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Abstract: As decision-making tools helping to improve the understanding of soil quality, soil quality
assessment and heavy metal pollution assessment are very important for the remediation of heavy
metal soil pollution. In the past, soil quality and heavy metal pollution have been studied separately,
and few studies have combined them. The desert steppe in the Northwest Arid Region is an important
pasture resource in China, and its soil safety has always been the focus of attention. Therefore, to
understand the impact of tailing stockpiles on the soil quality of desert steppe, this study analyzed
18 indicators in the sample and analyzed the soil quality status of desert steppe based on the soil
quality index (SQI) and Nemerow pollution index (Pcom). The main conclusions are as follows.
(1) The evaluation results of heavy metal soil pollution show that the heavy metals Cu, Ni, Cr and
Cd are significant polluters, Mn is a moderate polluter and Zn is a slight polluter. The results of the
positive matrix factorization model show that Cu and Ni come from industrial sources; Cr, Cd and Zn
come from industrial and traffic sources; and Mn comes from natural sources. (2) Regarding the study
area, the generated minimum data set contains clay, pH, soil organic matter, available phosphorus,
urease and neutral phosphatase. (3) The results of the SQI show that the soil in the study area is
grade V (SQI-TDSave (total data set) = 0.42; SQI-MDSave (minimum data set) = 0.39), and the soil
condition is very poor. 4) The linear fitting results show that the SQI-MDS was positively correlated
with the SQI-TDS (R2 = 0.79), and SQI-MDS and SQI-TDS were negatively correlated with the Pcom

(R2 > 0.6). Therefore, the leakage of acid mine drainage from tailings pond accumulation has led
to a significant decline in the soil quality of this desert steppe, and effective ecological restoration
measures are urgently needed to ensure the sustainable stability of the steppe ecosystem.

Keywords: acid mine drainage; heavy metal pollution; soil quality evaluation; minimum data set;
desert steppe

1. Introduction

Mining can provide materials and energy for the production of large-scale global
market products, and promote the development of China’s economy [1,2]. However,
long-term large-scale mining activities not only cause local steppe degradation, vegetation
damage, soil erosion and surface subsidence but also produce a large amount of mine
waste, namely tailings [2]. According to statistics, there are about 12,000 tailings ponds in
China, with a total tailings accumulation of more than 10 billion tons and an annual growth
rate of 600 million tons [3]. Tailings ponds are a significant source of heavy metal pollution,
and the heavy metals contained therein can be directly released into the surrounding
environment through acid mine drainage leaks [4,5]. In some tailings ponds, curtain
grouting is implemented to stop acid mine drainage leakage, but due to deficiencies in
current curtain grouting technology, there is still a risk of acid mine wastewater leakage
from tailings ponds, which poses a serious threat to regional ecological safety [6]. With
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the transfer of China’s mining center from Central China to Northwest China, heavy
metal pollution caused by mining activities has further threatened the fragile desert steppe
ecosystem in Northwest China [7–9]. The increase in heavy metal pollution in soil will
lead to a decline in soil nutrients (total nitrogen, total phosphorus, available phosphorus,
etc.) and a decrease in soil enzyme activity, which will have a negative impact on soil
quality [10–12]. Xu et al. [9] showed that the higher the degree of heavy metal pollution,
the lower the soil quality of desert steppes. However, there are few studies on the response
of soil quality to heavy metal pollution in desert steppes in arid areas. Therefore, it is
necessary to further study the relationship between desert steppe soil quality and soil
heavy metal pollution, which is of great significance to understanding the changes in desert
steppe soil quality, preventing desert steppe soil degradation and conserving the desert
steppe ecosystem.

Soil quality is defined as the ability of a specific type of soil to function within the
boundaries of natural or managed ecosystems to maintain plant and animal productivity,
maintain or improve water and air quality, and support human health and habitation [13,14].
Soil quality affects the basic functions of soil, including soil water movement and plant
nutrient supply, nutrient cycling and resistance to organic and inorganic pollutants [15,16]. As
the most sensitive soil index, soil quality can effectively reveal the dynamics of soil conditions
to reflect the impact of natural factors and human activities on soil [17]. Effective evaluation
of soil quality can improve soil productivity, maintain soil sustainability and play a positive
role in promoting soil ecological balance and protecting human health [18]. At present, the
research on soil quality assessment is mainly focused on agricultural land [15,19,20]. There
are few soil quality assessments for desert steppe, and soil physical and chemical properties
are mainly selected as evaluation indicators [17,18], while biological characteristics indicators
are less frequently considered, especially soil enzyme activity [21,22].

