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Abstract: Forests are key ecosystems for climate change mitigation, playing a pivotal role in C and
N land sequestering and storage. However, the sustainable management of forests is challenging
for foresters who need continuous and reliable information on the status of soil conditions. Yet, the
monitoring of soils in temperate evergreen forests, via satellite data, is jeopardized by the year round
prevailing heavily dense canopy. In this study, the Sentinel-2 spectral imagery derived normalized
difference vegetation index (NDVI), proved to be a reliable tool to determine the C/N ratio in two
managed pine-dominated forests, in southern Poland. Results showed a strong negative correlation
between NDVI values and the on-site C/N ratios measured at the upper soil horizons in 100 and
99 randomly distributed sampling points across the Kup (r2 = −0.8019) and Koniecpol (r2 = −0.7281)
forests. This indicates the feasibility of using the NDVI to predict the microbial driven soil C/N ratio in
evergreen forests, and to foresee alterations in the vegetation patterns elicited by microbial hindering
soil abiotic or biotic factors. Spatial/temporal variations in C/N ratio also provide information on C
and N soil dynamics and land ecosystem function in a changing climate.

Keywords: remote sensing; soil properties; land vegetation index; Pinus sylvestris

1. Introduction

Coniferous temperate evergreen forests are key ecosystems for climate change mit-
igation, as they play a major role in carbon (C) and nitrogen (N) soil sequestration and
storage [1,2]. Among soil properties, the C/N ratio is pivotal to soil biology and soil
microbe community composition across soil types and climate zones [3]. The C-enriched
root exudates in the rhizosphere of evergreen woody species are known to stimulate mi-
crobial N mineralization, thus maintaining the microbial C/N stoichiometric balance, via
alterations in the microbiota taxonomic structure [4]. In forest ecosystems, the microbial
necromass contributes to approximately 35% of the soil organic C content in the upper soil
horizons [5,6]. While, soil and microbial N status plays a central role in the heterotrophic
nitrifying activities, via the activity of soil N2-fixing bacteria [7–9]. The uppermost soil
horizons are also known to harbor a greatest bacterial diversity and fungal biomass, when
compared to deepest horizons, involved in important biogeochemical processes such as the
degradation of soluble carbohydrates and polysaccharides, as well as the metabolism of C-
compounds [10,11]. Under coniferous trees, the upper soil horizon also plays a critical role
in organic C storage [2,12], although its sensitivity to climate change rising temperatures
might transform its storage capacity into a net source of CO2 [13].

In the case of managed evergreen pine forests, the maintenance of ecosystem resilience
is crucial under climate change at multiple scales [10], as soil biology is directly modulated

Land 2023, 12, 284. https://doi.org/10.3390/land12020284 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land12020284
https://doi.org/10.3390/land12020284
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0003-0191-8908
https://orcid.org/0000-0003-2069-3476
https://orcid.org/0000-0003-0352-4005
https://orcid.org/0000-0002-2906-8717
https://orcid.org/0000-0001-5221-3428
https://orcid.org/0000-0001-7731-1673
https://doi.org/10.3390/land12020284
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land12020284?type=check_update&version=2


Land 2023, 12, 284 2 of 8

by the addition of synthetic fertilizers and the intensity of seasonal tree felling and replant-
ing. As previously shown, intensive timber harvesting is known to hamper the soil C-sink
capacity, concomitantly increasing the soil CO2 and CH4 emissions to the atmosphere [14].
Nevertheless, the sustainable forest-management is challenging for foresters who need
continuous and reliable information on the status of soil conditions, since: (a) continuous
on-site determinations of the soil C/N ratio across large forest sites is a laborious and
time-consuming process, and (b) the monitoring via satellite data of soil properties in
temperate evergreen forests, is jeopardized by the year-round dense canopy [15].

The normalized difference vegetation index (NDVI) selected for this study has been
previously determined to be relevant for: (i) dendrochronological studies in boreal
forests [16], (ii) the analyses of the degradation or loss of vigor of Romanian forests [17],
(iii) the determination of the impact of anthropogenic activities on the aboveground
biomass C dynamics [18], and (iv) significant improvements in forest conservation and
sustainability [19], owing to the well-documented intimate relationships between soil bi-
ology and plant growth [20]. At the same time, freely available temporal, spatial, and
spectral Sentinel-2 imagery has been successfully used for monitoring the impact of sea-
sonal drought events on forest health [21,22], allowing a better sustainable management in
terms of plantation inputs and production cost optimization [23,24]. Thus, the aim of this
research was to test a new approach to address the use of Sentinel-2 imagery to estimate
the soil microbial driven C/N ratios in the Kup and Koniecpol Forest districts of southern
Poland, both of them known to be drought-prone [25].

