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Abstract: Land degradation and climate change are among the main threats to the sustainability of
ecosystems worldwide. As a result, the restoration of degraded landscapes is essential to maintaining
the functionality of ecosystems, especially those with greater social, economic, and environmental
vulnerability. Nevertheless, policymakers are frequently challenged by deciding where to prioritize
restoration actions, which usually includes dealing with multiple and complex needs under an always
limited budget. If these decisions are not taken based on proper data and processes, restoration
implementation can easily fail. In order to help decision-makers take informed decisions on where to
implement restoration activities, we have developed a semiautomatic geospatial platform to prioritize
areas for restoration activities based on ecological, social, and economic variables. This platform
takes advantage of the potential to integrate R coding, Google Earth Engine cloud computing, and
GIS visualization services to generate an interactive geospatial decision-maker tool for restoration.
Here, we present a prototype version called “RePlant alpha”, which was tested with data from the
Central Zone of Chile. This exercise proved that integrating R and GEE was feasible, and that the
analysis with at least six indicators for a specific region was also feasible to implement even from
a personal computer. Therefore, the use of a virtual machine in the cloud with a large number of
indicators over large areas is both possible and practical.

Keywords: google earth engine; R coding; GIS; restoration; decision-making

1. Introduction

Human activities have had a profound impact on the earth’s ecosystems on a global
scale. This impact has been so great that several authors have argued that we are in a new
geological epoch: the Anthropocene [1]. The historical pressure on ecosystems has been
increasing hand in hand with population growth, mainly driven by the demand for resources
to cover essential needs such as food and shelter [2,3]. These have led land transformation
and soil degradation to be among the greatest threats to the resilience of ecosystems
worldwide [4]. Thus, developing strategies to help restore degraded ecosystems is an urgent
task to help keep the planet in healthy ecological conditions to support biodiversity, tackle
climate change, and promote human development [5]. Additionally, the United Nations
has made an explicit call to implement restoration activities, naming the period 2021–
2030 the “UN Decade on Ecosystem Restoration” (). Nevertheless, developing restoration
activities will be challenging, particularly when they need to be interwoven with a myriad
of other uses in socio-ecological landscape mosaics [6]. Under these circumstances, it is

Land 2023, 12, 303. https://doi.org/10.3390/land12020303 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land12020303
https://doi.org/10.3390/land12020303
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0002-3942-1916
https://orcid.org/0000-0002-3631-9932
https://orcid.org/0000-0002-6256-7315
https://orcid.org/0000-0002-3670-6190
https://doi.org/10.3390/land12020303
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land12020303?type=check_update&version=2


Land 2023, 12, 303 2 of 13

key to identify areas that are likely to maximize the benefit provided by restoration and
minimize the social and economic costs of implementation [7]. Hence, developing tools
to help overcome the challenges of implementing restoration activities in socio-ecological
landscapes is key to increasing the effectiveness of a country’s specific actions.

One of the main challenges to identifying the best areas to implement restoration
activities is the large number of variables that need to be jointly assessed, which usually
include ecological, economic, social, and institutional factors [8]. Spatial prioritizations
like this could be addressed with the use of multi-criteria spatial decision analyses, which
integrate different geospatial variables through a system of interaction rules that combine
them to generate information for decision-making [9–11]. Such an approach has been
recently proposed to identify global priority areas for restoration [12] and has also been
used for prioritizing areas for restoration at finer scales (e.g., [13–15]).