Many methods and models are used to evaluate soil quality [19,22–24]. The soil
quality index (SQI) is a commonly used method that integrates different soil indicators
into a simplified format, giving it more advantages than other methods [25,26]. The SQI
evaluates a large number of physical, chemical and biological characteristics [27,28], but the
information contained in these data may have a lot of redundancy, and the determination
of a large number of indicators is expensive, so it is not feasible to take all indicators
into account [29]. Larson et al. [30] proposed a minimum data set (MDS), which can not
only reduce data redundancy but also generate a large amount of information with less
manpower and cost. In addition, using principal component analysis (PCA) to establish the
MDS can generate the weights of all indicators, avoiding the subjective impact of human
factors on the results of soil quality evaluation [31]. In conclusion, the purpose of this study
is to (1) establish an MDS with appropriate indicators for the evaluation of soil quality;
(2) understand the status of heavy metal pollution in soil and its sources and provide a
basis for the treatment of heavy metal pollution; and (3) explore the response relationship
between soil quality and heavy metal pollution.

2. Materials and Methods
2.1. Site Description and Soil Sampling

The research area is located in a copper-nickel mine tailings pond (86◦39′58′′ E,
46◦44′10′′ N) in the north of Xinjiang Province and the east of Fuyun County (Figure 1).
The arid and semiarid climate zone covering the temperate climate zone in the region
is mainly affected by the mid-latitude westerlies throughout the year and the Siberian
high-pressure system in winter [32–34]. The annual average temperature in this area is
4.1 °C, the annual average precipitation is 217.1 mm, the annual average relative humidity
is 58%, the annual average evaporation is 1743 mm and the altitude is 317–3863 m [33,35].
The deposits along the Fuyun fault consist mainly of Eocene conglomerates and sands and
Quaternary alluvium covering the Paleozoic metamorphic rocks and Mesozoic granitic
and sedimentary rocks, and the water system mainly includes two major water systems,
the Irtysh River and the Ulungur River, with an annual runoff of 4.35 × 109 m3 [35,36].
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The main soil types in the study area are chestnut soil and brown calcium soil [37]. The
most common plants are Seriphidium kaschgaricum (Krasch.) Poljak., Suaeda glauca (Bunge)
Bunge, Polygonum aviculare L. and Limonium sinense (Girard) Kuntze. Tailings pond dams
are mainly constructed using mine waste rock, and tailings sand is disposed of using the
traditional wet drainage method [38]. Because of ineffective curtain grouting technology,
the wastewater conveying tailings sand leaks continuously, and the mine waste rock used
for dam construction produces a large amount of AMD under the combined action of water,
air and microbial activities, which has a serious impact on the desert steppe and poses a
large ecological safety hazard. To carry out an ecological remediation test for heavy metals
in the soil in this AMD-contaminated area, we investigated and sampled the soil in the
remediation test area. The repair test area was located in the northwest of the tailings pond,
with an area of about 1 × 105 m2. The sampling method used was random sampling, and
the coordinates of the sample points were determined using a hand-held GPS instrument.
The sampling depth of soil samples was 0–20 cm, and there were 30 soil samples in total.
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2.2. Analysis of Soil Samples 

Figure 1. Study area and sampling points: (a) The location of Xinjiang in China; (b) The location of
Fuyun County in Xinjiang; (c) Distribution of sampling points; (d) Pictures of the contaminated area.
(The map is based on the standard map number GS (2016) 1666 downloaded from the standard map
service website of the National Bureau of Mapping Geographic Information, and the base map is not
modified. https://earthexplorer.usgs.gov/, accessed on 15 November 2022).

2.2. Analysis of Soil Samples

The soil samples were placed indoors for air drying. After removing gravel and plant
residues, they were ground and screened with 2 mm and 0.75 mm nylon sieves. The
percentage of clay, silt and sand in the soil was determined using a laser particle sizer [39].
Soil water content (SWC) was determined using a drying method [40]. The conductivity
(EC) of aqueous soil extract was measured with a conductivity meter [41]. The pH value
of aqueous soil extract was determined with a pH meter [42]. Soil organic matter (SOM)
was determined using the Walkley–Black method [43]. Total nitrogen (TN) was determined
using the Kjeldahl digestion method [44] and the alkaline hydrolysis diffusion method to
determine alkali-hydrolyzable nitrogen (AN) [45]. After digesting the sample, total phos-

https://earthexplorer.usgs.gov/
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phorus (TP) was determined via spectrophotometry [46]. Available phosphorus (AP) was
determined using 0.5 mol L−1 sodium bicarbonate solution and a spectrophotometer [46].
Total potassium (TK) was detected via sodium hydroxide melting flame photometry [47].
Available potassium (AK) can be determined using 1 mol L−1 ammonium acetate solution
and detection with a flame photometer [47]. The soil enzyme activity was determined
according to the method of Guan [48]. Urease (URE) was determined using sodium phenol
sodium hypochlorite colorimetry. Invertase (INV) was determined using 3,5-dinitrosalicylic
acid colorimetry. Neutral phosphatase (NPH) was determined using sodium phenylene
phosphate colorimetry. Polyphenol oxidase (PPO) and catalase (CAT) were determined
via iodometric titration. To determine the concentration of heavy metals, the soil samples
were completely digested with HNO3-HF-HCl (HNO3:HF:HCl = 3:1:1, volume ratio), and
the trace elements (Cu, Ni, Cr, Mn, Zn and Cd) were analyzed using ICP-OES, and a blank
control, duplicate samples and reference materials (GSS-25) were used for quality control.
The recovery extent of each element was between 92% and 104%, and the results met the
requirements of quality control.

