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Abstract: Revealing the spatial dynamics of vegetation change in Chongqing and their driving
mechanisms is of major value to regional ecological management and conservation. Using several
data sets, including the SPOT Normalized Difference Vegetation Index (NDVI), meteorological, soil,
digital elevation model (DEM), human population density and others, combined with trend analysis,
stability analysis, and geographic detectors, we studied the pattern of temporal and spatial variation
in the NDVI and its stability across Chongqing from 2000 to 2019, and quantitatively analyzed
the relative contribution of 18 drivers (natural or human variables) that could influence vegetation
dynamics. Over the 20-year period, we found that Chongqing region’s NDVI had an annual average
value of 0.78, and is greater than 0.7 for 93.52% of its total area. Overall, the NDVI increased at
a rate of 0.05/10 year, with 81.67% of the areas undergoing significant expansion, primarily in
the metropolitan areas of Chongqing’s Three Gorges Reservoir Area (TGR) and Wuling Mountain
Area (WMA). The main factors influencing vegetation change were human activities, climate, and
topography, for which the most influential variables respectively were night light brightness (NLB,
51.9%), annual average air temperature (TEM, 47%), and elevation (ELE, 44.4%). Furthermore, we
found that interactions between differing types of factors were stronger than those arising between
similar ones; of all pairwise interaction types tested, 92.9% of them were characterized by two-factor
enhancement. The three most powerful interactions detected were those for NLB ∩ TEM (62.7%),
NLB ∩ annual average atmospheric pressure (PRS, 62.7%), and NLB ∩ ELE (61.9%). Further, we
identified the most appropriate kind or range of key elements shaping vegetation development
and dynamics. Altogether, our findings can serve as a timely scientific foundation for developing a
vegetative resource management strategy for the Yangtze River basin that duly takes into account
local climate, terrain, and human activity.

Keywords: normalized difference vegetation index (NDVI); spatial evolution; multi-factor interaction;
geographic detector

1. Introduction

Vegetation is an important component of terrestrial ecosystems and serves as a link
between the atmosphere, water, and soil [1], thus playing a pivotal role in soil conservation,
climate regulation, hydrological processes, the carbon cycle, and ecosystem functioning
and stability [2,3]. The health of a local ecological environment, such as its water quality,
thermal energy, and soil fertility, can also be gauged by its vegetation [4]. Hence, vegetation
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is often used not only as an indicator of an ecosystem’s sensitivity to external disturbances,
such as climate change and human activities [5], but also as a comprehensive indicator
for characterizing the response and adaptation of a terrestrial ecosystem to environmental
change. Accordingly, understanding vegetation’s spatio-temporal evolution and the in-
volved driving mechanisms is critical for the regional development of effective vegetation
restoration measures and ecological protection policies [6].

Monitoring vegetation dynamics has been a major focus of global change research
in recent decades [7]. Because of their unique advantages, namely their large spatial
scale, long time series, and short interval period, remote sensing images have become
the primary data source for monitoring vegetation change at different scales, especially at
multiple spatio-temporal scales [8]. For example, Schultz et al. [9] used a long-time series of
Landsat-derived remote sensing imagery to monitor deforestation throughout the tropics.
With the continued maturation and development of hyperspectral and thermal infrared
remote sensing technologies, the bands of their images are becoming more abundant,
making it feasible to use them to study changing spatio-temporal dynamics of terrestrial
vegetation. To that end, researchers in China and abroad have proposed more than 100 plant
cover indexes, such as the ratio vegetation index (RVI), difference vegetation index (DVI),
normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), soil
adjusted vegetation index (SAVI), and so forth [10,11], greatly improving the efficiency and
accuracy of extracting vegetation information. Currently, of those, the NDVI is recognized
as the best indicator of regional vegetation and ecological environment change because its
value can convey real information about vegetation’s growth status and biomass, among
other things; hence, it is widely used in the study of vegetation dynamics [12–14].