However, a pervasive characteristic common to many methods for environmental
decision-making is the inadequate inclusion of stakeholders in the decision-making pro-
cess [16]. This is also a prevalent issue in the prioritization of restoration projects, as most
published studies do not adequately include stakeholders [17]. While this problem could
be solved by investing time and resources to ensure the participation of an inclusive and
representative group of stakeholders, the prioritization outcomes would only be valid for
the specific context (e.g., geographical, ecological, economic, social, and institutional) in
which the decision-making process took place. Therefore, researchers could be tempted
to reduce the participation of stakeholders in spatial prioritization methods to make the
process simpler and produce more generalizable outcomes, decreasing the legitimacy of
the results [16]. This may be particularly true for spatial analyses, as the tasks of data
collection, processing, and analysis are intensive in terms of time and computational re-
sources. Due to the complexity of the different regional scenarios, it is tempting to skip the
regional differences and focus on the generalities, which can have negative impacts on the
restoration process (e.g., [8,18,19]). For example, Chile is a long and narrow country that
has a north-south and west-east climatological gradient, a large diversity of vegetational
communities, a large urban concentration, and sectors dominated by rural populations.
It also has contrasting drivers of land degradation and productive activities throughout
the territory. While in some regions mining is the principal economic activity, in others
forestry and agriculture are dominant [20]. If we only include the mining industry in the
environmental decision-making process, results will only be valid for regions where that
activity is dominant.

However, the increasing availability of free spatial information, geospatial processing
packages, and cloud computing capabilities has expanded the frontiers of what can be
done in environmental spatial analysis [21,22]. These new tools may offer an opportunity
to generate a new era for multi-criteria spatial decision analysis, where researchers focus
on developing on-line interactive decision-making platforms, and stakeholders operate
them in real-time to evaluate different scenarios based on specific context. In this work,
we present the preliminary results of an ongoing project aimed at developing a free online
interactive geospatial decision-making platform for guiding the selection of areas for
ecological restoration in Chile. The prototype, called “RePlant alpha” uses R coding for
requesting and managing the data, and for framing and running the decision-making
algorithms, Google Earth Engine (GEE) for collecting and preprocessing satellite-based
spatial data, and an online viewer for interactively showing the results.

2. RePlant alpha

The current prototype is a computer-based platform that integrates the flexibility of R
coding with the cloud computing capabilities of Google Earth Engine (Figure 1). In general
terms, the platform works based on a set of predefined indicators (including the ecological,
social, and economic dimensions), which, depending on their characteristics, are processed
on GEE or on a local computer. Currently, all satellite-based indicators are cloud-computed
in GEE, whereas the other indicators are computed from geospatial data stored on a local
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computer. Once all the indicators have been computed and standardized into compatible
units, they are integrated through a spatial multi-criteria analysis (SMCA). During the
integration process, a sensitivity analysis is performed to help define the weights used in
the SMCA. In addition, an optional routine is available to run all the possible combinations
of weights as a pre-cached database of results or to build a metamodel. Results are then
uploaded to a web-based mapping platform (ArcGis Online) to produce interactive maps
(Figure 1).
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Figure 1. Diagram representing the main processes implicated in generating the prioritization of
areas for restoration in the RePlant alpha platform.

3. RePlant alpha in Action

With the aim of showing the potential of the current prototype, we used RePlant alpha
to identify areas for restoration within the administrative region of Valparaíso, in Central
Chile (Figure 2). This region of 16,396 km2 has a Mediterranean climate, with annual rainfalls
of 350 mm concentrated predominantly during the winter months. The original vegetation is
mainly represented by schlerophyll forests and shrublands, which are currently relegated
to higher and steeper areas, while lower and flat areas have been largely transformed
for urbanization, agriculture, and forestry. The changes in landscape composition and
structure have made this region prone to forest fires, which have intensified the negative
impacts of land transformation and degradation.
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Figure 2. Map showing the area where the prioritization was performed. The Valparaiso Region is
shown with a red border.

3.1. Selection of Indicators

We selected seven indicators to test the platform. We decided to use indicators that
could be computed with freely accessible data but were at the same time useful to determine
areas with restoration needs. In order to select these indicators, we considered not only
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factors involved in the potential success of restoration processes, but also those related to
the social impact and operational feasibility of their implementation in the area [15,23].
The indicators were divided into three main categories: ecological, social, and economic
(Table 1). The selected indicators were: normalized difference vegetation index (NDVI),
differenced Normalized Burn Ratio (dNBR), slope and potential erosion indexes, population
density, and distance to roads.

Table 1. List of selected main indicators including classification and basic information.

