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Abstract: According to the United Nations (UN), an additional 1.35 billion people will live in cities by
2030. Well-planned measures are essential for reducing the risk of flash floods. Flash floods typically
inflict more damage in densely populated areas. The province of Hail encompasses 120,000 square
kilometers, or approximately 6% of the total land area of the Kingdom of Saudi Arabia. Due to
its innate physiographic and geologic character, Hail city is susceptible to a wide variety of geo-
environmental risks such as sand drifts, flash floods, and rock falls. The aim of this work is to evaluate
the rate of urban sprawl in the Hail region using remote sensing data and to identify urban areas that
would be affected by simulated worst-case flash floods. From 1984 to 2022, the global urbanization
rate increased from 467 to 713% in the Hail region. This is a very high rate of expansion, which means
that the number of urban areas exposed to the highest level of flood risk is rising every year. With
Gridded Surface Subsurface Hydrologic Analysis (GSSHA), a wide range of hydrologic scenarios
can be simulated. The data sources for the soil type, infiltration, and initial moisture were utilized to
create the coverage and index maps. To generate virtual floods, we ran the GSSHA model within
the Watershed Modeling System (WMS) program to create the hazard map for flash flooding. This
model provides a suitable method based on open access data and remote data that can help planners
in developing countries to create the risk analysis for flash flooding.

Keywords: urban area; flash flood; remote sensing; GIS; GSSHA; Landsat; historical event; natural
disasters; urban exposure

1. Introduction

The rapid population expansion and rural flights to urban areas and cities have led
to dramatic shifts in urban landscapes in recent decades [1]. By 2030, the United Nations
predicts 1.35 billion more people will be living in urban areas, bringing the total to almost
5 billion. Moreover, the area of developed land throughout the world is expected to grow by
1.2 million square kilometers, or almost three times as much as it was in 2000 [2]. Changes
in land use and land cover are common results of urbanization everywhere, but notably in
poor nations [3]. Further, cities tend to expand in all directions, sometimes even into more
hazardous locations. Consequently, this issue should be lessened by decision-makers and
planners through risk management and the provision of various options.

Urban sprawl is a sort of low-density development that includes residential, retail,
and office districts; it is also a measure of the rate and direction of urban expansion. In
fact, it is fair to classify any expansion toward the suburbs as urban sprawl [4,5]. Sprawl
in cities is a key topic in urban studies right now [6]. As urbanization spreads to formerly
undeveloped areas, planners and policymakers in emerging nations are beginning to pay
more attention to the phenomenon and its effects [5]. Global urbanisation is accelerating.
Population growth necessitates urban development. However, throughout the last century,
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metropolitan areas grew faster than populations globally, especially in developing countries
where growth is often unplanned and uneven [7–9]. Between 2000 and 2005, an average of
240 million people were affected by natural disasters annually globally. This is a startling
increase in both the frequency and intensity of catastrophes. Natural catastrophes increased
to 414 in 2007, resulting in the deaths of 16,847 people, injuries to over 211 million people,
and displacement of over 110 million more [7]. Increases in the rate of climate change
have been linked to an increase in the frequency of extreme weather occurrences. The
rising frequency of natural disasters worldwide was again documented in 2014. The rise
in reported hydro-meteorological disasters is a major factor in this pattern. This trend is
mostly attributable to hydrological (mainly floods) and meteorological (mainly storms)
disasters. The frequency of recorded hydrological catastrophes has been rising at a rate of
7.4% per year during the past few decades. A rising population is a growing threat, and
from 2000 to 2007, the yearly growth rate of the world’s human population was 8.4%, [7],
therefore the number of people in danger rose. Floods and droughts are increasing due
to climate change. Climate change has increased the likelihood and severity of extreme
weather events such as floods and droughts. Compared to 1.5 ◦C global warming without
adaptation, direct flood damage increases by 1.4 to 2 times at 2 ◦C and 2.5 to 3.9 times
at 3 ◦C [8]. Hoegh-Guldberg et al. (2018) predicted with medium confidence that 2 ◦C
global warming would increase flood threats relative to 1.5 ◦C. Urban growth will increase
flood-prone areas by 2.7 times by 2030, according to Guneralp et al. (2015) [9].