2.3. Assessment of Soil Pollution
2.3.1. Single-Factor Pollution Index Method

The single-factor pollution index (Pi) most directly reflects the level of pollution from
environment indicators; the calculation formula is as follows [49,50]:

Pi = Ci/Si. (1)

Pi: single-component contamination index, Ci: measured concentration of examined metal
i in the soil and Si: background concentration of metal i. Because different soil parent mate-
rials occur in different regions, heavy metals have a high spatial heterogeneity. Therefore,
the background value of heavy metals in Xinjiang soil was selected as the standard value
in the assessment of soil heavy metal pollution in this study. The evaluation results are
divided into five grades: Pi ≤ 0.7, safe; 0.7 < Pi ≤ 1.0, warning; 1 < Pi ≤ 2, slight pollution;
2 < Pi ≤ 3, moderate pollution; and Pi > 3, heavy metal pollution.

2.3.2. Nemerow Comprehensive Pollution Index Method

The Nemerow composite index (Pcom) method not only takes into account all the
individual evaluation factors but also highlights the importance of the most contaminating
element. The calculation formula is as follows [50,51]:

Pcom =

√
P2

max + P2
ave

2
. (2)

Pcom: composite contamination index, Pave: average value of the single-factor index and
Pmax: maximum value of the single-factor index. The evaluation results are divided into
five grades: Pcom ≤ 0.7, safe; 0.7 < Pcom ≤ 1.0, warning; 1 < Pcom ≤ 2, light pollution;
2 < Pcom ≤ 3, moderate pollution; and Pcom > 3, heavy metal pollution.

2.4. Soil Quality Index Evaluation Method
2.4.1. Data Sets: Total and Minimum

First, the total data set (TDS) was established. In this study, a total of 18 soil physical,
chemical and biological indicators were selected. To eliminate the overlapping information
between the primary indicators, a correlation analysis of the evaluation indicators was
carried out, and the two indicators with the largest absolute values of the correlation coeffi-
cients were selected, leaving the indicators with a weak correlation with other indicators.
Second, the minimum data set (MDS) was established. The PCA method was selected for
grouping, and the soil evaluation index with a load ≥ 0.5 in the principal component with
a characteristic value ≥ 1 was selected to be divided into a group. For indicators that may
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enter different groups, a group with low correlation was selected [52]. The norm value of
the evaluation index is calculated as follows:

Nik =

√√√√ k

∑
i
(µik

2λk) (3)

where Nik represents the norm value of the first k principal components of the ith index
whose eigenvalue is greater than 1; µik represents the loading of the ith index on the kth
principal component and λk is the eigenvalue of the kth principal component.

2.4.2. Construction of the Soil Quality Scoring Model

After determining the indicators of the TDS and MDS, they were divided into “more
is better” and “less is better” according to their role in soil [24]. We used Equation (4) for
“more is better” and Equation (5) for “less is better.” The data of the selected indicator were
mapped to [0.1,1] using Equations (4) and (5).

s = 0.1 +
(

ai − ximin
ximax − ximin

)
∗ 0.9 (4)

s = 1.1−
[

0.1 +
(

ai − ximin
ximax − ximin

)
∗ 0.9

]
(5)

where s is the normalized score, ai is the optimal scaling quantification value of the ith

indicator and ximax and ximin are the maximum and minimum values of the ith indicator,
respectively. Combined with the previous research and the actual measurement of indica-
tors, in this study, Formula (5) was used to calculate the score for sand, silt and EC, and
Formula (4) was used for the rest of the indicators.

2.4.3. Evaluation of Index Weight and SQI Calculation

The SQI is a tool that effectively combines a variety of information to make a multi-
objective decision [53]. By calculating the weight and score of each soil quality evaluation
index, the index score is integrated into an equation, which is a comprehensive reflection of
soil function. The larger its value, the better the soil quality. The calculation formula for the
SQI is as follows:

SQI =
n

∑
i=1

Wi Ni (6)

where Wi represents the weight of the ith evaluation index, Ni is the membership value
of the ith evaluation index and n is the number of evaluation indexes. The soil quality is
divided into five grades: very high, high, moderate, low and very low (I, II, III, IV and V,
respectively) [54].

