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Abstract: Most slope collapse accidents are indicated by certain signs before their occurrence, and
unnecessary losses can be avoided by predicting slope deformation. However, the early warning
signs of slope deformation are often misjudged. It is necessary to establish a method to determine
the appropriate early warning signs in sliding thresholds. Here, to better understand the impact
of different scales on the early warning signs of sliding thresholds, we used the Fisher optimal
segmentation method to establish the early warning signs of a sliding threshold model based on
deformation speed and deformation acceleration at different spatial scales. Our results indicated
that the accuracy of the early warning signs of sliding thresholds at the surface scale was the highest.
Among them, the early warning thresholds of the blue, yellow, orange, and red level on a small scale
were 369.31 mm, 428.96 mm, 448.41 mm, and 923.7 mm, respectively. The evaluation accuracy of
disaster non-occurrence and occurrence was 93.25% and 92.41%, respectively. The early warning
thresholds of the blue, yellow, orange, and red level on a large scale were 980.11 mm, 1038.16 mm,
2164.63 mm, and 9492.75 mm, respectively. The evaluation accuracy of disaster non-occurrence and
occurrence was 97.22% and 97.44%, respectively. Therefore, it is necessary to choose deformation
at the surface scale with a large scale as the sliding threshold. Our results effectively solve the
problem of misjudgment of the early warning signs of slope collapse, which is of great significance
for ensuring the safe operation of water conservation projects and improving the slope deformation
warning capability.

Keywords: fisher optimal segmentation method; warning; threshold determination; regression model

1. Introduction

Significant slope collapse is one of the most destructive and costly natural disas-
ters that affects the safety and development of water engineering. This phenomenon is
exacerbated by the over-exploitation of natural resources [1–5]. For the safety of water
engineering, water resources, ecology, and society, it is important to establish an early warn-
ing model [6–10]. This problem has evoked high levels of interest outside of the scientific
community. However, methods for establishing early warning signs are not always perfect,
and misjudgment of the early warning signs often occurs [11–13].

Correctly determining the early warning signs in sliding thresholds is the basis for
establishing an early warning system. There have been many previous studies focusing
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on the determination of the early warning signs in sliding thresholds in the field of slope
collapse disasters. For example, He et al. established a slope monitoring and prediction
system for landslide displacements; the evaluation model of the sensitivity of steep slopes
was established by combining an AHP model and expert opinions, and the classification
standard and threshold of the steep slope were determined [14]. B Ahmed et al. quan-
titatively analyzed the correlation between the precipitation threshold and the different
risk areas, to judge the influence of precipitation threshold on landslide displacement
in different risk areas, and determined the landslide warning threshold in different risk
areas [15]. At present, the comparison method, the fluctuation method, the critical value
method, the comprehensive evaluation method, the expert consultation method, and other
methods are among the most common methods used to determine the early warnings
signs in sliding thresholds [16]. Among them, the comparison method includes the me-
dian principle method, average method, and majority principle method. The method has
been used to determine the early warnings signs in sliding thresholds by calculating the
medians or the averages [17]. However, the method is easily affected by the averages of the
indicators. Meanwhile, the fluctuation method includes the parameter principle method,
correlation principle method, and fluctuation principle method. This method has been used
to determine the early warnings signs in sliding thresholds by analyzing the fluctuations
in historical data according to the averages and the standard deviation [18]. However,
this method was affected by historical data and the accuracy of the early warning signs
in sliding thresholds is low when calculating them using the historical data. The expert
consultation method is a common method for determining the early warnings signs in
sliding thresholds, which can reflect the risk preference of decision makers [19]. How-
ever, this method is affected by human factors. The critical value method has stronger
pertinence and accuracy and has more choices in the process of determining the early
warning threshold. It is more flexible to apply and is suitable for the analysis of specific
events. It is necessary to rely on methods such as model analysis and risk evaluation for
the setting of early warning thresholds [20]. However, this method is mainly applicable
to the analysis of specific events. The comprehensive evaluation method has fewer re-
quirements for quantitative data. Through mathematical analysis and processing of the
relationship between multiple variables, it is possible to obtain a quantitative value that is
closer to the actual situation, so this method should be applied to study areas with many
variables or difficult quantitative factors [21]. However, the mathematical calculation in this
method is relatively complicated, and there is a certain subjectivity for the weights between
multiple variables.