Indicator Category Description/Objective Source Scale

NDVI Ecological

Calculation of NDVI over the last
5 years for each sample unit to

evaluate the trajectory of
vegetation in the sector

Landsat 30 m/pixel

dNBR Ecological

Calculation of dNBR based on the
difference between pre- and
post-fire seasons, to estimate

damage severity

Landsat 30 m/pixel

Slope Ecological Calculation of slope in percentage
to estimate erosion potential

Digital Elevation
Model/Aster 30 m/pixel

Potential erosion index Ecological

Estimation of potential erosion are
based on an empirical qualitative

model (IREPOT) and represent
risk of erosion using specific

characteristics of the studied areas.

Spatial data/IDE 1/50,000

Population Density Social
Estimation of population density

to calculate the potential for
community support

Spatialized census
data/IDE Census block

Proximity to roads Economic
Generation of distance map to
main and secondary roads to

estimate ease of access to the area
Spatial data/IDE 1/10,000

The NDVI and dNBR were chosen to assess vegetation changes (during the year) and
detect burned areas (December to March). We chose to use slope because steep areas should
have priority over flat ones due to the higher risk of future soil loss, landslides, and floods.
However, due to the fact that not all the areas with high slopes have the same characteristics
of erodibility and rainfall erosivity, we added the potential erosion index to account for
that variability in steep areas. Since local community support for any restoration project
is important [8], population density could give an estimate of the potential community
participation in any given area. Finally, the proximity to roads indicator was selected to give
greater value to sites closer to roads and prioritize areas that have fewer logistical limitations
to carry supplies, both in terms of vegetative plant material and human resources.

3.2. Indicator’s Building Process
3.2.1. Cloud Data Processing

The main objective of this proof of concept was to automate the compilation and anal-
ysis of the information needed to build some of the indicators. The GEE can be accessed
through a web-based integrated development environment (IDE) or by a Python applica-
tion programming interface (API). In order to integrate GEE with R, we use the package
“Reticulate,” which provides an interoperability layer to use Python in a R session [24].
In addition, the GEE Python API was installed using the package “rgee” [25]. These two
packages allowed us to connect to GEE with our credentials using Python in an R session.

A shapefile of the study area was uploaded to GEE to delineate the area of interest.
The Tier 1 Landsat 8 image collection was selected and later processed to eliminate un-
wanted pixels (e.g., clouds, shadows) using a mask based on the quality band (pixel_qa).
The preprocessed images were used to calculate monthly NDVI and NBR during 2017.
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The monthly indexes were then compiled into one composite raster, representing the me-
dian of 12 months for each index. The slope was derived from a digital elevation model
available in the GEE datasets (SRTM Plus). The resulting composites were cut to the extension
of the study area and then exported as a raster to the local R session.

3.2.2. Local Data Processing

The methodology described in this section uses the “sp” [26], “sf” [27], “stars” [28],
“tidyr” [29], and “Raster” packages in R [30].

The data needed to build the rest of the indicators was not available in GEE. Therefore,
they were built using a local working directory and produced using R GIS tools. Some
indicators, such as population density (PD), distance to roads (DR), and potential erosion
index (PEI), were in a vectorial format; therefore, we transformed them to a raster format.

The PD was derived from a comm- delimited file that was then filtered, leaving only
the continental territory (i.e., removing outer islands) as part of the study. The resulting data
was then spatialized, assigning the proper data to each administrative commune using the
“stars” package [28], and transformed into a raster file. The DR was derived from a vectorial
layer that included all the road infrastructure of the study area. The vectorial layer was
rasterized by calculating the distance from cells that were not identified as populated areas
to cells identified as roads, using the distance command from the package “raster” [30]. In
addition, the PEI corresponded to the results delivered by a potential erosion risk index
model (IREPOT, by the acronym in Spanish) [31]. The model also integrates different
variables, including topographic-hydrological, rainfall aggressiveness, soil, and vegetation.
All the variables were later integrated into a single qualitative index, which was represented
by four qualitative categories of potential risk (none or low, moderate, severe, and very
severe). Each category was associated with a risk class ranging from 1 to 4 (low to very
severe). This final layer was rasterized using the risk class.