In a sense, a flash flood is a local flood that occurs suddenly and lasts for only a
short time after strong or extreme rainfall (often less than six hours) [8,10]. After intense
rainfall, rivers, streets, and even gorges in the mountains can become inundated by roaring
torrents that wash away everything in their path [11]. When it comes to predicting the
timing and location of natural disasters, the flash flood phenomena are among the most
challenging. Due to this, it can be difficult for relevant authorities and communities to
respond adequately; well-thought-out preparations for doing so are essential for reducing
the risk of flash [10,12]. Risk assessment is the backbone of any study into the probable
costs of a catastrophe. For a specific location and period of reference, the risk is defined
as the potential for loss (of lives, injuries, property damage, and interruption of economic
operations) [13]. Risk is made up of three components: hazard, exposure, and vulnerability.
Data from each of these areas can be utilized to construct a picture of risk in a specific
location and over time. These elements are as follows: (1) Hazard—a potentially harmful
physical phenomenon (e.g., an earthquake, a windstorm, a flood). Natural risks such as
flash floods and landslides are common. (2) Exposure—the location, characteristics, and
value of assets that are vital to communities (people, buildings, industry, farming, all land
uses, etc.) and that could be affected by a hazard. (3) Vulnerability—the risk that assets
will be damaged/destroyed/affected when exposed to a hazard. For example, an elderly
person may be more exposed to the effects of floods because he or she has a more difficult
time fleeing or relocating rapidly [11,14]. Losses from flash floods tend to be greater in
highly populated regions. When there is a lot of rain, the storm drains may fill up and
flood the streets and nearby buildings [10,15]. Also, sites where rainwater collects, such as
urban streets and rooftops, pose a greater threat [15]. The water level in rivers and streams
can suddenly increase, and the flow velocity can be quite fast, causing significant damage
to anything in its path, including rocks, trees, bridges, and structures. As a result, life and
property are in grave danger from flash floods [10]. Assessing risk is the backbone of any
assessment of catastrophe preparedness costs. The death toll from flash floods tends to be
higher in more populated areas. Storm drains have been known to overflow during times
of severe rainfall, causing flooding of streets and houses [15]. Most passenger cars can
be swept away by a strong river even at a depth of 60 cm [10]. In addition, metropolitan
areas are at significant risk because of the accumulation of rainwater runoff on the ground,
streets, and rooftops. The water level in rivers and streams can suddenly rise, and the flow
velocity can be quite fast, causing significant damage to anything in its path, including
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rocks, trees, and even structures. As a result, life and property are in grave danger from
flash floods [10].

Following on from the CASC2D model [16], the Gridded Surface Subsurface Hydro-
logic Analysis (GSSHA) model is a gridded, distributed, and physically based hydrologic
model. Overland flow and channel flow in one dimension are simulated using explicit
finite-volume solutions of the diffusive wave formulation of the St. Venant equations of
motion in two dimensions on a structured grid [17]. Ogden, Downer, and Meselhe illustrate
the GSSHA program’s ability to accurately model a wide range of hydrologic conditions.
Individual models can also be altered much more easily using GSSHA than with other
approaches [18]. Aside from GSSHA, numerous other existing numerical models for sim-
ulating flood events exist, such as MIKE FLOOD, FLO-2D, CCHE, and TUFLOW. None
of the above flood models have been connected with a GIS in such a way that a user may
quickly adjust boundary conditions, execute, and archive a flood simulation for various
levee breach scenarios into a geodatabase. Indeed, one goal of this research was to create
such a system [19]. For a given set of hydrometeorological inputs, the model can simulate
the watershed’s resulting hydrologic response [20]. GSSHA is utilized because it is the only
model that considers the geographical variability of land-surface and hydrodynamic char-
acteristics, including underground storm drainage systems. Increases in drainage density,
especially from low levels, have been found to result in much higher flood peaks [21].

In terms of hydrology, GSSHA is a geographically dispersed, physics-based, continu-
ous simulation model. With GSSHA, calculations are performed on a standard raster grid
that stands in for the watershed network in question. Within each grid cell of the model,
at a user-defined time step, the model numerically simulates a wide variety of hydrologic
processes, including the distribution of rainfall, evapotranspiration (ET), infiltration, sur-
face water retention, overland flow runoff, and snowmelt/accumulation. Although these
hydrologic processes are simulated locally within each cell, their interconnectedness via 2D
overland flow, 2D groundwater flow, and a 1D stream network allows for simulations of
the watershed response as a whole [22,23]. The two primary elements of this project were
the GSSHA model and the Watershed Modeling System (WMS), a graphical user interface
(GUI) that offers pre and post-processing for the GSSHA model. The Engineer Research
and Development Center (ERDC) of the U.S. Army Corps of Engineers and Aquaveo, LLC
are actively developing and refining both programs [23]. The GIS-based user interface of
WMS allows for both pre- and post-processing of digital spatial data, which is essential
for hydrologic modelling and visualization [22]. The verification of the simulation in this
paper is primarily based on the verification of the WMS software and the GSSHA model.
This is because this research does not change any equations of the GSSHA model; rather, it
merely provides the model with the necessary data for the study area.

In the last ten years, remote sensing technology has evolved substantially, allowing
for more nuanced descriptions of urban surveillance. Due to its usefulness in inventory
evaluation and monitoring of environmental assets based on spatial data, remote sensing
data is increasingly being used in a variety of sectors [24,25]. The governments of devel-
oping countries generally struggle to keep their databases up to date using traditional
techniques due to the time and cost involved [4]. This makes remote sensing applications
especially important. Moreover, urban land use may be identified with the use of remote
sensing data [26]. There is a plethora of satellite imaging data, including but not limited to
Landsat, IKONOS-2, and OrbView-3 (commercial data). Spectral satellite data is available
for relatively long time periods and sufficient precision, although Landsat has been chosen
as the best option for monitoring spatial details [27]. Free and easily downloadable from
the US Geological Survey’s website, Landsat data [28] may give primary results that are
close to real-world conditions [29] and capture landcover change in urban and peri-urban
environments [30].