3. Results
3.1. Statistical Characteristics Analysis of Soil Properties

The heavy metal contents of the soil are shown in Table 1. The results show that
the average content of heavy metals in the soil in the study area followed the order of
(mg/kg) Mn (1525.96) > Ni (851.22) > Cr (752.55) > Cu (610.45) > Zn (97.12) > Cd (0.69),
all of which exceeded the background value of heavy metals in Xinjiang soil [55], and Ni
and Cu exceed by the highest multiples, at 31 times and 21 times, respectively. Taking the
national environmental quality standards for soil [56] as the reference criterion, the Ni, Cu,
Cr and Cd contents in the study area were found to exceed the standard by 20, 11, 4 and
1 times, respectively. The Zn content in the study area was lower than the national soil
environment class II standard. The coefficient of variation, from the largest to smallest,
followed the order Ni (55.19%) > Cu (46.17%) > Cd (32.75%) > Cr (26.16%) > Zn (18.05%) >
Mn (14.82%). It is worth noting that the coefficient of variation of heavy metals was less
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than 100%, or medium variation, indicating that the distribution of heavy metal content in
the study area is relatively uniform.

Table 1. Statistical characteristics of heavy metal content in soil (n = 30).

Item Ni Cu Cr Cd Zn Mn

Min (mg/kg) 337.19 289.60 431.26 0.30 70.69 1013.83
Max (mg/kg) 1904.88 1195.08 1013.83 0.99 139.46 1899.00

Mean (mg/kg) 851.22 610.45 752.55 0.69 97.12 1525.96
Standard Deviation 469.82 281.82 196.86 0.22 17.53 226.13

Coefficient of Variation (%) 55.19 46.17 26.16 32.75 18.05 14.82
BG1

a (mg/kg) 26.60 26.70 49.3 0.12 68.80 688
BG2

b (mg/kg) 40.00 50.00 150.00 0.30 200.00 -
a: BG1: background value of heavy metals in Xinjiang soil; b: BG2: national soil environment class II standard.

Table 2 shows the physical, chemical and biological properties and descriptive statistics
of the soil in the study area. Among the soil physical evaluation indexes, SWC was low,
with an average value of 5.56%. According to the American soil texture classification
standard [57], clay, silt and sand in the soil reached values of 6.56%, 79.13% and 14.31%,
respectively, and the soil type was silt. In terms of the soil chemical evaluation index, the
soil pH value varied from 4.19 to 7.81, with an average value of 6.48, which is weakly acidic.
Referring to the nutrient classification standard of the second national soil survey [2], the
contents of TP, TK and AK in the soil were found to be at the first level (TP: > 1 g/kg,
TK: > 5 g/kg, AK: > 200 mg/kg). The contents of SOM, TN, AN and AP were at the fourth
level (SOM: 10–20 g/kg, TN: 0.75–1 g/kg, AN: 60–90 mg/kg, AP: 5–10 mg/kg). In terms of
soil biological indicators, the range of URE was 0.06–1.46, with an average of 0.56; the INV
range was 0–0.06, and the mean value was 0.02; NPH ranged from 5.30 to 22.22, with an
average of 10.66; PPO ranged from 12.64 to 75.64, with an average of 42.76; CAT ranged
from 0.01 to 23.41, with an average of 9.49. The analysis of the coefficient of variation of
each evaluation index showed that only the coefficient of variation of CAT was greater
than 100%, indicating strong variation, and the coefficients of variation of other evaluation
indexes were between 13.79% and 96.17%, indicating medium variation.

Table 2. Statistical characteristics of soil quality evaluation indexes (n = 30).

Indicator Type Indicator Unit Min Max Mean SD CV

Soil physical index

SWC % 1.00 9.00 5.56 0.03 44.98
Clay % 2.00 11.00 6.56 0.02 33.45
Silt % 53.00 93.00 79.13 0.11 13.79

Sand % 0.01 45.00 14.31 0.12 88.11

Soil chemistry indicators

pH - 4.19 7.81 6.48 1.20 17.77
EC mS/cm 2.50 3.37 2.83 0.29 10.25

SOM g/kg 5.71 67.97 23.11 19.33 80.77
TN g/kg 0.17 3.03 0.94 0.92 94.17
TP g/kg 1.06 4.28 1.97 0.96 47.08
TK g/kg 3.85 11.94 9.17 2.63 27.72
AN mg/kg 14.21 194.34 75.52 64.52 82.43
AP mg/kg 5.08 15.38 8.24 3.01 35.32
AK mg/kg 104.60 410.10 249.63 108.95 42.56