3.3. Integration of Indicators

All generated raster layers were checked, reprojected, and resampled if needed. The
new raster layers were then normalized so that they were in the same range of values
between 0 and 1. This was done using the min-max rescaling method. Once all the layers
were on the same numerical scale, they were integrated in a SMCA using different weights.
Due to the fact that the use of weights can be subjective, we included a sensitivity analysis.
This analysis can give the user some insight regarding the influence of each weight on the
final SMCA results. The weight values were changed one at a time by ±0.2 starting from 0
to ±1. However, for each change in weight, a raster was built that was later compared to a
reference raster map representing a full model including all the indicators without weights.
To represent all the comparisons, a contingency table showing the agreement (%) for each
indicator was made to summarize the results using the package “diffeR” [32] (Table 2).

Table 2. Agreement (%) results for changes in weights of each indicator (ranging from −1 to 1).
The analysis corresponds to a comparison from a raster representing a weight change for a specific
indicator and the raster representing the baseline model.

Weights

Indicators −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Population Density 98 98 98 99 99 99 99 100 100 100 100
EJH 4 9 16 25 34 45 57 66 75 86 100

Erosion 40 41 43 46 53 62 72 79 84 90 100
NBR 16 26 36 88 45 54 63 70 79 88 100

NDVI 0 2 7 17 30 42 53 63 73 85 100
Proximity to roads 2 2 3 3 4 12 32 50 66 80 100

Slope 0 1 4 10 17 25 40 55 68 82 100

Following the results from the sensitivity analysis, the weights for each indicator were
defined according to their effect on the model. For example, for indicators that had a low
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impact (e.g., population density), low weight values were assigned (0.1). In contrast, for
indicators with a high impact on the outcome (e.g., proximity to roads) and slope, low
weight values were assigned. The rest of the indicators were set to 0.2. The prioritization
raster or priority index from the SMCA was reclassified in quartiles for ease of interpretation
and vectorized to make it compatible with a vectorial territorial administrative layer.

3.4. Cache of Different Weights Combinations

The code includes an option where the SMCA results for each possible combination
of weights can be cached on the computer, in the cloud, or on a server. However, we
do not recommend its use because the number of weight combinations is really high
(approximately 44 million different combinations for 7 indicators). In our case, the resulting
rasters from each weight combination had a size of 7 MB, which multiplied by the number
of different weight combinations would require 308 TB of storage.

3.5. Visualization Platform

The vectorial layers representing the prioritization and the territorial administrative
divisions were manually uploaded to web-based mapping software (Arcgis Online®, ESRI).
The platform has three interactive layers that the user can explore. A main layer represent-
ing the areas with a high prioritization index (>0.6) called priority areas; a secondary layer
showing the total priority area per commune called priority rate per commune (%); and a
third layer that corresponds to the reclassified prioritization index. Each layer has a caption
with its respective index or percentage value (Figure 3).
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4. Results
4.1. SMCA Output

The prioritized areas corresponded to 18% of the total area of the Valparaiso region
(total region area 160.6977 ha, not including insular areas). The provinces with a higher
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level of degradation were Valparaiso and San Antonio, with 5.5 and 4% of the total region
area, respectively (Appendix A). Coincidentally, the top three communes with the highest
degraded area were located in these provinces. Valparaiso province has two communes,
Casablanca (2.9%) and Valparaiso (1.1%), with the highest values of degradation. San
Antonio Province had one commune (San Antonio) with 1.3 % of the total area of the region
in need of restoration. The rest of the communes in the region had less than 1% of the total
area of the region classified as being in need of restoration (Appendix A). It is important to
note that even though the proportional contribution of the different communes to the total
could be seen as small in comparison with the total area of the region, some communes
have more than 40% of the area to restore per province. All 35 communes are in need
of restoration, although their contributions to each degraded province can vary from 2.3
to 53.1%.

4.2. Processing Times

On a top-of-the-line computer, the whole script for seven indicators takes approxi-
mately 40 min (not including permutations of the different weights or caches of different
combinations). However, it is important to consider that running the whole script will
not always be necessary, as many of the processed indicators could be stored as cached
data; thus, requiring to run the whole script once a year or when updated information is
available (e.g., new satellite images, updated social data). In any case, if more processing
power is needed, it can be scaled to a virtual machine on any cloud service without issue.