The Kappa coefficient [31,32] is one of the most often used strategies for determining
the level of agreement across datasets to validate the correctness of supervised classifica-
tion [33–35]. This may be used to ensure that the categorized Landsat imagery is correct.
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To evaluate a categorized map’s precision, we generate random points using ground truth
points and then compare them to actual classifications in a confusion matrix. As imagery at
these resolutions allows viewers to easily differentiate between main natural land cover
classes and to detect components of the developed environment, such as individual resi-
dences, industrial buildings, and highways, Google Earth is frequently used to evaluate
ground truth points [36–38]. Both the user and the supplier may be evaluated for accuracy
in each class, as well as for overall agreement using the Kappa index [39], these scores
range from 0 to 1, with 1 representing perfection [40].

Due to its innate physiographic and geologic character, the Hail desert in Saudi Arabia
is susceptible to a wide variety of geo-environmental risks. These risks include sand drifts,
flash floods, rock falls, problematic soils, and the possible dangers posed by intra-plate
lava flows from dormant volcanoes (also known as harrat) are all included in this list
of potential dangers. Both remote sensing and on-site investigations were carried out
to locate and assess the severity of these dangers. The region of Hail is experiencing
rapid urban and agricultural expansion, yet some infrastructure has been built in sites that
are susceptible to being damaged by geo-environmental hazards. When it comes to the
implementation of sprawl and the increase in public services, development plans should
take such dangers into consideration [41]. Using remote sensing methods, several earlier
investigations were conducted in Saudi Arabia to investigate the geologic dangers that are
present in the nation [42]. IKONOS data were applied to map the danger of flash flooding
in the Jeddah region along the coast of the Red Sea [43]. To map the sabkha soils in the
Jazan region, Landsat and QuickBird photos were employed [44]. Using satellite data, there
is an ability to bring attention to sand dune accumulations in the general vicinity of the city
of Riyadh [45]. SPOT satellite data and digital elevation models were used to estimate the
risk of landslides occurring over the border between Saudi Arabia and Yemen [41].

The challenge of examining the exposure of urban areas to the dangers of flash floods
represents an important point that inspired this research to test a method of researching
this problem by re-simulating the worst flash floods that landed in the study area. Thus, the
purpose of this paper is to address two key issues for urban growth management. These
issues are (i) estimation of the pace of urban sprawl of Hail city periphery using remote
sensing data and (ii) identification of urban areas located in regions that will be affected by
simulated the worst case of flash floods that happened in the historical events in the case
study area between the years of 1982 and 2022. Both issues are important for urban growth
management in developing countries where there is a lack of data.

2. Study Area

Hail city, the region’s capital, is in northern Saudi Arabia, near the intersection of
the Arabian Shield and the Arabian Platform [46]. The Hail region lies between 40◦ E to
42◦30 E and 26◦50 N to 28◦33 N [47] and encompasses 120,000 km2 which accounts for
6% of the Kingdom of Saudi Arabia. It is situated in the KSA’s center north as shown in
Figure 1 [48,49].

The region is characterized by a hot dry desert, with a yearly rainfall of less than
250 mm and annual evaporation rates of up to 3000 mm/year [50]. Whereas average yearly
temperatures range from 10 ◦C in winter to 32 ◦C in summer [41]. Summer is hot, with
high temperatures and low relative humidity in August [46]. Torrential rain that fell on the
city of Hail caused a massive loss of money, property, and lives and claimed the lives of
many families that have not been tallied in the absence of a torrent discharge and projects
to ward off risks. Moreover, adult house valleys that permeate the city of Hail route were
not considered during the implementation of residential plans over the previous thirty
years [51].
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Due to its inherent physiographic and geologic character, the Hail desert is exposed
to a variety of geo-environmental dangers. Sand drift, flash floods, rock falls, issue soils,
possible risks from dormant volcano intra-plate lava flows (harrat), and dust storms are
among the threats. These dangers were identified and quantified using remote sensing and
field inquiry. Hail is a developing urban and agricultural region, yet some infrastructure
has been built in geo-environmental hazard-prone areas. When implementing sprawl and
the increase in public services, development plans should account for such risks [41]. Hail
city is built on a complicated network of wads, which causes floods on a regular basis.
Due to present growth tendencies, several urban systems, including 29% of city roadways
and 24% of built-up regions, as well as farmlands within the 1450 UGB, are in danger of
flooding. As a result, flood protection limits must be appropriately defined across the city
to prevent growth in flood-prone regions, as well as proper standards for preserving water
supplies [52]. Flash floods are a substantial contributor to Saudi Arabia’s water resources.
However, the land is mainly dry [53].

Hail has a population of 345,000 inhabitants and an average population density of
19.63 p/ha within the current built-up area. The total built-up area of the city covers 7634 ha.
Only 4% of the built-up area supports a density above 50 p/ha and accommodates 13% of
the population, whereas 3.7% of the total built-up area has a population density between
30 and 50 p/ha and accommodates a further 9% of the population [52].