2. Materials and Methods
2.1. Description of Forest Sites

This research was conducted in randomly scattered 100 sampling points across the
Kup forest district (50°49′37′′ N, 17°52′59′′ E), and 99 sampling points across Koniecpol
forest district (50°41′16′′ N, 19°46′16′′ E) in southern Poland (Figure 1). Both forests have
a similar history of stands, growing season (212–215 days), accumulated annual precip-
itation (629–635 mm), average mean annual temperature (7.8–8.5 ◦C), soils developed
from fluvioglacial sand, clay, and peat sediments, as well as a flat topography dominated
by Pinus sylvestris L. The negligible differences between the Kup and Koniecpol forests
in terms of stands, and edaphoclimatic prevailing conditions allowed: (a) the doubling
of the studied area, without the side effect of varying soil and climatic parameters; and
(b) the assumption of an uniform pine needles litter fall, undergoing similar decomposition
rates [26] carried out by a decomposer microbial community displaying many redundant
functions [27], modulated by a dominant plant species [28].

Figure 1. The sampling locations are marked with points. The two study sites are overlaid on the
Poland map. The Kup (left) and Koniecpol (right) forest districts are highlighted.
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2.2. Soil C and N Contents

At each sampling point in both forests, soils were collected up to a depth of 20 cm,
during the summer of 2019. Soils were cleaned of stones and plant debris to be transported
to the soil analytical laboratory at the University of Agriculture in Krakow. The total
soil C and total N contents were determined in air dried subsamples sieved through a
2-mm mesh, using a LECO CNS True Mac Analyzer (Leco, St. Joseph, MI, USA). Average
total C and N values were: (a) 25.92 ± 14.92% and 1.11 ± 0.57% in the Kup forest, and
(b) 29.20 ± 15.65% and 1.22 ± 0.68% in the Koniecpol forest. The C and N values for each
sampling point were used to calculate the C/N ratios.

2.3. Sentinel-2 Imagery and Vegetation Indices

Cloud-free Sentinel-2 imagery, taken at the same dates of the soil collection in indi-
vidual sampling points at each forest site, were downloaded from the Copernicus Open
Access Hub, as a Level-2A bottom-of-atmosphere. The normalized difference vegetation
index (NDVI) was calculated using the near-infrared (NIR) and red edge (RED) reflectances,
corresponding to the B05 and B08 bands in Sentinel-2 imagery, respectively (Table 1), both
having 10 × 10 m spatial resolution, following the standard equation:

NDVI =
NIR− RED
NIR + RED

Table 1. Sentinel-2 band parameters.

Band Spectral Range (nm) Pixel Size (m) Name

B01 432–453 60 Atmospheric correction
B02 458–523 10 VIS-BLUE
B03 543–578 10 VIS-GREEN
B04 650–680 10 VIS-RED
B05 698–713 20 RED EDGE
B06 733–748 20 RED EDGE
B07 773–793 20 RED EDGE
B08 785–900 10 NIR
B8A 855–875 20 NIR narrow
B09 935–955 60 Water vapour absorption
B11 1565–1655 20 SWIR
B12 2100–2280 20 SWIR

The raster maps obtained were masked using a vector file with the boundary of the
Kup and Koniecpol forest districts. The Pearson correlation (r2) was used to analyze
linear correlations between the Sentinel-2 imagery derived NDVI and the on-site measured
C/N ratio, at a significant level of 95%. The data set was divided into two subsets by a
pseudo-random approach, one for the model calibration and the other for validation with
a proportion of 80% and 20%, respectively. This approach facilitates the replication of
the results. For Kup forest, the training subset was n = 80, and the validation subset was
n = 20. For the Koniecpol forest, the data in each subset were 79 and 20, respectively. A
linear regression was performed based on the determined NDVI values and soil C/N ratios.
After obtaining the linear models, the soil C/N ratio maps were created from the NDVI
maps and compared with a natural color composition for each forest area (Figure 2). The
bare soil, urban zones and other non-vegetated areas were left off in these maps.
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Figure 2. Predicted C/N ratio and natural colour composition for comparing the forest areas.