Soil biometric indicators

URE mg g−1 24h−1 0.01 1.46 0.51 0.49 94.12
INV mg g−1 24h−1 0.00 0.06 0.02 0.02 96.24
NPH mg g−1 24h−1 5.30 22.22 10.66 6.00 53.61
PPO mg g−1 24h−1 12.64 75.64 42.76 24.95 54.69
CAT mg g−1 24h−1 0.00 23.41 9.49 9.00 100.85

SWC: soil water content, EC: electrical conductivity, SOM: soil organic matter, TN: total nitrogen, TP: total
phosphorus, TK: total potassium, AN: alkali-hydrolyzable nitrogen, AP: available phosphorus, AK: available
potassium, URE: urease, INV: invertase, NPH: neutral phosphatase, PPO: polyphenol oxidase, CAT: catalase.
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3.2. Evaluation of Heavy Metal Pollution in Soil

The single-factor pollution assessment of different heavy metals in soil was carried
out according to Formula (1). The evaluation results show (Figure 2) that the single-
factor pollution indexes of Ni, Cu, Cr, Cd, Zn and Mn were in the ranges of 12.58–71.72,
10.79–45.22, 8.69–20.91, 2.13–9.22, 1.02–2.03 and 1.77–2.76, respectively. Among them, the
average single-factor pollution indexes of heavy metal elements Ni, Cu, Cr and Cd were
32.00, 22.86, 15.26 and 5.71, respectively, all of which are greater than the third level of
heavy metal pollution. The mean value of the single-factor pollution index of Mn was
2.22, which is at the moderate pollution level; the average single-factor pollution index
value of Zn was 1.41, which is at the level of mild pollution. The Nemerow comprehensive
pollution index of heavy metal pollution in the soil was evaluated according to Formula (2).
The evaluation results show that the minimum value of the Nemerow comprehensive
pollution index of the samples in the study area was 14.26 (>3), indicating that all samples
were heavily polluted, and the standard rate of heavy metals was exceeded by 100%.
Therefore, necessary ecological restoration measures need to be taken to lessen the heavy
metal pollution in the soil around tailings pond.
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3.3. Correlation Analysis of Soil Heavy Metals and Evaluation Indexes

The correlation analysis results of soil heavy metals and evaluation indexes showed
that (Figure 3) the correlation between the contents of soil heavy metals in the study area
was weak, but the correlation between some heavy metal contents and evaluation indicators
was high. Cu had a certain correlation with TK and EC, and the correlation coefficients
were −0.89 and 0.69, respectively; Cr was negatively correlated with URE, INV, PPO and
silt, and the correlation coefficients were −0.83, −0.78, −0.65 and −0.64, respectively; Mn
was positively correlated with PPO, and the correlation coefficient was 0.87; Zn had a high
correlation with TP, AP, silt and sand, and the correlation coefficients were 0.88, −0.64,
−0.86 and 0.83, respectively. In addition, there was also a certain correlation between
soil quality evaluation indicators. SOM was negatively correlated with pH and positively
correlated with TN, AN and AP. TN was positively correlated with AN, AP and URE, and
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negatively correlated with pH. TP was negatively correlated with SWC, clay and silt, and
positively correlated with sand. TK was negatively correlated with EC. AN was positively
correlated with INV and negatively correlated with EC. AK was positively correlated with
URE, PPO and silt, and negatively correlated with sand. URE was positively correlated
with INV and PPO, and negatively correlated with pH. CAT was negatively correlated
with EC. SWC had different correlations with different particle sizes, which were positively
correlated with clay and silt and negatively correlated with sand. EC was positively
correlated with clay. Clay was positively correlated with silt and negatively correlated with
sand. Silt was negatively correlated with sand.
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3.4. Soil Quality Evaluation
3.4.1. Established Minimum Data Set

The principal component load matrix after varimax rotation showed that the five princi-
pal components had eigenvalues ≥ 1, and the cumulative total interpretation variance was
94.05%, which has a strong interpretation ability (Table 3). In the first principal component
(PC1), the soil parameters selected according to the results of load and norm value were SWC,
silt, sand, SOM, TN, TP, AN, INV and URE. However, the multivariate correlation between
these indicators showed a good correlation (Figure 3), and only the SOM with the highest
factor load and the largest norm value was retained in the MDS. Clay is an important soil
quality evaluation index, and has a profound impact on the changes in soil quality in desert
steppe [58]. In this study, clay had a higher load and higher norm value on PC2, and had a
low correlation with URE. Therefore, clay was also added to the MDS. The pH value and PPO
were selected in PC3, and the pH value was maintained in the MDS according to norm value
results. In PC4, only NPH had a large load, so NPH was selected as input for the MDS. In
PC5, AP and CAT had high loads. According to the calculation results of the norm value, only
AP was retained to input into the MDS. Therefore, the final soil indicators retained in the MDS
were SOM, clay, URE, pH, NPH and AP.
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Table 3. Principal component analysis results and factor load matrix.