The dynamics of vegetation and the involved mechanisms shaping it have drawn
much attention in the context of rapid global change [15,16]. Many studies have shown
that vegetation dynamics are closely related to a broad suite of natural factors, including
climate, terrain, soil, and vegetation types [17,18]. How vegetation responds to climate
change is a very complex process, and climatic factors such as precipitation, temperature,
and evapotranspiration can jointly affect vegetation dynamics. For instance, Na et al. [17]
examined the impact of shifts in extreme air temperature and extreme precipitation in-
dexes on the long-term dynamics of vegetation in inner Mongolia, finding that climate
change may explain 68% of the variation in that vegetation’s development. The effect of
evapotranspiration on vegetation change should not be overlooked either, according to
Shuai et al. [18], given the rapid acceleration of surface change. By analyzing the suitable
growth conditions of vegetation in the Weihe River Basin, Zhang et al. [19] showed that
NDVI is strongly correlated with air temperature, precipitation, evaporation, and soil
moisture, with correlation coefficients as high as 0.89, 0.78, 0.71, and 0.65, respectively. The
Yangtze River Basin is the largest basin in Asia, and its vegetation cover status and dynam-
ics are fundamental to maintaining the ecological balance of China and its neighboring
countries, and perhaps even that of the whole world.

In recent years, great progress has been made in the study of the changing dynamics
of NDVI and its influencing factors in the Yangtze River Basin. According to some studies,
this basin’s NDVI featured an overall upward trend during the years spanning 1982 to 2015,
increasing in extent mainly in its middle while decreasing chiefly in its eastern part [20–22].
Furthermore, Qu et al. [20] found that this NDVI trend was more pronounced after 1994
than before. Temperature is the main climatic factor affecting the growth of vegetation in
the Yangtze River Basin, while precipitation has a weak effect on it [21]. Other work has
reported evidence for lag effects from altered precipitation and temperature regimes on
vegetation growth in the Yangtze River Basin, with more than 50% of this growth (on a
regional scale) predominantly affected by climate change. Because studies of the whole
Yangtze River Basin or portions of it mostly focused on temperature and precipitation, less
is known about the possible influences of other climatic factors, in addition to topographic
factors and human activities, on vegetation growth and dynamics there [23,24].
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Traditional statistical methods, such as linear regression and residual trend analysis,
can be applied to reveal the relationship between the monotonous trend of vegetation
change and its drivers, but this inference is limited to linear relations [25,26]. However,
we know that vegetation growth is often affected by the joint action of multiple factors,
so how natural and human factors interact to change vegetation dynamics is unlikely to
be a simple linear relationship [27]. Therefore, determining how to accurately quantify
the relative contributions of natural and human factors to regional vegetation change
and the driving mechanisms involved remains a challenging task [28,29]. The geographic
detector model based on spatial stratification heterogeneity theory, introduced by Wang
et al. [30,31], provides a reliable and direct methodology to quantify the respective influence
of driving factors as well as their interactions. It has three notable advantages: (i) it does
not have to strictly follow the assumptions of traditional statistical methods; (ii) it does
detect the interaction of two factors, and (3) it does not require a complex parameter setting
process [15,32,33]. For example, Zhu et al. [29] quantified the impacts of natural and human
factors on changing vegetation dynamics in the middle reaches of the Heihe River by using
geographic exploration methods, which revealed that land use conversion type, average
annual precipitation, and soil type had the greatest impact. Li et al. [34] quantitatively
analyzed the driving factors of grassland vegetation in inner Mongolia from the perspective
of spatial stratification heterogeneity, finding that precipitation, livestock density, wind
speed, and humans population density were the dominant factors, with these accounting
for more than 15% of variation in the data. As such, the geographic detector approach
has been successfully applied to quantify the influence of potential driving factors on
vegetation dynamics, making it an effective tool for understanding the mechanisms of
vegetation change at different spatial scales.

The Chongqing municipality in China is located in the upper reaches of the Yangtze
River and in the central zone of the Three Gorges Reservoir Area. It is the last pass of the
ecological barrier in the upper reaches of the Yangtze River, and its ecological location is
crucial. Therefore, building an important ecological barrier in the upper reaches of the
Yangtze River plays an indispensable role in ensuring the ecological balance and homeland
security of the entire Yangtze River basin. In recent years, with the intensification of
global climate change and human activities, understanding the spatio-temporal dynamic
evolution of vegetation in this region and its driving mechanisms has become imperative
for the development of reasonable ecosystem protection measures and management in this
region. To achieve this aim, based on a time series of SPOT NDVI data, we used trend
analysis, stability analysis, and geographic detector methods to fulfill three objectives:
(1) to reveal the spatial characteristics and regularities of NDVI-based vegetation dynamics
in Chongqing during the years 2000–2019; (2) to quantify the driving mechanisms of
natural factors and human activities and their interactions upon vegetation change; and
(3) to explore the appropriate types or ranges of the main influencing factors that promote
vegetation growth in Chongqing, so as to provide a reference for the implementation of
vegetation restoration projects in the Yangtze River Basin and the formulation of sound
ecological environmental protection policies.

