeneity and aggregation effects.
Specifically, only 15.46% of pixels showed a coupling status, usually located in the core
of central urban areas. Meanwhile, 41.28% of pixels showed a decoupling status, mainly
located in the surrounding urban areas (Figure 3). This high percentage of urban areas
with a decoupling status was also found in the BTH agglomeration. From the spatial
pattern of the different relationships between NTL and EVImax in urban areas, we found
that many cities are shaped as a “fried egg”. The economic growth and the urban greenness
in “yolk-shaped” urban core areas showed coupling status, while more pixels displayed a
decoupling status in urban fringe “egg white” areas.

3.2. Thresholds of Decoupling Status

The different relationships between NTL and EVImax in different urban areas implied
a possible threshold, which can explain the “fried egg” phenomenon. Hence, we assume
that when NTL reaches a certain extent, the percentage of urban areas with decoupling
status will begin to rapidly decline. In actuality, we found that the spatial pattern of
the decoupling status between NTL and EVImax was strongly affected by the long-term
average NTL (Figure 4). Specifically, the percentage of urban areas with a decoupling status
(Pattern I, pixels with increasing NTL but decreasing EVImax) was significantly increased
by 0.92% DN−1 (p < 0.01) in the interval where the NTL value was less than 51. Afterward,
the percentage of urban areas with a decoupling status decreased sharply, with a slope of
−3.67% DN−1 (p < 0.01). That is, the percentage of urban areas with a decoupling status
increased with the economic growth in the urban areas with a less-developed economic



Land 2023, 12, 614 7 of 14

status. Moreover, this significant threshold effect indicated that the decoupling status
between economic growth and urban greenness would be gradually relieved and may even
be achieved simultaneously under good economic conditions. The lower the threshold, the
higher the possibility of a positive synergy between economic growth and urban greenness.
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mean NTL during the period of 2001–2020 in China. The solid line represents the linear regression of
the percentage to mean NTL before and after the turning point (TP). The shaded area represents the
95% confidence interval, and the slope is derived from linear regression before and after the turning
point, respectively. The black dashed line indicates the TP. The potential turning point was detected
by the piecewise linear regression. The p value denotes significance. The inset is similar, but for the
percentage of urban areas with a strong decoupling status.

Based on the piecewise linear regression method, the threshold of the decoupling
status between NTL and EVImax was detected in each city (Figure 5). The threshold was
found in 189 cities out of 344 (54.65%), which were mostly located in the eastern half of the
country. Overall, the thresholds of decoupling status in most cities were greater than 40.
Spatially, the thresholds in 103 cities out of 189 (54.49%) were greater than 50. In contrast,
only 2.11% of cities had a threshold of less than 40. This low threshold was mostly found in
the developed cities of China. For example, the threshold of decoupling status between
NTL and EVImax in Beijing, Shanghai, and Hangzhou was 27, 41, and 35, respectively.

Land 2023, 12, x FOR PEER REVIEW 8 of 15 
 

 
Figure 5. The threshold of decoupling status in each city. BTH denotes Beijing–Tianjin–Hebei, YRD 
denotes the Yangtze River Delta, and PRD denotes the Pearl River Delta. 

3.3. Responses of the Threshold to Climate and Economic Factors 
Spatially, the threshold of decoupling status in each city was lower in the wetter areas 

of China (Figure 5). We found that the threshold of decoupling status was negatively cor-
related with Pmean in each city on the national scale, with a partial correlation coefficient of 
−0.27 (p < 0.01) (Table 2). In contrast, there was no significant correlation between the 
threshold of decoupling status and the NTLmean or Tmean in each city (p > 0.10). The sensi-
tivity of the threshold of decoupling status to each factor further showed a stronger impact 
of Pmean on the threshold of decoupling status than NTLmean and Tmean. The sensitivity of the 
threshold of decoupling status to Pmean was −0.004 DN mm−1 (p < 0.01) on the national scale. 
In addition, we also performed partial correlation analyses and calculated the sensitivity 
of the threshold of decoupling status to each factor in three urban agglomerations. This 
significant correlation between the threshold of decoupling status and Pmean was also 
found in YRD, with a partial correlation coefficient of −0.40 (p < 0.01) and a sensitivity of 
−0.002 DN mm−1 (p < 0.01). Unfortunately, this significant partial correlation coefficient 
between the threshold of decoupling status and Pmean was not observed in BTH and PRD. 
The low number of cities with a threshold of decoupling status in these two urban ag-
glomerations may obscure this relevance. 