Indicators Groups PC1 PC2 PC3 PC4 PC5 Norm

SOM 1 0.852 0.271 −0.354 0.210 −0.172 2.523
TN 1 0.848 0.287 −0.388 0.150 −0.149 2.522
TP 1 −0.835 0.404 −0.152 −0.190 0.020 2.493
Silt 1 0.837 −0.227 0.436 0.014 −0.041 2.475

Sand 1 −0.811 0.316 −0.440 0.003 0.006 2.448
AN 1 0.827 −0.009 −0.450 −0.035 −0.026 2.412

SWC 1 0.732 −0.488 −0.113 0.230 0.367 2.329
INV 1 0.773 0.234 −0.143 −0.297 0.455 2.309
AK 1 0.706 0.394 0.451 0.108 −0.116 2.242

Clay 2 0.498 −0.685 0.363 −0.091 0.169 2.045
URE 2 0.749 0.506 0.132 −0.307 0.231 2.380
EC 2 0.059 −0.921 0.072 0.057 −0.238 1.878
TK 2 −0.005 0.847 0.409 0.003 −0.239 1.829
pH 3 −0.723 0.079 0.589 0.149 −0.062 2.226

PPO 3 0.417 0.460 0.659 −0.191 0.058 1.810
NPH 4 −0.128 −0.048 0.234 0.922 0.224 1.273
AP 5 0.666 0.327 −0.142 0.286 −0.579 2.118

CAT 5 −0.177 0.699 −0.124 0.412 0.500 1.678

Eigenvalue 7.817 4.024 2.316 1.523 1.248
Initial eigenvalue 43.43% 22.36% 12.87% 8.46% 6.93%

Cumulative contribution 43.43% 65.79% 78.66% 87.12% 94.05%

3.4.2. Applicability Verification of the Soil Quality Evaluation Method Based on the
Minimum Data Set

Through the statistical analysis, the indicator data set can be simplified, but it will lead
to a decrease in evaluation accuracy. Therefore, it is necessary to verify the applicability
of the MDS of evaluation indicators for a specific area or a specific soil. The common
factor variance of each index in the total data set (TDS) and the MDS was obtained through
PCA, and then the weight of each index was obtained (Table 4). The indicators were
standardized using Formulas (4) and (5), and then substituted in Formula (6) to calculate
the SQI of different data sets. Among them, the TDS SQI (SQI-TDS) was between 0.16 and
0.70, with an average value of 0.42; the MDS SQI (SQI-MDS) was between 0.17 and 0.61,
with an average of 0.39. The results of soil quality classification using the TDS and MDS
methods (Table 5) show that the samples with an SQI at grades III, IV and V calculated
based on the TDS method accounted for 3.33%, 13.33% and 83.33% of the total samples,
respectively, whereas the samples with an SQI at grades IV and V calculated based on the
MDS method accounted for 3.33% and 96.67% of the total samples, respectively. From the
classification results, the classification results of the SQI-TDS and SQI-MDS are basically the
same, indicating that the SQI calculated based on the MDS has a certain degree of reliability.
In addition, the SQI-TDS was positively correlated with the SQI-MDS (Figure 4), and the
linear fitting equation was y = 0.79x + 0.06 (R2 = 0.76). Therefore, the MDS used in this
study can better reflect the soil quality information represented by TDS.
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Table 4. Commonality and weight of the TDS and MDS.

Indicators Groups
TDS MDS

Communality Weight Communality Weight

SOM 1 0.998 0.059 0.983 0.194
TN 1 0.997 0.059
TP 1 0.920 0.054
Silt 1 0.944 0.056

Sand 1 0.951 0.056
AN 1 0.888 0.052

SWC 1 0.974 0.058
INV 1 0.968 0.057
AK 1 0.882 0.052

Clay 2 0.886 0.052 0.972 0.192
URE 2 0.982 0.058 0.612 0.121
EC 2 0.918 0.054
TK 2 0.942 0.056
pH 3 0.902 0.053 0.728 0.144

PPO 3 0.860 0.051
NPH 4 0.974 0.058 0.928 0.183
AP 5 0.988 0.058 0.850 0.168

CAT 5 0.954 0.056

Table 5. Classification and proportion of soil quality grades using different analysis methods.