3. Research Methodology and Simulation Data

The purpose of this article is to map out the areas of the case study area most likely
to be impacted by floods and to inquire into the connection between those areas of high
risk and urban sprawl. The collected data would be sent into the WMS program where
it would be utilized to mimic the torrent and runoff water allowing high-risk regions to
be pinpointed.

3.1. Simulation Data Sources

The research goals could not be met without the inclusion of specific information.
The accessible statistics for the case study area were lacking, however. For instance, we
were unable to undertake a thorough examination of urban sprawl since the government’s
comprehensive plan did not include data on when the structures in the urban regions were
completed. The second issue was the poor quality of free, publicly available materials such
as Land Use maps, soil types maps, and DEM (digital elevation models). It was rather
pricey to obtain high-resolution DEM data. The third issue was how hard it was to obtain
official government statistics on the case study location. Most simulation settings and
parameters provided and connected to the study region were chosen and recommended
from the manual of model software. The origins of all simulation data files are listed in
Table 1.
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Table 1. Data used in flood simulation.

Data Source

Urban Area Landsat satellite images.
DEM file U.S. Geological Survey (USGS) Website.
Land Use map USGS Land Cover Institute.

Soil Type map Food and Agriculture Organization of the United Nations (FAO)
Digital Soil Map of the World (DSMW).

Precipitation Literature Review.

As can be seen in Figure 2, digital elevation models (DEM) are a valuable data source
for GIS. They have found widespread use in surface hydrology modelling, namely in the
form of automated catchment area delineation [54]. This research made use of the two most
popular satellite-derived DEM datasets (SRTM and GDEM). With a horizontal grid size
of just 3 arc-seconds (or 90 m), SRTM can give almost worldwide topographic coverage
of the Earth. One-second (30-meter) statistics for all of Earth, excluding the Middle East,
were made public just recently [55]. The quality and resolution of digital elevation models
(DEMs) are crucial for hazard assessments and inundation modelling of coastal areas [56].
The approach used in this article was affected by the outcomes of the aforementioned three
issues because of data gathering restrictions. By analyzing Google Earth’s archived photos,
we were able to solve the first issue of insufficient data on the building’s construction year.
We exploited the low-resolution but free web data to overcome the second issue of high-
resolution imaging acquisition expenses. The WMS program helped us get our hands on a
free Land Use map, Soil Type map, and DEM data. Thirdly, we used information gathered
from published studies and reports from our own institutes to address the challenge of
acquiring topographic coverage of the research region.
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3.2. Identifying Urban Areas

To classify an image, it must be converted from a multiband raster image to a single-
band raster with a variety of classification groups that correspond to different types of land
cover [57]. Two primary methods exist for classifying a raster image with several bands:
supervised and unsupervised. It is a pretty typical strategy for researchers to evaluate
remote sensing data to categorize images into their respective land cover classes. The
supervised classification method makes use of spectral signatures from training polygons
that stand in for distinct sample regions of the various land cover classes. To classify the
image, the image analyzer takes samples from it. When using an unsupervised classification
method, the software finds the spectral classes in the multi-band image without any
assistance from a human analyst. Once clusters have been found, the next stage is to
determine what they represent (water, desert, etc.) [57].

The years of study for this research were chosen to extract land uses by determining
the worst flash flood phenomenon that has ever occurred in the past in the city of Hail,
which was in 1981. However, this year no images were available from Google Earth until
the Kappa validation was performed, so the year that is closest in which Landsat images
are available was chosen instead. In addition to that, there are images of it on Google Earth
from 1984, the year in which the research was conducted on it. Regarding the most recent
land usage, the year 2022 has been selected as the one in which to investigate the effect that
flash floods have on urban areas.

3.3. Identifying the Risk Areas

This section’s approach explains the selection criteria used to pinpoint potential danger
spots. At first, the cities were divided into two zones. One half was designated as the safe
zone, which would not be affected by floods caused by torrents or runoff after a severe
downpour, while the other half was designated as the danger zone, into which massive
volumes of rainwater would flow after a storm. We simulated precipitation and runoff from
the area’s surfaces using the GSSHA model in WMS software to arrive at this categorization.
Figure 3 depicts the entire simulation process. The runoff depth was shown on a depth
map that was the primary product of the simulation. If the map were exported to the Arc
GIS format, a polygon layer would be created for each depth range. The potential hazards
were then subdivided into five categories according to water depth. Very low danger was
defined as a flood depth of less than 0.5 m, low hazard as 0.5 m to 1.0 m, medium hazard
as 1.0 m to 2.0 m, high hazard as 2.0 m to 5.0 m, and extreme hazard as >5.0 m [38].