In view of this, on the basis of not changing the time series used, the Fisher optimal
segmentation method can not only comprehensively consider multi-factor indicators but
also scientifically show the influence of the change in the number of stages on the calcu-
lation results to determine the optimal number of stages and shows a strong advantage.
This method can solve the interference of human factors and subjectivity. At present, this
method has been widely applied in the fields of agriculture, meteorology, and geological
disaster forecasting [22–24]. However, it has not been widely applied in the process of
determining the early warning thresholds for steep slope deformation. Here, we applied
the Fisher optimal segmentation method to the field of determining the early warning
thresholds for steep slope deformation for the first time. Both the deformation speed and
acceleration, which affect the slope deformation at different spatial scales, were selected
as indicators. The sample data were then scientifically segmented by the Fisher optimal
segmentation model to identify the early warning thresholds. Finally, af regression model
was used to evaluate the accuracy of the early warning threshold model. The techni-
cal route of this method is shown in Figure 1. This solves the limitation of prediction,
which can be interfered with by misjudgment of the early warning signs. Our proposed
method can improve the early warning capabilities and avoid the occurrence of misjudg-
ment, providing a simple and efficient new method for the early warning signs of slope
collapse disasters.



Land 2023, 12, 344 3 of 14

Land 2023, 11, x FOR PEER REVIEW 3 of 15 
 

warning threshold model. The technical route of this method is shown in Figure 1. This 

solves the limitation of prediction, which can be interfered with by misjudgment of the 

early warning signs. Our proposed method can improve the early warning capabilities 

and avoid the occurrence of misjudgment, providing a simple and efficient new method 

for the early warning signs of slope collapse disasters. 

 

Figure 1. The technical route of the early warning threshold model. 

2. Materials and Methods 

2.1. Study Area 

The study region is a steep slope of the Hongshiyan water control project; it is located 

at the junction of Lijiashan village, Huodehong Township, Ludian County and 

Hongshiyan village, Baogunao Township, Qiaojia County. An earthquake on August 3, 

2014 caused many geological disasters such as landslides and collapses, forming a barrier 

lake. Among these disasters, the super large-scale collapse of the right slope and the 

collapse of the front edge of the left slope formed a large landslide dam with a height of 

600 m and a volume of about 12 million cubic meters. The location of the study area is 

shown in Figure 2. After the earthquake, the landslide dam was extremely unstable, and 

secondary disasters are very serious. Meanwhile, there are often rocks falling off in the 

local areas, which can easily cause damage to construction equipment and threaten the 

personal safety of construction personnel in the process of construction. Therefore, 

quantitatively establishing the early warning signs of sliding thresholds is important to 

protect the safety of construction. 

Figure 1. The technical route of the early warning threshold model.

2. Materials and Methods
2.1. Study Area

The study region is a steep slope of the Hongshiyan water control project; it is located
at the junction of Lijiashan village, Huodehong Township, Ludian County and Hongshiyan
village, Baogunao Township, Qiaojia County. An earthquake on August 3, 2014 caused
many geological disasters such as landslides and collapses, forming a barrier lake. Among
these disasters, the super large-scale collapse of the right slope and the collapse of the front
edge of the left slope formed a large landslide dam with a height of 600 m and a volume of
about 12 million cubic meters. The location of the study area is shown in Figure 2. After
the earthquake, the landslide dam was extremely unstable, and secondary disasters are
very serious. Meanwhile, there are often rocks falling off in the local areas, which can easily
cause damage to construction equipment and threaten the personal safety of construction
personnel in the process of construction. Therefore, quantitatively establishing the early
warning signs of sliding thresholds is important to protect the safety of construction.