2. Materials and Methods
2.1. Study Region

Chongqing is located in the transitional zone between the Qinghai-Tibet Plateau
and the plain of the middle/lower reaches of the Yangtze River, where it encompasses
an area of 8.24 × 104 km2 (Figure 1a). Aside from being a significant industrial and
commercial center in the southwest, a marine and land transportation hub, and the greatest
economic hub in the upper reaches of the Yangtze River, Chongqing also serves as a
crucial ecological barrier to protect those areas. Implementation of the “one district and
two clusters” coordinated development spatial pattern—the major city metropolitan area
(MCA), the Three Gorges Reservoir Area town cluster in northeast Chongqing (TGR),
and the Wuling Mountain Area town cluster in southeast Chongqing (WMA)—is being
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accelerated (Figure 1b). In going from south and north to the middle valley area, the
topography gradually flattens out, with elevations spanning 63 to 2624 m. The geography
varies greatly and is complex, with low mountains and hills in the northwest and center,
and Daba Mountain and Wuling Mountain in the southeast (Figure 1c). The Yangtze River,
Jialing River, Wujiang River, Fujiang River, Qijiang River, Daning River, and other major
rivers flow through this region, which is endowed with abundant surface water resources.
Here, a subtropical humid monsoon climate prevails, with annual averages ranging from
4.7–19.7 ◦C for air temperature, 7.3–21.7 ◦C for ground temperature, 989–1682 mm for
precipitation, 640–1015 mm for evapotranspiration, 79–1646 h for sunshine duration, and
0.8%–84.5% for relative humidity. Leaching soil, primary soil, man-made soil, and iron-
bauxite are the main soil types. There are many different types of vegetation, and the
vegetation that exists in this region is mostly cultivated crops, shrubs, and other plants
(Figure A1).
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in northeast Chongqing; and WMA, the Wuling Mountain Area town cluster in southeast Chongqing.

2.2. Data Source and Preprocessing
2.2.1. NDVI Data

The growing status of vegetation on the land surface can be accurately expressed by a
vegetation index. In this study, we chose the SPOT NDVI dataset based on the following
considerations. (1) Currently, the monitoring of changing vegetation dynamics at various
scales has made extensive use of the NDVI time series data derived from SPOT satellite
remote sensing imagery [12,35]. (2) The SPOT NDVI dataset with a time span of 2000 to
2019 can be obtained directly from the Resource and Environmental Science Data Center
of the Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 18 June 2022)

https://www.resdc.cn/
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and is free. (3) This data, with a spatial resolution of 1000 m, is consistent with the spatial
resolution of mostly other research data (Table 1), and can avoid the influence of data
pre-processing processes, such as resampling, on the research results. (4) Since the general
quality of this data set is very high based on the maximum value composite (MVC) method,
it can accurately reflect the amount and distribution of vegetation in different regions at
various geographical and temporal scales; it is now widely used in monitoring regional
vegetation change [29,36].

Table 1. The 18 factors considered in this study for their influence on changing vegetation dynamics.

Category Variable Time Series Pixel Resolution Units Abbrev.

Climate Annual average precipitation 2000s/2010s 1000 m mm PRE
Annual average evaporation 2000s/2010s 1000 m mm EVP

Annual average relative humidity 2000s/2010s 1000 m % RHU
Annual average air temperature 2000s/2010s 1000 m ◦C TEM

Annual average ground temperature 2000s/2010s 1000 m ◦C GST
Annual sunshine hours 2000s/2010s 1000 m hour SSD

Annual average atmospheric pressure 2000s/2010s 1000 m hPa PRS
Soil Soil type 1995 1000 m - SOT

Soil sand content 2000s 1000 m % SSAC
Soil silt content 2000s 1000 m % SSIC
Soil clay content 2000s 1000 m % SCLC

Vegetation Vegetation type 2000 1000 m - VET
Topography Elevation 2000 250 m m ELE