Ogden et al. illustrate the versatility of the GSSHA software in simulating a broad
variety of hydrologic conditions. Moreover, unlike other methods, GSSHA makes it simple
to modify certain models [18]. In addition to GSSHA, there are a plethora of other pre-
existing numerical models that may be used to simulate flooding. Rapid estimates of the
damage caused by floods due to a breached levee can be made with a one-dimensional
model. In contrast to two-dimensional models such as MIKE FLOOD, CCHE, FLO-2D, and
TUFLOW, its predictions tend to be off. A two-dimensional model’s main drawback is the
time it takes to create. If computers could process information faster, this disadvantage
would be far less severe. For Windows, GSSHA is written in C++ and soon Linux will have
support for parallel processing. A user can utilize many computers or processing cores in
parallel to execute a single flood simulation. Making use of this method in GSSHA can
drastically cut the time it takes for the model to run. All the aforementioned flood models
lack GIS integration that would allow a user to easily change boundary conditions, run a
flood simulation, and save the results in a geodatabase in case of a levee break. Indeed, the
creation of such a system was one motivation for our study [58].
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For hydrologic and hydraulic modelling, WMS can handle any kind of GIS data. WMS
gives the user a robust set of tools for working with vector and raster data in a geographic
information system. The WMS can automatically calculate a wide variety of hydrologic
characteristics. These include area, slope, mean elevation, maximum flow distance, and
many more. In addition, developing a GSSHA model with WMS is the quickest and
easiest option. Setting up the files for a GSSHA model has never been easier with this
helpful tool. The Hydrologic Modeling Wizard in WMS makes it simple to develop a basic
GSSHA model from scratch by walking you through the necessary steps. The creators of
the GSSHA have advocated for the usage of WMS in both the preliminary and final stages
of the processing pipeline. It also makes project visualization easier, which speeds up the
process of setting up a GSSHA model. Due to these considerations, WMS was employed in
this investigation for both model development and analysis [18,58].
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3.4. Classifying Urban Areas Exposure

In this critical segment of our research methodology, we had to determine which parts
of the case study area would experience flash floods in relation to its location from the
hazard area classes. To achieve this objective, we used Arc GIS software to analyze the
data from the WMS simulation. A supervised classification map for the case study area
was detected, with an overlay of the urban area which was divided into five sections; land
use was in an area subjected to simulated floods of varying degrees, and runoff water at
different depths. In this deluge, the flood depth that was simulated in the areas that were
going to be flooded was used to generate the hazard for the area that was being studied.
The risk assessment was performed using the guidelines provided by the Ministry of Land,
Infrastructure, and Transport of Japan (MLIT), which are detailed in Table 2 [38].

Table 2. Flood hazard classification according to MLIT [38].

Flood Hazard Hazard Degree Depth (Meters)

H1 Very Low <0.5
H2 Low 0.5–1
H3 Medium 1–2
H4 High 2–5
H5 Extreme >5

4. Simulation Process

Delineating and characterizing watersheds, which is the first step in GSSHA modelling,
is necessary because it establishes the scope of the issue at hand. The fundamental order of
operations for using GSSHA for distributed hydrologic modelling is as follows. The TOPAZ
system was initially implemented. Acquiring digital elevation data for the watershed of
the research region allowed us to calculate flow direction and accumulation. Infiltration in
watershed models was also analyzed. This phase involved four procedures: (i) choosing
an outlet point, (ii) defining the watershed, (iii) starting the model, and (iv) generating a
2D grid. In the third phase, GSSHA job control guidelines were established. Index map
generation from land use and soil data, starting parameter values for index maps, and
precipitation definition all had three inputs. The model was then cleaned up and run via
model 4 after going through all these steps. Finally, utilizing the WMS data based on water
depth, a danger hazard map was generated in Arc GIS [19].

4.1. Extraction of DEM for the Study Area’s Watershed

The user can define a search region and choose a desired data resolution before
obtaining the results from the USGS through online services. Classifying runoff and
infiltration characteristics required the DEM in addition to land use and soil type data. The
soil types were obtained from the Soil Data Mart, which may be found at soildatamart.nrcs.
usda.gov (accessed on 14 November 2022) [59].

4.2. Land Use and Soil Data

The FAO soil classification system was used to identify soil types, and the USGS
Land Cover Institute database was consulted for land use information (Landsat supervised
classification). We constructed coverage and index maps from these two data sets. The
index map table was made to accommodate the various land cover and soil hydrological
factors present in the watershed. Consequently, various parameters were allocated to each
grid cell based on the land cover and soil type [60]. Soil maps are displayed in Figure 4.

soildatamart.nrcs.usda.gov
soildatamart.nrcs.usda.gov
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4.3. Infiltration and Initial Moisture Data Source

Land cover value estimates based on basin roughness may be found in detail on the
GSSHA wiki. The GSSHA wiki was used to determine the manning roughness coefficient
for each land cover type in the watershed basin. When water permeates the soil from
the ground up, it is called infiltration. The GSSHA work order management system
mandates the use of an infiltration strategy. Therefore, the Green and Ampt soil moisture
redistribution technique was adopted for this project. Individual identifiers for the soil
type index map were constructed while infiltration was taken into consideration [18].

The percentage of water volume already present in the soil is referred to as its initial
moisture. Preliminary moisture levels range from one set of criteria to another. Since
soil type and time of year were the two most influential elements, the results were not
constant. The starting moisture value should be chosen such that it is not more than the
soil’s porosity.