2.2. Data Source

In this study, we needed to obtain the deformation data and the DEM data. The DEM
data were derived from UAV remote sensing technology; the slope orthophoto image model
was constructed by UAV remote sensing data and geographic data, and their accuracy was
on the centimeter~decimeter level. Meanwhile, the data of slope deformation from 1st
January 2019 to 31st December 2019 were obtained from ground-based synthetic aperture
radar. The data mainly included the deformation, deformation speed, and deformation
acceleration. We obtained the deformation speed and deformation acceleration at different
spatial scales by pretreating deformation data using the method of mathematical statistics.
Ground-based synthetic aperture radar is suitable for monitoring the slow deformation
stage of landslides, so our proposed method focused on analyzing the early warning signs
of sliding thresholds at the slow deformation stage of landslides.
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2.3. Landslide Type

Landslides form in different geological environments and exhibit various forms and
characteristics. The purpose of landslide classification is to summarize the various envi-
ronmental and phenomenon characteristics of landslide action with various factors, and
correctly distinguish some rules on landslide action. In practice, scientific landslide classifi-
cation can be used to guide exploration work, identify the possibility of landslides, and
make the corresponding measures.

According to the classification of the landslide speed, when a landslide belongs to
the type of slow deformation, the daily slope deformation is several centimeters to tens of
centimeters. A large range of landslide phenomena can only be found through monitoring,
and the local range of landslide phenomena is more obvious. Meanwhile, landslides are
mainly caused by excavation of the mountain, which leads to the deformation of the upper
rock layer sliding and squeezing the lower part. A sliding landslide is characterized by
a higher sliding speed. The slope is an engineering landslide between 10 degrees and
45 degrees with a steep downwards slope and a gentle upwards slope. The thickness of the
landslide was about 10 m, and the volume of the landslide was less than 1 million cubic
meters [25–28].

Therefore, our study area belongs to the type of slow landslide, engineering landslide,
minor landslide, and sliding landslide, and our proposed method should be suitable for
these types.
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2.4. Fisher Optimal Segmentation Method

The Fisher optimal segmentation method is a method of clustering and partitioning
ordered sample sequences, the principle of this method is mainly segmenting the ordered
sample sequence, and the square deviation of each segmentation should be minimized so
that the difference within the segmentation is the smallest and the difference between the
segmentation is the largest [29–33].

Step 1: First of all, {X1, X2, X3, . . . , Xn} was set as the ordinal sample sequence, then
each sample was contained in m evaluation indicators, and matrix X was built. The matrix
X is shown in Formula (1).

Xij =


x11 x12 . . . x1m
x21 x22 . . . x2m
. . . . . . . . . . . .
xn1 xn2 . . . xnm

 (1)

The meaning, values, and units of each indicator were different, so matrix X should be
normalized. The normalization process is shown in Formula (2).

x
′
ij =

(
xij − xmin.j

)
/
(
xmax.j − xmin.j

)
(2)

where x
′
ij indicates a normalized matrix; xmin.j indicates the minimum of the jth indicator;

and xmax.j indicates the maximum of the jth indicator.
Step 2: First of all, {xs, xs+1, xs+2, . . . , xt}. was set a certain sequence, and t > s. At

the same time, R(i, j) was set as the diameter of class. The diameter of class is shown in
Formula (3).

R(i, j) =
j

∑
r=i

(xr − xst)
2 (3)

where xr indicates the eigenvalues in the sequence sample; xst indicates the average of all
data in the series; and xst is shown in Formula (4).

xst =
1

t− s + 1

j

∑
k=i

xk (4)

Step 3: First of all, n samples were divided into k categories, and the k categories were
P1 =

{
xs1 , xs1+1, . . . , xs2−1

}
,P2 =

{
xs2 , xs2+1, . . . , xs3−1

}
, . . . , andPk =

{
xsk , xsk+1, . . . , xsk+1−1

}
.