Table 2. The impacts of Tmean, Pmean, and NTLmean on the threshold of decoupling status. 

  Tmean Pmean NTLmean 
Partial correlation coeffi-

cient between threshold of 
decoupling status and each 

factor 

China 0.030 −0.270 ** −0.060 
BTH 0.140 −0.140 −0.440 
YRD 0.200 −0.400 * −0.200 
PRD −0.060 −0.050 −0.200 

Sensitivity of threshold of 
decoupling status to each 

factor 

China 0.050 −0.004 ** −0.040 
BTH 0.650 −0.030 −0.500 
YRD 2.180 −0.020 * −0.120 
PRD −2.300 0.0040 −0.200 

Figure 5. The threshold of decoupling status in each city. BTH denotes Beijing–Tianjin–Hebei, YRD
denotes the Yangtze River Delta, and PRD denotes the Pearl River Delta.
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3.3. Responses of the Threshold to Climate and Economic Factors

Spatially, the threshold of decoupling status in each city was lower in the wetter areas
of China (Figure 5). We found that the threshold of decoupling status was negatively
correlated with Pmean in each city on the national scale, with a partial correlation coefficient
of −0.27 (p < 0.01) (Table 2). In contrast, there was no significant correlation between
the threshold of decoupling status and the NTLmean or Tmean in each city (p > 0.10). The
sensitivity of the threshold of decoupling status to each factor further showed a stronger
impact of Pmean on the threshold of decoupling status than NTLmean and Tmean. The sen-
sitivity of the threshold of decoupling status to Pmean was −0.004 DN mm−1 (p < 0.01)
on the national scale. In addition, we also performed partial correlation analyses and
calculated the sensitivity of the threshold of decoupling status to each factor in three urban
agglomerations. This significant correlation between the threshold of decoupling status and
Pmean was also found in YRD, with a partial correlation coefficient of −0.40 (p < 0.01) and a
sensitivity of −0.002 DN mm−1 (p < 0.01). Unfortunately, this significant partial correlation
coefficient between the threshold of decoupling status and Pmean was not observed in BTH
and PRD. The low number of cities with a threshold of decoupling status in these two
urban agglomerations may obscure this relevance.

The long-term average precipitation gradient in each city can fully explain the spatial
heterogeneities at the threshold of decoupling status (Figure 6). Based on the threshold
averaged from each 100-mm bin of Pmean, a 100-mm increase in Pmean responded to a
decrease in the threshold of decoupling status of 0.4 DN (p < 0.01). Moreover, the spatial
correlation between the threshold of decoupling status and the Pmean in all cities with a
threshold of decoupling status was explored (Figure 6, inset). There was also a significant
negative spatial correlation between the threshold of decoupling status and Pmean (R = 0.44,
p < 0.01).
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Figure 6. Variations in thresholds of decoupling status along the spatial gradient of long-term average
annual accumulated precipitation in all urban areas in each city (Pmean) from 2001 to 2020. Points
show the threshold of decoupling status averaged from cities for each 100 mm bin of Pmean. Error
bars indicate the standard error of the mean (SEM). The solid line represents the linear regression
of the mean threshold to Pmean, and the shaded area represents the 95% confidence interval. The
p value denotes significance. The inset shows the spatial correlation coefficient between thresholds of
decoupling status and Pmean in all cities. ** indicates significance of p < 0.01.
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Table 2. The impacts of Tmean, Pmean, and NTLmean on the threshold of decoupling status.