4.3. Sensitivity Analysis

The sensitivity analysis showed that population density is the less sensitive indicator,
meaning that changes in the weight associated with this indicator have a minimal impact
on the prioritization model. In contrast, the most sensitive indicators, proximity to roads
and slope, when not considered in the prioritization model (weight equal to zero), had
significant impacts on the model with only a 12% and 25% agreement, respectively. In
any case, most of the indicators were quite robust to weight changes (0.8 point reduction)
(Table 2).

5. Future Improvements
5.1. Code and Indicators

The code was written with only seven indicators, as this was a proof of concept.
Including more indicators can vary from a straightforward process to requiring major
coding. In order to avoid this issue, all the code that includes absolute paths and filenames
must be changed to relative paths. This change will simplify the directory structure
necessary for the different data files and allow the code to run on any device or cloud setup.
Relative indicator names are needed to make the code shorter and faster, especially for
functions in a loop and processor intensive tasks. Finally, these changes will help the future
platform administrator make changes or updates easily. While the current prioritization
module has only seven basic indicators, a newer version of the platform is being developed
to add 11 new indicators to the SMCA (Table 3). The future versions of the platform
will allow the users to select the indicators and weights used in the SMCA that are more
appropriate to their needs.
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Table 3. General information about the indicators that a future version of the platform will include.

Indicador Category Focus Description/Indicator
Objective Data Source Data Source

Scale

NDVI temporal
changes Ecological Land degradation

NDVI was calculated using the
last 5 years for each sample unit

to evaluate the trajectory of
vegetation in the sector

Landsat 30 m/pixel

dNBR Ecological Land degradation

Calculated using the difference
between pre- and post-fire

seasons, to estimate damage
severity

Landsat 30 m/pixel

Land use Ecological Land degradation

Classification of land uses (e.g.,
urban, agricultural, forestry,
natural) according to their

potential for restoration

National Native
Forest Inventory 1/5000

Slope Ecological Abiotic factors
(erosion proxy)

Calculation of slope in
percentage to estimate erosion

potential

Aster Digital
elevation model 30 m/pixel

Aspect Ecological Abiotic Factors (HR
and T◦ proxy)

Calculation of exposure in
degrees to estimate potential
soil moisture/temperature

conditions.

Aster Digital
elevation model 30 m/pixel

Proximity to Priority
Conservation Sites Ecological Landscape

Continuity

Generation of a map including
proximity to a priority site

and/or areas part of priority
sites to prioritize landscape

continuity

Chilean Geospatial
Data Infrastructure 1/10,000

Proximity to SNASPE Ecological Landscape
Continuity

Creation of a map of belonging
and proximity to priority

protected areas of the State to
prioritize landscape continuity

Chilean Geospatial
Data Infrastructure 1/10,000

Proximity to a native
vegetation fragment Ecological Landscape

Continuity

Map representing the distance
to native vegetation patches to
prioritize landscape continuity

National Native
Forest Inventory 1/5000

Vegetation cover type Ecological Landscape Diversity

Vegetation cover map
categorized by functional types

(herbaceous, evergreen,
deciduous), to prioritize
functional groups to be

reforested

Landsat 30 m/pixel

Particulate Matter Social/Economic Social Impact

Urban particulate matter maps
for 2.5- and 10-micron, o

establish priority zones for
restoration

National Air Quality
Information System

and proprietary
network of

contamination
monitor (Fernández

IC)

1/10,000

Land tenure Social/Economic Social Impact

Map of properties and/or land
ownership to evaluate

accessibility to areas with
restoration priority

Chilean Natural
Resources

Information Center
100 m/pixel

Multidimensional
Poverty Social Social Impact

District map of
multidimensional poverty to

prioritize by level of
socioeconomic vulnerability

National
Socioeconomic

Characterization
Survey

Census block

Extreme Poverty by
Income Social Social Impact

District map of extreme poverty
to prioritize by level of

socioeconomic vulnerability

National
Socioeconomic

Characterization
Survey

Commune

Unemployment Rate Social Social Impact
District unemployment map to

estimate the need for jobs in
affected areas

National
Socioeconomic

Characterization
Survey

Commune
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Table 3. Cont.