The objective function result is shown in Formula (5).

F(n, k) = min
k

∑
j=1

R
(
sj, sj+1 − 1

)
(5)

Step 4: When the values of n and k were determined, the sum of the class diameters
could be calculated. When the sum of the class diameters was minimized, the obtained
solution was the optimal solution. The result of the Fisher optimal segmentation method is
shown in Formulas (6) and (7).

F(n, 2) = min
2 ≤ s ≤ n

[R(1, s− 1) + R(s, n)] (6)

F(n, k) = min
k ≤ s ≤ n

[F(s− 1, k− 1) + R(s, n)] (7)

where sk indicates the dividing point when finding the minimum of the optimal solu-
tion. At this time, the optimal solution is shown as F(n, k) = F(sk − 1, k− 1) + D(sk, n);{

xsk , xsk+1, . . . xn
}

is the kth category; and sk−1 indicates the dividing point. The optimal
solution with the dividing point sk−1 is shown as F(sk−1, k− 1) = F(sk−1 − 1, k− 2) +
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D(sk−1, n), so
{

xsk−1 , xsk−1+1, . . . xn,
}

is the (k-1)th category. Finally, all the dividing points
and optimal solutions were calculated according to the above methods.

Step 5: A graph showing that the objective function F(n, k) varies with the category k
was completed according to the classification results, and the graph was shown as F(n, k)-k.
k indicates the classification of the objective function of finding an obvious turning point in
the graph. When the classification is equal to k, the loss function was the largest, so k was
the optimal segments.

2.5. Accuracy Evaluation

On the basis of the construction of the early warning threshold model, it is necessary to
further evaluate the accuracy of the model. The linear regression model is a mathematical
model that reflects the correlations between the dependent variables and the independent
variables. The model contains independent variables and dependent variables, and a
straight line is used to approximately express the relationships between the dependent
variables and the independent variables [34–38]. Then, the model is a single-element
regression model and is shown in Formula (8).

Y = β1 + β2X + ε (8)

where β1 indicates the intercept of function Y, β2 indicates the slope, X indicates the
independent variables, and ε indicates the random error.

The coefficient of determination indicates the part explaining the dependent variables
according to the changes in the independent variables in the linear regression model, and
so the coefficient of determination judges the degree of fit of the model. At the same time,
the range of the coefficient of determination is between zero and one, and when the value
is closer to one, it indicates that the degree of fit of the model is better. Conversely, when
the value is closer to zero, it indicates that the degree of fit of the model is worse. The
coefficient of determination is shown in Formula (9).

R2 =
SSR
SST

= 1− SSE
SST

(9)

where SST indicates the sum of square deviation. It is the sum of the square between the
average dependent variables and the actual dependent variables, and it indicates the overall
fluctuation in the values of dependent variables. SSR is the regression sum of squares.
It is the sum of the square between the average dependent variables and the regression
dependent variables, and it indicates the changes in the sum of deviation about the linear
relation between the dependent variables and the independent variables.

In order to evaluate the accuracy of the early warning threshold model, the regression
model was used. Then, the linear regression model, power regression model, and expo-
nential regression model could be used to perform regression analysis at different sliding
threshold intervals. At the same time, the regression model with a high fit was selected to
evaluate the accuracy of the early warning of sliding thresholds at different sliding thresh-
old intervals by comparing the coefficient of determination of three regression models.