Slope degree 2000 250 m ◦ SLD
Human activity Land use type 2000/2010/2020 1000 m - LUT

Gross domestic product density 2000/2010/2019 1000 m 104 Yuan/km2 GDP
Population density 2000/2010/2019 1000 m persons/km2 POP

Night light brightness 2000–2019 1000 m DN NLB

2.2.2. Influence Factor Data

Numerous studies have demonstrated that a broad range of factors influence vege-
tation dynamics [33,37,38]. We concentrated on five components and 18 variables related
to climate, soil, vegetation, topography, and human activities (Table 1). The climatic data
come from the spatial interpolation data set of the average state of meteorological elements
in China [39]. The ANUSPLIN meteorological interpolation software’s smoothing spline
function was primarily used to obtain the climatic data, which included seven meteoro-
logical variables: annual average precipitation (PRE), annual average evaporation (EVP),
annual average relative humidity (RHU), annual average air temperature (TEM), annual
average ground temperature (GST), annual sunshine hours (SSD), and annual average at-
mospheric pressure (PRS). Data for soil types was obtained from the 1:1 million Soil Map of
the People’s Republic of China—created and published by the National Soil Survey Office
in 1995—while that for soil sand, silt, and clay content was generated by that soil type map
and soil profile information from the second soil survey. Most of the vegetation information
came from the “1:1 million Vegetation Atlas of China”. The elevation in the terrain data was
derived from a 90-m digital elevation model (DEM) and slope data in ArcGIS 10.7 software.
Human activities include land use data generated by artificial visual interpretation, this
based on American Landsat TM images, and spatial distribution data sets for China’s
GDP [40] and population [41], which are constantly updated by data producers. All the
above data are from the Resource and Environmental Science Data Center of the Chinese
Academy of Sciences (https://www.resdc.cn/, accessed on 8 October 2022). Additionally,
the National Qinghai-Tibet Plateau Science Data Center (https://data.tpdc.ac.cn, accessed
on 19 June 2022) in China provided the long time series data for remote sensing of night
light as one indicator of human activity [42].

To meet the input requirements of the geographic detector model, we divided veg-
etation type into seven categories: coniferous forest, broad-leaved forest, shrub, grass,

https://www.resdc.cn/
https://data.tpdc.ac.cn
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meadow, cultivated vegetation, and other vegetation. Similarly, we divided land use type
into nine categories: cultivated land, woods, shrubs, sparse woodland, other woodland,
grassland, water, urban and rural residential land, and unused land. Six categories of
soil type data were distinguished: leaching soil, primary soil, hemihydrate soil, artificial
soil, iron bauxite, and non-soil type. Additionally, by applying the natural discontinuity
approach [43], the remaining 15 continuous variables were classified into 10 groups. Using
ArcGIS 10.7, we cast a 2-km fishnet, to extract the NDVI and the effect variables to the
point, and then applied the geographic detector’s calculation after removing null values.

2.3. Methods
2.3.1. Trend Analysis

To explore the spatial distribution characteristics of the multi-year vegetation NDVI
in Chongqing, its yearly average NDVI was calculated from 2000 to 2019. We used linear
regression analysis to examine the temporal trend change of NDVI in Chongqing from 2000
to 2019, using pixels as the fundamental unit. Its mathematical equation is:

slope =
n ∑n

i=1 NDVIi − (∑n
i=1 i)(∑n

i=1 NDVIi)

n ∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where slope is the magnitude and direction of vegetation change, n is the number of years
of studied (n = 20 in this study), i denotes a given year from 2000 onward, and NDVIi
denotes the NDVI value for ith year of a pixel.

2.3.2. Stability Analysis

Each observation’s level of variation was measured and evaluated statistically using
the coefficient of variation (CV). In this time series, CV can indicate the stability of the
NDVI data for Chongqing: stronger stability is inferred by a smaller CV value, and weaker
stability by a larger CV value [44]. The CV is calculated this way:

CV =

√
∑n

i=1
(

NDVIi − NDVI
)2/(n− 1)

NDVI
(2)

where NDVIi denotes the NDVI value for ith year of a pixel, and NDVI is the overall
average value of NDVI for the whole study period (2000–2019). To more easily compare and
convey the variation in vegetation inferred from NDVI across Chongqing, we separated
the CV values into four grades, corresponding to extremely stable vegetation (CV ≤ 0.1),
general stable vegetation (0.1 < CV ≤ 0.2), general unstable vegetation (0.2 < CV ≤ 0.3),
and extremely unstable vegetation (CV > 0.3).