4.4. Rainfall Values

Assigning constant values for precipitation over the whole watershed was kept pri-
marily as a diagnostic tool and was utilized extensively during the early stages of model
development. The input parameters for uniform rainfall throughout space and time were
as follows: (1) rainfall intensity (mm/h) and (2) rainfall duration (minutes). This work
simulated the first parameter in the most extreme conditions in historical events (1981),
with rainfall rates of 79.6 mm/h. [51,61]. For the second parameter, which determines how
tiny an area is in danger, we settled on a value of three hours (180 min) as an average
duration of all watersheds in the study area, even though the range of possible rainfall
durations in Hail is three hours [61].
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5. Results

This section will describe the study’s findings in three sections, each displaying
different findings based on the type of analysis used. The first section will present the
results of the method used to identify historical urban areas in specific years. The second
section will depict the flash flooding results in greater detail, classifying the risk zones
based on water depth. The last section will look at how the results of the other sections
overlap in order to find out which urban areas are at risk of flash flooding and compare
how exposed urban areas were in 1984 and 2022.

5.1. Urban Land Use

This section will present the results of a Landsat analysis to extract the land uses in
1984 and 2022. Landsat satellite images provide a helpful approach to strewing historical
urban areas. Figures 5 and 6 show the results of the first stage, which started in 1984 and
2022 with the integration of bands for the case study area. The colors used in this illustration
are those seen in nature, and there is no atmosphere present. The identical image is shown
in Figures 7 and 8, but after it has been submitted to supervise categorization through the
use of GIS.

In order to evaluate the results of applying supervised classification to the Landsat
satellite images, a classification accuracy assessment is an essential step that must be taken.
The accuracy test for the 1984 and 2022 land use maps used a total of 500 random test sites
for each one that was dispersed across the categorized groups to evaluate the classification
accuracy. This can be seen in Figures 9 and 10, which show how the accuracy test was
carried out. The Kappa coefficients were determined by doing calculations based on the
error matrices that were developed. The accuracy of class categorization ranged from 0.94
for urban in 1984 to 0.93 for urban class in 2022, as shown in Table 3 for 1984 and Table 4
for 2022. The accuracy of class categorization for non-urban areas was 0.98 for 1984 and
0.99 for 2022, resulting in a total accuracy of 88 percent for 1984 and a Kappa value of 92
percent for 2022, which demonstrates that classification accuracy is extremely reliable [62].
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Table 3. Kappa results for land use classification, 1984.

Class Value Urban Non-Urban Total U Accuracy Kappa

Urban 29.00 5.00 34.00 0.85 0.00
Non-Urban 2.00 221.00 223.00 0.99 0.00

Total 31.00 226.00 257.00 0.00 0.00
P Accuracy 0.94 0.98 0.00 0.97 0.00

Kappa 0.00 0.00 0.00 0.00 0.88

Table 4. Kappa results for land use classification, 2022.

Class Value Urban Non-Urban Total U Accuracy Kappa

Urban 50.00 3.00 53.00 0.94 0.00
Non-Urban 4.00 200.00 204.00 0.98 0.00

Total 54.00 203.00 257.00 0.00 0.00
P Accuracy 0.93 0.99 0.00 0.97 0.00

Kappa 0.00 0.00 0.00 0.00 0.92

The uses of the land in Hail city may be classified as either urban or non-urban, and
they were segregated into these two categories. In 1984, non-urban land use made up
97.99 percent of the total area in Hail City. This made it the most frequent type of land
use in the city. According to Figures 11 and 12 That were provided, the information that
is displayed in Table 5 Indicates that in the year 2022, the non-urban areas accounted
for 90.60 percent of the region’s total land area, while the urban regions accounted for
9.40 percent of the region’s total land area. During the course of 38 years, the urban area
expanded from 3454 hectares to 16,123 ha. This study focused on urban areas for the
purpose of estimating the exposure area that is susceptible to the hazard of flash flooding;
the total area of the urban class in this study was 171,603 ha.
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Table 5. Landsat classification results values.

Year Urban (Ha) % Non-Urban
(Ha) % Total

1984 3454 2.01 168,149 97.99 171,603
2022 16,123 9.40 155,480 90.60 171,603

5.2. Simulating the Flash Flooding

The information obtained from the simulation exercise, such as the peak flow rates, the
volume of rainfall, and the amount that was left on the surface, provided valuable insights
into the possibility of predicting water flow. The information that was gathered on the
connection between time and the flow of water was helpful in pinpointing the most critical
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point of the simulated disaster. The findings of the simulation, in which the depth of the
water was estimated every 15 min, allowed for the determination of the depth of the water
during peak runoff for each watershed. For the purposes of the study, the water depth file
(a raster) was exported from WMS and imported into ArcGIS as seen in Figure 13.
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After converting the raster file of water depth to a vector file as the first step in ArcGIS,
the next step was to divide the water depth into five different categories of hazard. These
categories were Very Low Hazard (H1), Low Hazard (H2), Moderate Hazard (H3), and
High Hazard (H4). Very High Hazard (H5) was the final category. The last phase was the
assignment of new attributes in the urban area data file for each building to illustrate the
level of hazard, based on its location from the hazard level area, as shown in Figure 13 This
was the following step in the process.