Indicador Category Focus Description/Indicator
Objective Data Source Data Source

Scale

Percentage of
population with

Higher Education
Economic Human Capital

District unemployment map to
estimate the need for jobs in

affected areas

National
Socioeconomic

Characterization
Survey

Commune

Distance from
population centers Economic Logistic

Map representing the distance
to population centers to

estimate the ease of obtaining
inputs

Chilean Geospatial
Data Infrastructure Commune

Population Density Economic Logistic
Estimation of population

density to estimate the potential
to recruit local labor

Chilean Geospatial
Data Infrastructure Commune

Proximity to roads Economic Logistic
Map of distances to main and
secondary roads to estimate

ease of access to the area

Chilean Geospatial
Data Infrastructure 1/10,000

5.2. Data Visualization

In terms of the data visualization, currently the results are not transferred automatically.
The approach to use will depend on who hosts the final version of the platform. There
are three options on how to transfer the data to a visualization module. One option is
to build a tailored platform and graphic interface using a hybrid composition of web
development, databases, and cloud computing. For example, a web service using HTML5,
CSS3, Javascript, JQuery, and Python3 technologies, through the Django Framework, for the
presentation layer (frontend) and the processing layer (backend), would work well. In data
storage and query response, a MySQL database can be used, while the complete solution
could be built on a cloud service such as Google Cloud or Amazon Web Services (AWS),
including Google Compute Engine (GCE) instances and Cloud SQL services. This solution
is more cost-effective because the only fixed cost in the long term would be the use of cloud
services. Another option is to keep using the ArcGis web-based mapping solution (ArcGis
online ®) together with R-ArcGIS Bridge and ESRI’s Web AppBuilder framework to provide
a web-based frontend. A similar solution would be the use of RStudio and packages of
different cloud services, such as Shiny, Shinyapps, or RStudio Connect. Although these
are the best solutions in terms of integration, they require a subscription to the services,
and the costs can escalate quickly depending on the services demanded by users and the
number of users connected.

5.3. Recommendations for Restoration Activities, Costs, and Funding

The future versions of the platform will include specific information for selected areas
according to the vegetation communities that were originally present. The prototype pre-
sented here incorporates generic text that is displayed when the mouse cursor is placed on
the prioritized areas. In order to include restoration recommendations for each vegetation
community, information needs to be compiled from diverse sources, including non-peer-
reviewed publications such as technical documents and books, as well as scientific articles.
Some of this information is already available for Chile in [23], but it needs to be updated
and provided in more detail. Once this information is ready, estimated costs per hectare can
be added for some of the activities. Finally, general information on funding opportunities
to finance these activities will also be added.

6. Conclusions

This exercise shows that developing a platform to assess restoration priorities required
expertise not only in remote sensing and GIS but also in ecological modeling and concepts
and approaches from landscape ecology and ecological restoration. In order to integrate
these different disciplines, you must develop multi-scale indicators. These indicators need
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to faithfully represent landscape degradation at multiple geographic scales and inter-annual
time periods, incorporating the relationship between degradation and the socio-economic
situation in the study area (e.g., [33–35]). Likewise, the techniques applied need to allow
the handling and analysis of large amounts of data in an autonomous manner with a
high demand for computational processing. In spite of the multifaceted computational
processing involved, the platform requires that it deliver the results of these complex
analyses in simple, easy-to-interpret results with practical recommendations for restoration.