3. Results
3.1. Indicators Selection

In this study, a ground-based synthetic aperture radar was used to collect the data
of slope deformation, such as speed and acceleration, in 2019. Ground-based synthetic
aperture radars are high-resolution radars characterized by a high-resolution ratio and
large scale, enabling real-time automatic all-day and all-weather monitoring, and the radar
should obtain high-resolution radar images under extreme environmental conditions. The
data of each grid can be obtained by data processing, and the accuracy can reach sub-
millimeter accuracy. Therefore, we should select the deformation speed and deformation
acceleration at different spatial scales as the evaluation indicators under a different number
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of grids, and the evaluation indicators need to be counted and redefined in the process of
establishing the early warning threshold model. The meanings of evaluation indicators are
shown in Table 1.

Table 1. The meanings of all indicators.

Number Indicators Meanings

Number one Point speed The maximum speed under all grids in the slope DEM model

Number two Linear speed The sum of speeds in the grids passed by terrain lines in the
slope DEM model

Number three Surface speed The sum of deformation speeds along the same direction under
all grids in the slope DEM model

Number four Point acceleration The maximum acceleration under all grids in the slope
DEM model

Number five Linear acceleration The sum of accelerations in the grids passed by terrain lines in
the slope DEM model

Number six Surface acceleration The sum of deformation accelerations along the same direction
under all grids in the slope DEM model

3.2. The Early Warning Signs of Sliding Thresholds Result

The statistical point speed, point acceleration, linear point, linear acceleration, surface
speed, and surface acceleration deformation indicators were recorded from 1st January
2019 to 31st December 2019. Each indicator and meaning were different, so it was necessary
to normalize indicators. In this study, the DEM model was divided into 100 grids and
200 grids, the data were counted every day, and then the early warning signs of sliding
thresholds were determined according to the principle of the Fisher optimal segmentation.
The results of the Fisher optimal segmentation model are shown in Figure 3.
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(b) 200 grids.

Figure 3 shows that the results from different numbers of grids have clear inflection
points when k is four, and the slope difference reaches a peak; therefore, the optimal number
of sample divisions should be four. The slope difference presented in red reached its peak.
The loss value presented in blue is the value corresponding to the slope difference. This
could be explained by the fact that under the 100 grids and 200 grids models, there were
four levels such as blue warning, yellow warning, orange warning, and red warning. The
results of the early warning signs of sliding thresholds are shown in Tables 2 and 3.
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Table 2. The results of deformation threshold intervals with a small scale (mm).

Early Warning Level Point Scale Linear Scale Surface Scale

Non-occurrence (0, 59.2) (0.122.29) (0.369.31)
Blue warning (59.2, 67.78) (122.29, 159.45) (369.31, 428.96)

Yellow warning (67.78, 84.66) (159.45, 169.28) (428.96, 448.41)
Orange warning (84.66, 85.84) (169.28, 220.93) (448.41, 923.7)

Red warning (85.44, +∞) (220.93, +∞) (923.7, +∞)

Table 3. The results of deformation threshold intervals with large scale (mm).

Early Warning Level Point Scale Linear Scale Surface Scale

Non-occurrence (0.137.95) (0.214.04) (0.980.11)
Blue warning (137.95, 153.82) (214.04, 224.90) (980.11, 1038.16)

Yellow warning (153.82, 200.35) (224.90, 235.44) (1038.16, 2164.63)
Orange warning (200.35, 769.14) (235.44, 587.86) (2164.63, 9492.75)

Red warning (769.14, +∞) (587.86, +∞) (9492.75, +∞)

3.3. Accuracy Evaluation

We took the sliding threshold intervals on the 100-grid scale as an example. The
deformation data were segmented by using the Fisher optimal segmentation method, and
then the linear regression model, power regression model, and exponential regression
model could be used for each threshold interval to perform regression analysis. The
regression analysis results of all sliding threshold intervals are shown as follows.

Figure 4 shows the results of regression analysis in the first threshold interval with
different regression models. The results of the regression relationship are shown in
Formulas (10)–(12).

y = 0.6097x + 20.597 (10)

y = 19.91e0.015x (11)

y = 3.6864x0.6814 (12)
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The coefficients of determination of the linear regression model, exponential regression
model, and power regression model were 0.87, 0.63, and 0.92, respectively. Therefore, the
regression model in the first threshold interval was similar to a power regression model.