5.3. Comparing the Worst-Case Historical Event between 1984-2022

Urban areas in the study area were distributed according to five categories and at the
same time, the urban areas in the case study were divided into two groups based on the
year (1984 and 2022) as shown in Table 6. In the risk area, urban areas allocated in the
H1 zone were the biggest category in both years, occupying 3156.15 ha or about 91.39%
of the risk area in the year 1984. However, it was increasing to 14,394.68 ha in 2022 with
a decrease in the percentage of total urban areas of 89.28%, while the urban area for the
other four classes H2, H3, H4, and H5 increased in both the net area and percentage from
the total urban areas. Table 7, Figures 14 and 15 show that the biggest two categories in
hazard degrees gained big urban areas located in risk zones, and it can be observed that
the Extreme (H5) degree increased from 0.13 ha to 1.52 ha while the High (H4) degree has
huge urban areas increasing more than 6.6 times from 11.23 ha to 74.33 ha.

In this part of the research, the results have been presented to illustrate the comparison
between the exposure of urban areas in 1984 to the risks of floods and simulating the same
conditions if they were repeated in 2022 after a large urban growth. The most important part
of the comparison was the study of changes in urban areas in each classification individually.
Figures 14 and 15 show some crucial information, the most crucial of which is that between
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1984 and 2022, the rate of urbanization increased at a rate of about 467%. However, closer
examination reveals that this percentage precisely reflects the rise in urban areas that are
susceptible to flash flooding risks in the first classification, which was only 456%. This is
made abundantly clear in Figure 16a, whereas the rest of the classifications exhibited a
significant degree of variation in the rates of increase, and this can be seen in the urban
increase at risk from the second classification, where the increase rate amounted to 577%
and rose from 210.34 hectares to 1213.06 hectares with an increase of about 1002.72 hectares
as shown in Figure 16b. This classification was not the largest, but the increase continued in
the third and fourth classifications as shown in Figure 16c,d with bigger rates of 580% and
662%, respectively; nonetheless, the observed increase that raises many worries is the large
increase rate. The number of urban areas that fell into the fifth classification increased by
1.169% between 1984 and 2022, as shown in Figure 16e. This is a very high rate of growth,
which means that the number of urban areas exposed to the highest level of flood risk is
going up by 30% every year.

Table 6. Urban areas exposure, 1984.

Flood
Hazard

Hazard
Degree

Water
Depth

Urban Area 1984 Urban Area 2022

(Ha) % (Ha) %
H1 Very Low <0.5 3156.15 91.39% 14,394.68 89.28%
H2 Low 0.5–1 210.34 6.09% 1213.06 7.52%
H3 Medium 1–2 75.68 2.19% 439.28 2.72%
H4 High 2–5 11.23 0.33% 74.33 0.46%
H5 Extreme >5 0.13 0.00% 1.52 0.01%

Total 3453.53 100% 16,122.87 100%

Table 7. Analyzing of urban areas exposure between 1984 and 2022.

Flood Hazard 1984 2022 Differences Increasing (1984 to 2022)

H1 3156.15 14,394.68 11,238.53 456%
H2 210.34 1213.06 1002.72 577%
H3 75.68 439.28 363.6 580%
H4 11.23 74.33 63.1 662%
H5 0.13 1.52 1.39 1169%

Total % 3453.53 16,122.87 12,669.34 467%Land 2023, 12, x FOR PEER REVIEW 18 of 24 
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Urban Area 2022 (Ha)

H1 Very Low <0.5 H2 Low 0.5–1

H3 Medium 1.0–2.0 H4 High 2.0–5.0

H5 Extreme >5

Figure 15. Distribution of urban areas exposure over hazard classes for 2022.
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6. Discussion

The authors of this paper believe that the findings of this study can be interpreted
as both valuable and novel. This conclusion was reached after comparing the results of
this study with those of the literature review. There are many studies use our model in a
similar area in developing countries, but they use different conditions or data sources so
that it is difficult to compare the same results with that [63–65]. To the best of the authors’
knowledge, no other study has addressed integrated approaches to handle the problem
that has been taken into consideration; this integration includes three primary distinctions:
Firstly, this study was able to benefit from integrating the supervised classification in GIS
with satellite images as remote sensing data in order to provide an effective way to study
urban changes during separate periods of time that reached about 38 years in the study
area. This is different from many previous studies [52,61,66], which were based on field
study data and could not cover such a long-time span. They were also unable to examine
the urban situation in 1984 and how much it has changed since then. Furthermore, the
methodology of this study provided a method based on free and easy-access data for all
planners and researchers, as compared to other studies that require official procedures and
various permits to obtain it, and then only provide the urban areas in the current situation
or some of the last few years, and it will never reach the year of study in 1984. This is
because the methodology used in this study was based on free and easy-access data for all
planners and researchers.