Tmean Pmean NTLmean

Partial correlation coefficient
between threshold of decoupling

status and each factor

China 0.030 −0.270 ** −0.060
BTH 0.140 −0.140 −0.440
YRD 0.200 −0.400 * −0.200
PRD −0.060 −0.050 −0.200

Sensitivity of threshold of
decoupling status to each factor

China 0.050 −0.004 ** −0.040
BTH 0.650 −0.030 −0.500
YRD 2.180 −0.020 * −0.120
PRD −2.300 0.0040 −0.200

The symbols ** and * indicate significance levels of p < 0.05 and p < 0.01, respectively. NTLmean, Tmean, and Pmean
indicate the long-term average NTL, temperature, and precipitation in all urban areas in each city during the
period of 2001–2020. BTH denotes Beijing-Tianjin-Hebei, YRD denotes the Yangtze River Delta, and PRD denotes
the Pearl River Delta.

4. Discussion
4.1. Threshold Effect of Decoupling Status

At the pixel levels, 49.15% of urban areas showed a decoupling status between eco-
nomic growth and urban greenness, and 22.96% of urban areas showed a strong decoupling
status. In contrast, 38.60% of pixels in the urban areas showed a coupling status. Similarly,
some studies also found that this greening and browning of vegetation with rapid economic
growth coexisted in the different urban areas [7,9,22,55].

Spatially, areas with this coupling status were mainly found in the core of urban
areas (Figure 3 inset). This positive synergy between NTL and EVImax matches previous
studies that found longer growing seasons and greening changes in the core of the central
urban areas compared to their surrounding areas [7,18,22,43,56,57]. China has invested a
great deal of resources to improve the urban environment [29,30]. Hence, obvious spatial
variation was found regarding the influence of economic factors on urban greening [6,7,22].
In urban core areas with higher economic prosperity, urban vegetation protection and
afforestation were given more attention and management by the local government. Any
newly constructed park or green space, as well as the growth of street vegetation, can
promote vegetation growth [7,33,58]. In contrast, rapid economic and demographic growth
was accompanied by high energy demand and environmental pollution, which indirectly
contributed to deforestation in the surrounding urban areas [22,59].

In summary, these differing relationships between NTL and EVImax in different urban
areas implied the possible threshold effect; that is, only when NTL reaches a certain extent,
does the percentage of urban areas with a strong decoupling status begin to rapidly decline.
In this case, the decoupling status between economic growth and urban greenness would
be gradually relieved and may even be achieved simultaneously under good economic
conditions. Under these good economic conditions, the demand for a high-quality living
environment and services is stimulated, in particular, a greater quantity and higher quality
of urban greenness [11,22,60]. In contrast, before economic conditions reach this threshold,
the degradation of the urban ecosystem caused by economic growth will still be a major
impediment to sustainable urban development.

4.2. The Drivers of the Threshold of Decoupling Status

Spatially, the threshold of decoupling status in each city was lower in southeastern
China (Figure 5). Similarly, Li, Wang, Liu, Li, Zhang, Sun, and Wang [6] showed that the
cities showed less socioeconomic development in the northwestern region and had less
urban greening. Our results show that the threshold of decoupling status was negatively
correlated with long-term average annual accumulated precipitation (Pmean) in each city,
with a significant partial correlation coefficient and sensitivity on the national scale (Table 2).
In contrast, there was no significant correlation between the threshold of decoupling status
and the long-term average NTL (NTLmean) or temperature (Tmean) in each city. That is,
economic growth does not reduce the threshold of decoupling status and mitigate its decou-
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pling relationship with urban greenness in China. Although some studies demonstrated
that economic growth was a driver of vegetation dynamics by promoting effective green
strategies in urban areas [11,61–63], these positive synergies between economic growth
and urban greenness were only found in the urban core areas [7,32]. In contrast, frequent
economic activities caused the great degradation of areas in urban fringe regions [63,64].
Hence, economic growth does not reduce the threshold of decoupling status and mitigate
its decoupling relationship with urban greenness in all urban areas. Instead, the Pmean plays
a crucial role in reducing the threshold of decoupling status between NTL and EVImax. This
important influence of precipitation on vegetation dynamics in urban areas was also found
in some studies [22,65]. It has been shown that changes in precipitation have a profound
impact on vegetation growth in arid and semi-arid regions [65–68], because better thermal
and hydraulic conditions are likely to enhance the photosynthetic capacity of vegetation by
accelerating chemical reactions, which would improve the greenness [68,69]. Drought risks
resulting from climate change are intensifying in urban areas [70,71]. Consequently, the
higher Pmean in these relatively moist cities would promote vegetation growth in all urban
areas and reduce the threshold of decoupling status between NTL and EVImax, thereby
mitigating the decoupling relationship between economic growth and urban greenness.