Figure 5 shows the results of regression analysis in the second threshold interval
with different regression models. The results of the regression relationship are shown in
Formulas (13)–(15).

y = −0.0762x + 80.96 (13)

y = 80.947e−0.001x (14)

y = 85.1x−0.026 (15)
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However, the range of data fluctuation in the second threshold interval was large and
may impact the fit of the regression model. Overall, the coefficients of determination of
the linear regression model, exponential regression model, and power regression model
were low, at 0.11, 0.11, and 0.18, respectively. Therefore, the regression model in the second
threshold interval was similar to a power regression model.

Figure 6 shows the results of regression analysis in the third threshold interval with
different kinds of regression models. The results of the regression relationship are shown
in Formulas (16)–(18).

y = 25.56x + 3.9253 (16)

y = 86.79e0.0894x (17)

y = 46.313x0.7719 (18)
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The coefficients of determination of the linear regression model, exponential regression
model, and power regression model were 0.97, 0.95, and 0.91, respectively. Therefore, the
regression model in the third threshold interval was similar to a linear regression model.

Figure 7 shows the results of regression analysis in the third threshold interval with
different regression models. The results of the regression relationship are shown in
Formulas (19)–(21).

y = 0.4196x + 23.194 (19)

y = 18.154e0.0152x (20)

y = 3.88476x0.6375 (21)
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The coefficients of determination of the linear regression model, exponential regression
model, and power regression model were 0.67, 0.45, and 0.82, respectively. Therefore, the
regression model in the fourth threshold interval was similar to a power regression model.

Therefore, through the regression model, the thresholds for the early warning levels
such as blue warning, yellow warning, orange warning, and red warning on the daily scale
and point scale were identified for different warning threshold intervals. The accuracy of
the model could be obtained by comparing the identified occurrence times with the actual
occurrence times in 2019. The accuracy of the model is shown in Table 4.

Table 4. The accuracy of the models with point scale with small scale.

Warning Levels Actual Times (d) Predicted Times (d) Error Accuracy

Blue warning 8 31 / /
Yellow warning 110 99 10% 90%
Orange warning 2 3 50% 50%

Red warning 25 43 72% 28%
Non-occurrence 163 132 19.02% 80.98%

Occurrence 145 176 21.38% 78.62%

According to the above methods, the regression model was used to evaluate the
accuracy of the early warning threshold intervals at different spatial scales with different
scales. The results of evaluation accuracy are shown in Table 5.

Table 5. The results of evaluation accuracy at different spatial scales with different scales.

Spatial and Scale Blue Warning Yellow Warning Orange Warning Red Warning Occurrence Non-Occurrence

Point scale and 100 grids /– 90% 50% 28% 78.62% 80.98%
Linear scale and 100 grids / 88.89% 94.74% 100% 79.37% 85.71%
Surface scale and 100 grids 84.21% 100% 62.96% 100% 92.41% 93.25%
Point scale and 200 grids 36% 85.19% 81.77% 72.55% 89.63% 87.5%
Linear scale and 200 grids 47.89% 88.89% 20% 100% 91.84% 84.62%
Surface scale and 200 grids 57.14% 91.67% 100% 100% 97.44% 97.22%

Table 5 shows the accuracy of the early warning threshold model at different spatial
scales with different scales. As can be seen from Table 5, when the number of grids in
the slope DEM model was 100, the accuracy of predicting non-occurrence in the slope at
different spatial scales was 80.98%, 85.71%, and 93.25%, respectively, and the accuracy
of the predicting occurrence was 78.62%, 79.37%, and 92.41%, respectively. Therefore,
when the number of grids in the slope DEM model was the same, slope deformation on
the surface should be used as the most appropriate sliding threshold. When the number
of grids in the slope DEM model was 200, the accuracy of predicting non-occurrence in
the slope at different spatial scales was 87.5%, 84.62%, and 97.22%, respectively, and the
accuracy of predicting occurrence was 89.63%, 91.84%, and 97.44%, respectively. Therefore,
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slope deformation on the surface with a large number of grids should be used as the most
appropriate threshold when the slope deformation has the same spatial scale but a different
number of grids.