Currently, there are different software tools (e.g., Zonation, Marxan) that are capable of
performing spatial prioritization to select sites and identify actions to develop management
and/or conservation plans in areas of interest ([36,37]). However, these tools require down-
loading a computer program, collecting and generating all the required geospatial information,
training in the use of the software, and running the program on computers with sufficient
computing power to handle multiple layers. These requirements limit the use of these tools,
especially in those cases where a large part of the necessary geospatial information needs
to be collected, and even more so when the complexity of the problem and geographic
extension of the territories under analysis require intensive use of human and financial
resources and technical capabilities to implement the prioritization. In contrast, the solution
proposed in this project will have all this geospatial information already loaded into the
system, eliminating the requirement for users to make the effort to collect and generate
the required indicators themselves. In addition, users will access the system through an
intuitive and user-friendly graphical interface, which will be designed to minimize the
need for GIS knowledge, thus maximizing the potential of the tool to be used by a wide
and diverse target audience.

Another relevant point is that the proposed solution is based on free and open access
geospatial information, and the data processing will be done through the “Google Earth
Engine” system, which also corresponds to a free and open access system, and therefore
the development of solutions does not require the use of technologies that are protected by
patents. Furthermore, the platform does not require a specific cloud computing service, and
is able to use any solution available in the market (e.g., Google Cloud Services, Amazon
Web Services, or Microsoft Azure).

Furthermore, the improved versions of RePlant alpha will undoubtedly contribute to
improving the experience, transparency, and efficiency of decision-making to prioritize the
restoration of degraded ecosystems. In addition, the fact that it is an interactive platform
where users can modify the relative importance of different indicators and dimensions
will facilitate dialogue between decision-makers who may have conflicting opinions. In
conjunction with these advantages, RePlant alpha can become a tool for scenario generation
and discussion, as well as a base platform for developing other spatial prioritization
objectives. In addition, this tool can contribute to the decision-making process for public
policy instruments such as the National Strategy for Climate Change and Vegetation
Resources and the National Landscape Restoration Plans, among others. At an international
level, this type of tool can help in accomplishing targets and goals of commitments assumed
by the countries for the restoration of degraded ecosystems, such as the Bonn Challenge,
20 × 20 Initiative, and the National Determined Contribution (NDC).
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Appendix A

Table A1. Prioritized area per administrative units in hectares, percentage of total prioritized area
and percentage of commune area deemed of restoration efforts.

Province Commune Area (ha) Area (%) % of Total Area

Los Andes (1%)

Calle larga 4758 28.9 0.3
Los andes 2684 16.3 0.2
Rinconada 3096 18.8 0.2
San esteban 5946 36.1 0.4

Subtotal 16,484

Marga Marga (1.8%)

Limache 10,466 35.3 0.6
Olmué 2559 8.6 0.2

Quilpué 12,395 41.8 0.8
Villa Alemana 4241 14.3 0.3

Subtotal 29,661

Petorca (2.2%)

Cabildo 6921 19.4 0.4
La Ligua 11,049 30.9 0.7
Papudo 3600 10.1 0.2
Petorca 7666 21.5 0.5
Zapallar 6473 18.1 0.4
Subtotal 35,709

Quillota (1.6%)

Calera 1790 7.1 0.1
Hijuelas 3275 13.0 0.2
La Cruz 3171 12.6 0.2
Nogales 6572 26.1 0.4
Quillota 10,403 41.3 0.6
Subtotal 25,211

San Antonio (4%)

Algarrobo 13,900 21.6 0.9
Cartagena 10,139 15.7 0.6
El quisco 3075 4.8 0.2
El tabo 7834 12.1 0.5

San Antonio 21,297 33.0 1.3
Santo Domingo 8239 12.8 0.5

Subtotal 64,484

San Felipe de
Aconcagua (2.5%)

Catemu 5738 14.4 0.4
Llaillay 5720 14.3 0.4

Panquehue 4996 12.5 0.3
Putaendo 8237 20.7 0.5
San Felipe 9270 23.2 0.6

Santa María 5920 14.8 0.4
Subtotal 39,881

Valparaíso (5.5%)

Casablanca 47,015 53.1 2.9
Concón 2006 2.3 0.1

Puchuncaví 6503 7.3 0.4
quintero 10,704 12.1 0.7

Valparaíso 17,452 19.7 1.1
Viña del mar 4875 5.5 0.3

Subtotal 88,555

Total 299,985
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