4.3. Uncertainties and Further Studies

Based on the different trends of NTL and EVImax, the spatio-temporal relationship
between economic growth and vegetation dynamics was revealed in urban areas in China
during the period of 2001–2020. However, some studies showed that the sources of mea-
surement error and uncertainty about the NTL remain largely unclear [72–74]. Moreover,
some studies also showed their incompatibility with economic development in places
where lights react little to changes in economic activity [75,76]. Although an integrated and
consistent NTL dataset was used in our study, which harmonized the inter-calibrated NTL
observations, there is no way to exclude all noise caused by varying lighting sources [40].
Therefore, the influence of these uncertainties needs to be further mitigated with more
models. In addition, the vegetation dynamics were influenced by many other factors, for
example, CO2 fertilization [25], water availability [65], and other unstudied factors [22].
Hence, a more comprehensive analysis with more factors should be conducted to analyze
the complex and varying limitations on the threshold effect of decoupling status between
economic growth and urban greenness. Nevertheless, our present work found a significant
threshold effect of the decoupling status between economic growth and urban greenness,
found a stronger sensitivity of the threshold of decoupling status to long-term average
precipitation, and highlighted that economic growth does not mitigate its decoupling
relationship with urban greenness in China, which would provide a useful guideline
and valuable insights for coordinating the development of urban greening and economic
growth.

5. Conclusions

The nighttime light data (NTL) and annual maximum enhanced vegetation index
(EVImax) are widely regarded as effective indicators for monitoring economic growth and
greenness in urban areas. Based on the different trends of the NTL and EVImax, the spatio-
temporal relationship the economic growth and urban greenness was revealed during
the period of 2001–2020. As originally conceived for sustainability, economic growth is
an essential and important driver for achieving ecological sustainability. Unfortunately,
although the mean NTL in all urban areas in China increased strongly, with an increasing
trend of 0.35 DN year−1 (p < 0.01), the mean EVImax in all urban areas showed a decreasing
trend, with the mean EVImax decreasing by 0.6 × 10−3 per year (p < 0.01). These contrasting
interannual variabilities of the mean NTL and the mean EVImax indicated a decoupling
status between economic growth and vegetation dynamics in urban areas. Moreover, we
found that the decoupling status in urban areas in different mega-urban agglomerations
showed obvious spatial heterogeneity and aggregation effect. Specifically, only 15.46% of
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pixels showed coupling status, which is usually located in the urban core areas. At the
same time, 41.28% of pixels showed decoupling status, which was mainly located in the
urban fringe areas. To explore this spatial heterogeneity and aggregation effect, a piecewise
linear regression method was used to quantitatively detect the potential threshold. At the
national level, we found that the percentage of urban areas with decoupling status would
significantly decrease, with a slope of −3.67% DN-1 (p < 0.01), when the NTL surpasses 51
DN. Spatially, the long-term average precipitation in each city, rather than economic growth,
can fully explain the spatial heterogeneities of the threshold of decoupling. Specifically,
a spatial increase in Pmean of 100 mm responded to a decrease in the threshold of 0.4 DN
(p < 0.01). In contrast, there was no significant correlation between the threshold and the
economic growth status of each city.

Generally, the different relationships between economic growth and vegetation dy-
namics in urban areas play an important role in monitoring urban sustainable development.
However, the relationships between economic growth and vegetation dynamics showed
significant spatial differentiation in the urban core and fringe areas. We identified the
threshold that explains this spatial differentiation. This threshold in each city can be a valid
aid for policymakers in evaluating the level of urban ecological civilization construction
in each city. Furthermore, this study constitutes a valuable reference for coordinating the
development of urban greening and economic growth.
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