3. Results

On-site analyses revealed non-significant differences in soil C/N ratios or NDVI values
between both forests (Table 2), even though the statistical mean, minimum, and Q3 soil C/N
as well as NVDI values were relatively higher in Koniecpol when compared to those in the
Kup forest. The coefficients obtained from the regression model allowed the construction of
an NDVI map linked to the soil C/N ratio map for the two forests. In Figure 3, geographical
zones colored in yellow had higher NDVI values. The model performance was evalu-
ated with the validation subset, obtaining the coefficient of determination for Kup forest
(R2 = 0.8156) and Koniecpol forest (R2 = 0.7760) (Figure 4). The residuals assumptions were
met in both models, with normality D’Agostino and Pearson’s test (p < 0.05) of 0.8087 and
0.8706 for Kup and Koniecpol forests, respectively.

Figure 3. Calculated NDVI for the Kup (left) and Koniecpol (right) forest districts.
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Table 2. Soil C/N ratio and Sentinel-2 derived Normalized Difference Vegetation Index (NDVI)
determined in 100 sampling points in the Kup forest district and 99 sampling points in the Koniecpol
forest district, in Southern Poland.

Forest Districts

Soil C/N Ratio Kup Koniecpol

Mean ± STd 21.62 ± 5.78 23.45 ± 6.49
Minimum 10.14 11.25
Maximun 32.36 39.17
Q1 17.66 18.00
Q3 26.22 28.07

NDVI Mean ± STd 0.76 ± 0.07 0.86 ± 0.06

Figure 4. Regression analysis for the Kup (top) and Koniecpol (bottom) forest districts. The plots on
the left show the measured C/N ratio, while the plots on the right show the predicted C/N.

4. Discussion

Worldwide, the Sentinel-2 imagery derived NDVI is the most commonly used vege-
tation index showing the strongest relationship with a large number of driving factors of
vegetation changes [9]. The NDVI ranking between 0.6188 and 0.9823, could be considered
as an indicator of the good plant-soil interactive conditions in both forest districts [29,30].
On the other hand, the soil C/N ratio is tightly associated with plant nutrient acquisition
through various strategies such as forming mutualistic associations with N2-fixing rhi-
zobacteria and arbuscular mycorrhizal fungi, or the stimulus of soil microbial activity to
mobilize nutrients from soil organic matter through root exudates [31–33]. It is interesting
to note the significant positive correlation previously recorded between the C/N ratio
and the activity of the prokaryote-excreted β-glucosidase enzyme directly involved in the
C cycle [34] in soils of the Manowo Forest District, northern Poland [35]. In the present
study, the soil C/N ratios ranged between 10 and 32 in both forests, coinciding with values
reported for forests dominated by non N2-fixing tree species [36].

Most important is the strong negative correlation detected between the Sentinel-2
imagery-derived NDVI and the on-site determined soil C/N ratios, confirming the value of
this vegetation index as an indicator of the biological properties of the upper soil horizons
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in temperate evergreen southern Poland’s forests. This observation was further supported
by the intimate relationship existing between soil nutritional levels and NDVI in vegetated
areas [37–39]. According to Li et al. [40], NDVI values could replace field soil investigations,
so facilitating the large-scale monitoring of soil quality after land consolidation. Moreover,
the average soil C/N ratios above 21 recorded in both forests strongly suggests the need to
minimize losses of soil-bioavailable N, which are known to limit soil C-sink activity, thus
simultaneously constraining net primary productivity as well as the capacity for forests to
respond dynamically to disturbance and environmental changes [41]. Whereas, soil C/N
ratios >30 should alert foresters on the possibility of increasing soil N2O emissions toward
the atmosphere [42].

5. Conclusions

The present study indicates the feasibility of using Sentinel-2 spectral imagery to
infer, in real time, soil biology status across large forest areas, based on the strong negative
correlation between the on-site measured soil C/N ratio and NDVI values, at both forest
sites. The high accuracy obtained with this approach supports the use of Sentinel-2-derived
NDVI to predict the long term hindering effects of drought, snow melting temperatures,
seasonal fires, pests and plant diseases, as well as the over felling of trees on soil dynamics
and the sustainability of the forest ecosystem. This new approach for estimating the soil
C/N ratio under coniferous evergreen trees can provide reliable information on the soil
status for the decision-making process underlying the sustainable management of the forest.
However, more research is needed to validate the effectiveness of NVDI as an indicator
of soil C/N ratio under soil and environmental conditions different to those prevailing in
Poland’s Kup and Koniecpol forests.
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