Second, the findings of this study demonstrated a significant potential for modelling
the flash floods that occurred in the area under investigation by making use of the GSSHA
model. The model’s distinctiveness was shown by demonstrating its high level of compati-
bility with GIS data. In addition to GSSHA, there are numerous other numerical models
that can be used to simulate flood situations. Some examples of these models include
MIKE FLOOD, CCHE, FLO-2D, and TUFLOW [19]. None of the flood models described
above have related to a geographic information system (GIS) in such a way that a user may
rapidly adjust boundary conditions, run, and archive a flood simulation for various levee
breach scenarios within a geodatabase. Furthermore, GSSHA provides many data sources
available that are both free and simple to use. A digital elevation model and soil maps for
all parts of the world are among the data sources. These data sources enable researchers
and planners to study a wide range of phenomena remotely and without incurring a large
financial burden, while still providing results of adequate accuracy [42,51,65].

Finally, the findings of this study focused on re-simulating a particular historical
event that took place in 1984 and was responsible for the greatest amount of rainfall and
flash floods that took place in the city of Hail. In addition to analyzing urban areas at the
time of this disaster and the extent to which they were affected by torrential rains, which
previous studies did not do [41,46,51,61]. The results of this paper focused on studying
the extent of the impact that this natural disaster had. Within the researchers’ knowledge,
the research was not satisfied with that; rather, it analyzed the impact that a recurrence of
such a calamity with the same conditions would have on sprawling urban areas in 2022. A
comparison was then made between the exposure of urban areas to flash flood hazards,
whether in the year of their occurrence in 1984 or in the incident of their recurrence in 2022,
and the extent of the changes occurring in the proportions of urban distribution over the
five risk zones, whereas previous studies focused on the hydrological and geographical
studies of water basins [48,50].

7. Conclusions

The city of Hail is occasionally put in danger by the possibility of flash floods, which
can result in the loss of lives as well as property, in addition to causing damage to structures
and disruption of services. According to the findings of this study, urban expansion has
persisted even in regions that are at risk of being affected by torrential downpours. This
pattern was reflected in the increase in urban areas between 1984 and 2022. When modelling
flash floods, the use of freely available data can produce main results that are highly realistic
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in nature. The method would be helpful to decision-makers and planners in countries that
either do not have enough data or do not have sufficient funding to bid on development
projects. This is especially true in situations where it is necessary to perform simulations
of the potential site in order to reduce the risk of natural disasters. It would be extremely
helpful if more precise data were available since this would make it possible to conduct
more accurate simulations, which in turn would produce more trustworthy data from
the analysis of the risks in the risk region. This would have a significant impact on the
valuation of the land for the proposed development if it were taken into consideration.

There are many diverse types of urban expansion, but one that puts people and their
belongings in harm’s way is the sprawl that moves toward places that are more likely to be
struck by natural disasters. According to the findings of this research study, throughout the
years 2001 to 2013, urban sprawl in the area that served as the case study moved closer and
closer to a risk zone that was prone to flash floods and posed varied degrees of danger.

This study focuses on two primary aspects of methodology: the first addresses the
question of how to identify urban land use through the application of supervised clas-
sification to satellite imagery obtained from Landsat; however, to verify this part, it is
recommended that a field survey be carried out first in order to determine which areas of
the city are considered to be more historic. Following this step, a comparison between the
field observations and supervised classification for satellite imagery received from Landsat
can be carried out. A decent indication of the urban sprawl would be provided by this. At
the same time, the differences between the two methodologies would assist researchers
in calibrating the remote sensing data analyses that may be employed to acquire a result
quickly and at no cost.

The second technique shows how the hazard regions were located by employing the
GSSHA model found in the WMS software to simulate flash floods. For this section, we
have two recommendations for how to verify the simulation: the first one is to use the
same data with different hydrological software, such as CCHE, MIKE FLOOD, TUFLOW,
or FLO-2D; the second suggestion is to use field study data and high-resolution data using
the same apps and model, such as those of DEM, Soil Type map, and Land Use map.
These data sets are not obtainable in developing countries and require a very large budget
for researchers.

By modelling flash floods in risky locations, different methods for the planning of
urban growth can be investigated, and this could form the basis for policy suggestions for
sustainable urban development. In addition, we strongly suggest that the GSSHA model
be utilized to locate the locations that are in danger of being affected by flash flooding in
order to generate a preliminary estimate quickly. However, to obtain more precise results,
it would be necessary to conduct analyses based on high-resolution data, which could
only be obtained by incurring more costs. In the future, a study on urban sprawl in this
region will make it possible to have a better understanding of the degree to which new
urban areas will be at risk of being impacted by the possibility of storms and floods. It is
possible that the following factors contributed to the study’s limitations: (1) the resolution
of data is not high resolution because all data in this study are free; (2) the frequency
with which the field study I case study area was examined was too low to allow for a
thorough examination of the city’s various land uses; and (3) there was insufficient funding
to purchase high-resolution data. We can only hope that the results of this research will
assist in reducing the number of lives lost and the amount of property that was destroyed.
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