SQI Rate
Soil Quality Grades

Very High High Moderate Low Very Low

SQI-TDS %
>0.85 0.75–0.85 0.65–0.75 0.55–0.65 <0.55

0 0 3.33 13.33 83.34

SQI-MDS %
>0.87 0.78–0.87 0.69–0.78 0.60–0.69 <0.60

0 0 0 3.33 96.67

4. Discussion
4.1. Analysis of Heavy Metal Pollution Sources in Soil

The source analysis of soil heavy metals is the basis of soil heavy metal pollution
prevention and control. Clarifying the source of soil heavy metal pollutants is of great
significance to carrying out targeted heavy metal pollution control. In this study, the
positive matrix factorization (PMF) model was used to analyze the sources of heavy metal
pollution in the soil of the study area. The results show (Figure 5) that Factor 1 contributed
63.0% and 71.8% of the heavy metals Cu and Ni, respectively. Combined with the single-
factor pollution evaluation index, the pollution degree of heavy metals Cu and Ni was
the highest, at 22.86 and 32.00, respectively. There was a significant amount of Cu and Ni
residue in copper-nickel mine tailings. Under the action of AMD, Cu and Ni continue to
diffuse into the soil, resulting in serious Cu and Ni pollution in the study area. Therefore,
Factor 1 may come from industrial production. The contribution of Factor 2 to Mn was
54.5%. As we all know, Mn is naturally abundant in soil, and its content in surface soil
is not significantly altered by human activities [59]. Relevant studies also show that the
content of Mn in soil usually depends on the soil’s parent material [60–62]. In this study, the
minimum coefficient of variation of Mn was 14.82%, which is close to the weak variation
value (10%), indicating that it is evenly distributed in space and is less affected by human
factors. Therefore, Factor 2 may come from natural sources. The contribution of Factor
3 to Cr, Zn and Cd was 55.6%, 44.3% and 41.6%, respectively. Diana et al. [63] showed
that Cr, Cd and Zn mainly come from a mix of industrial production and transportation
sources. Fuyun County has a developed mining industry and is an important producer of
metal and nonmetallic minerals in the country. Ore mining, smelting and coal combustion
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are significant contributors of Cr, Cd and Zn in soil [64,65]. At the same time, the study
area is located near national and provincial roads, and the pollution caused by vehicle
driving also plays an important role in the accumulation of Cr, Cd and Zn in soil [66,67].
Therefore, Factor 3 may come from the load pollution source of industrial production and
traffic pollution.
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4.2. Establishing the Minimum Data Set for Soil Quality Evaluation

In general, additional indicators can improve the comprehensive analysis of soil
quality and improve the accuracy of evaluation; however, because of the large number of
indicators, complex experimental analysis is time-consuming and laborious [54]. Therefore,
it is necessary to use statistical analysis for specific soils or regions to delete indicators and
build the MDS for soil quality evaluation [68,69]. In this study, 18 soil parameters were
selected as soil quality evaluation indicators, and the sample data were screened using
PCA, correlation analysis and norm values. The final MDS contained SOM, clay, AP, pH,
URE and NPH, and the index screening rate was 66.67%. By considering the physical,
chemical and biological characteristics of soil, the evaluation index system was effectively
simplified, and the impact of overlapping information between evaluation indexes on
the evaluation results was minimized. SOM directly affects the physical, chemical and
biological characteristics of soil [70], and can play a key role in the preservation and release
of nutrients. Therefore, SOM is the most important indicator for soil quality evaluation and
the most common indicator in the MDS [71–73] In our study, SOM had the highest load
value in PC1 and the highest norm value (Table 4), indicating that SOM has a great impact
on the soil quality of the study area, so it was added to the MDS. Soil texture (clay, silt and
sand) is crucial to determining soil quality because it provides an isolated microhabitat
for microorganisms, thereby increasing the diversity and richness of microorganisms [74].
Among them, clay particles are significantly related to soil quality and have a great impact
on soil nutrient cycling [75]. Jin et al. [19] showed that clay is often selected for the MDS
in the process of evaluating the soil quality of sloping farmland, and its frequency of use
reached 79%. AP is one of the most restrictive factors for plant growth and plays a crucial
role in the net carbon absorption of ecosystems [31]. The content of soil AP in the study
area was low, at the fourth level, indicating that AP imposes great restrictions on the soil
quality of the study area. Soil pH directly reflects the occurrence of soil chemical reactions
and affects the availability of nutrients required for plant growth [76]. Affected by AMD,
the soil in the study area was acidic, with a low pH of 4.19. However, desert plants in
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Xinjiang are adapted to an alkaline environment. Studies have shown that desert plant
diversity is positively correlated with pH [77,78], so low pH will not be conducive to plant
growth in the study area, and will further restrict the improvement in soil quality. Based
on the establishment of the MDS, and by collecting a large number of research results
for soil quality evaluation, the use frequencies of different indicators in the MDS were
compared (Figure 6). The use frequencies of SOM, pH and AP were higher, namely 55.81%,
33.72% and 33.72%, respectively; the frequencies of clay, TN, TK, TP, AN and AK were
19.77%, 24.42%, 16.28%, 17.44%, 16.28% and 22.09%, respectively; SWC, silt and sand were
used less frequently, at 4.65%, 4.65% and 8.14%, respectively. The production rate of soil
enzymes is affected by environmental effects and ecological interactions. Enzyme activity
is sensitive to small changes in soil and is a sensitive indicator of soil ecological stress [79].
Therefore, soil enzyme activity was included in the soil quality evaluation index system
for assessing heavy metal pollution stress. In this study, URE, INV, NPH, PPO and CAT
were used as soil quality evaluation indicators. Among them, URE and NPH had large
load values on PC2 and PC4 (Table 4), and they were finally included in the MDS. Wang
et al. [80] also used urease and phosphatase in the MDS in the process of evaluating the
soil quality of iron tailings wasteland. Tian et al. [52] selected urease and catalase for
inclusion in the MDS in the process of evaluating the soil quality of desert steppe. In
addition, the correlation analysis results show that there was a positive correlation between
the MDS and TDS (R2 = 0.76), so the selection of MDS can well reflect the soil quality in the
study area.
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4.3. Impact of Heavy Metal Pollution on Soil Quality