3.4. Discussion

The methodology in this study has a number of distinctive characteristics in relation to
the early warning threshold model in the field of slope collapse. This method takes speed
and acceleration at different spatial scales into consideration. Extensive slope deformation
data are systematically collected, which is a scientific and reliable data resource enabling
the determination of the early warning thresholds. The slope deformation data used here
mainly come from ground-based synthetic aperture radar data. In addition, we considered
not only the influence of spatial scales but also the impacts of the scales. Finally, the early
warning thresholds at different spatial scales with different scales was explored using
the proposed approach, and the accuracy of the model was assessed by using the linear
regression model, exponential regression model, and power regression model.

The method proposed by our study adequately considered the influence of different
scales and removed the interference of human factors. This is an advantage over existing
studies, which have not considered the interference of human factors. For example, S
Loew et al. specified the early warning level for the official alarm and evacuation alarm for
monitoring slopes, and the early warning thresholds were mainly set by the deformation
speed or acceleration [39]. Their method showed that the determination of the early
warning thresholds contained factors that could be influenced by humans. Compared
with their study, the method presented in our study removed the interference of human
factors, and the identification of the early warning thresholds was mainly affected by
different scales.

As for the accuracy of the model proposed by our study, the results showed that the
early warning thresholds determined by the surface scale on a large scale was the most
accurate and should be used as the appropriate early warning thresholds to specify the early
warning levels. This is consistent with existing research by S Naidu et al., who established a
combined cluster and regression model to identify the early warning thresholds by rainfall
thresholds [40]. Their results showed that there was a linear relationship between the early
warning thresholds and rainfall thresholds, and they obtained the early warning thresholds
at the surface scale through the rainfall thresholds. Compared with their study, the results
presented in our study determined the early warning thresholds at different scales, and
the early warning thresholds at the surface scale on a large scale were the most accurate.
However, their results were mainly restricted to a single spatial scale. In contrast to their
results, our results adequately considered the impact of different scales.

In summary, establishing the early warning threshold model as a novel method
improved the early warning capability and avoided the occurrence of misjudgment. The
results from our proposed model revealed the difference in the early warning thresholds at
different scales. The early warning thresholds at the surface scale on a large scale should
be used as the appropriate early warning thresholds, which is of great significance to the
management, prevention, and emergency rescue of slope collapse.

4. Conclusions

Unlike traditional early warning threshold models for slope deformation, the early
warning threshold model proposed by our study first introduces the principle of Fisher
optimal segmentation, which can successfully identify the early warning threshold at
different scales. Our method selected the appropriate sliding threshold as the deformation
prediction model and solved the problem of misjudgment of the early warning signs. Using
this method to determine the early warning thresholds can reduce the interference of
human factors and effectively improve the early warning capability to a great extent. We
concluded that the accuracy of the model was influenced by the spatial scale and number
of grids, and the accuracy of the early warning thresholds was best when the scale was



Land 2023, 12, 344 12 of 14

at the surface level with 200 grids. The accuracy of the early warning thresholds was
worst when the scale was point level with 100 grids. In general, the accuracy of the early
warning thresholds at the same spatial level was better when the number of grids was
200, and the accuracy of the early warning thresholds at the same spatial level was worst
when the number of grids was 100. Our experimental results revealed that to ensure that
the early warning thresholds were the most accurate, the results at the surface scale with
200 grids should be used as the early warning threshold for steep slopes. In the future,
more time scales, such as hours and minutes, and more landslide stages, such as rapid
stage and instantaneous collapse stage, should be considered to verify the feasibility of the
early warning threshold model.
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