Heavy metal pollution has existed in soil for a long time, seriously affecting soil
quality [11]. An increase in the content of heavy metals in soil will reduce the content of soil
nutrients [10], affect the availability of nutrients in soil solution and soil enzyme activity and
eventually lead to a sharp decline in vegetation and land productivity [81,82]. The contents
of SOM, TN, AN and AP in the study area were at the fourth level, and the soil quality
was poor. The correlation analysis results show that the heavy metals Ni and Cu in the soil
were negatively correlated with SOM, TN, AN, AP, AK, etc. Therefore, the accumulation
of heavy metals in the soil has an adverse impact on the content of soil nutrients. Among
many evaluation indicators, soil enzyme activity is the most sensitive indicator of heavy
metals, and also an important indicator of soil quality and health, because it is directly
related to soil carbon, nitrogen and phosphorus cycles [21,83,84]. Heavy metal ions in
soil may compound with substrates, combine with protein-active groups of enzymes or
react with enzyme-substrate complexes, thereby affecting enzyme activity [83]. However,
the response of enzyme activity to heavy metal ions is relatively complex. In the same
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heavy-metal-polluted environment, different heavy metals have different effects on enzyme
activity, and the same heavy metal has different effects on different enzymes [83,85,86].
The results of this study show that Cr was negatively correlated with URE, INV and PPO,
whereas Mn was positively correlated with PPO. Yang et al. [87] also show that Cr is
negatively correlated with a variety of enzymes, including URE, whereas PPO is positively
correlated with Cd, Zn, Cu and other heavy metals. In addition, the analysis results for
soil quality and heavy metal pollution degree show that (Figure 7) there was a negative
correlation between soil quality and heavy metal pollution degree. The regression equation
between the SQI-MDS and Pcom was y = −0.014x + 0.88 (R2 = 0.75), and the regression
equation between the SQITDS and Pcom was y = −0.012x + 0.81 (R2 = 0.64). Therefore, the
heavy metal soil pollution caused by the tailings pond will lead to a decrease in soil quality,
and the SQI-MDS can effectively reflect the degree of soil heavy metal pollution.
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5. Conclusions

Tailings accumulation not only causes serious soil heavy metal pollution but also has
a negative impact on soil quality. The results of the Nemerow comprehensive pollution
assessment show that the heavy metal pollution in the soil in the study area was at a
high level of heavy metal pollution. The single-factor pollution evaluation results show
that Cu, Ni, Cr and Cd are heavily polluting; Mn is moderately polluting; Zn is slightly
polluting. The results of the PMF model show that Cu and Ni come from industrial sources;
Cr, Cd and Zn come from a mix of industrial production and transportation sources; Mn
comes from natural sources. Through PCA of 18 soil characteristic indexes, combined with
correlation analysis and norm values, six soil indexes were finally selected as the MDS for
soil quality evaluation, namely, clay, pH, SOM, AP, URE and NPH. The fitting results of the
SQI-TDS and SQI-MDS show that there was a positive correlation between the SQI-TDS
and SQI-MDS (R2 = 0.76), the average values of the two evaluation results were 0.42 and
0.39, respectively, and the soil quality conditions were very poor. The fitting results of
the SQI and Pcom calculated with different data sets show that the SQI and Pcom were
negatively correlated, and the SQI calculated based on the MDS had a higher correlation
with the Nemerow index (R2 = 0.69), indicating that the SQI calculated based on the MDS
can better reflect the degree of heavy metal pollution in soil. In general, our results show
that the leakage of AMD from tailings accumulation has a negative impact on the soil
quality of desert steppe. The MDS constructed in this study can reflect the soil quality and
heavy metal pollution at the same time.
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