2.3.3. Geodetector Model

Geographic detector is a relatively new spatial statistical technique developed by Wang
Jinfeng and colleagues that was introduced in 2010 [30,31]. It is typically used to investigate
the regional variability of vegetation change and its drivers, and to quantify how potential
interactions of these factors may affect the response variables [15,37,38]. It is based on four
modules: factor detector, interaction detector, risk detector, and ecological detector.

(1) Factor detector
Its purpose is to detect the spatial heterogeneity of a dependent variable, in this case

vegetation NDVI, and to explore the degree to which candidate influencing factors (i.e., the
18 variables in Table 1) could explain that, this expressed as:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 (3)

where q can reflect the degree of interpretation of vegetation dynamics by detection factors;
h = 1, 2, . . . , L is the strata of the dependent variable (vegetation NDVI) or of each influenc-
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ing factor investigated; Nh and N are respectively the number of samples units in layer h
and for the whole region; and σ2

h and σ2 denote the variance of the layer h and the NDVI
value of the whole region, respectively. The q statistic can take a value in the range of 0 to 1;
the higher its value, the greater the power of its corresponding influencing factor to explain
vegetation change.

(2) Interaction detector
This may be used to analyze whether the interaction of any two factors will increase or

decrease their respective explanatory power for vegetation change, or whether the effects
of either factor upon NDVI are independent of each other. The following five categories
can be used to illustrate how the two factors could interact (Table 2).

Table 2. Interaction types of factors that affect changing vegetation dynamics.

Number Judgments Based Type of Interaction

1 q(X1∩X2) < Min(q(X1), q(X2)) Non-linear reduction

2 Min(q(X1), q(X2)) < q(X1∩X2) <
Max(q(X1), q(X2)) Single-factor non-linear reduction

3 q(X1∩X2) > Max(q(X1), q(X2)) Two-factor enhancement
4 q(X1∩X2) = q(X1) + q(X2) Independent
5 q(X1∩X2) > q(X1) + q(X2) Non-linear enhancement

(3) Ecological detector
This module is primarily used to assess whether there is a statistical difference between

the two factors in relation to the spatial distribution of the attribute of interest, here NDVI,
which is often tested using the F-ratio statistic:

F =
Nx1(Nx2 − 1)SSWx1

Nx2(Nx1 − 1)SSWx2
(4)

where Nx1 and Nx2 are the total sample size of each of the two factors; and SSWx1 and
SSWx2 denote the summed intra-layer variance formed by x1 and x2, respectively. If the
null hypothesis of H0 : SSWx1 = SSWx2 is rejected at the alpha level of significance, then a
significant difference between the two factors is inferred for how they influence the spatial
distribution of NDVI.

(4) Risk detector
It is frequently used to determine whether there is a statistically significant difference

in the mean value of attributes between the two subregions. To test this, the Student’s t-test
is typically used.

The Geodetector Software in Excel was used as the geographic probe in this study. It is
freely available for download online. For more details about Geodetector modeling, please
see http://geodetector.cn/, accessed on 10 June 2022.

3. Results
3.1. NDVI’s Interannual Variation

As Figure 2 shows, Chongqing’s vegetation tended to increase over time, but some
regional differences at various geographical scales were evident. From 2000 to 2019, the
NDVI increased strongly, at a rate of 0.05/10 year, reaching its maximum value (0.83) in
2017 and its minimum value (0.71) in 2000. Examining the interannual dynamics, we see
that the rate of NDVI increase for 2011–2019 was 1.80, 1.33, and 1.43 times greater than
that for the 2000–2010 period in the MCA, WMA, and TGR subregions, respectively. This
revealed that vegetation restoration was considerably more effective during 2011 to 2019
than 2000 to 2010. Spatially, the NDVI increased at a faster rate in the WMA (0.07/10 year)
and TGR (0.06/10 year) than in the MCA (0.03/10 year).

http://geodetector.cn/
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3.2. NDVI’s Spatial Distribution

The regional distribution characteristics of NDVI in Chongqing from 2000 to 2019 are
depicted in Figure 3 and Table 3. In 2000, 2010, and 2019, the values for NDVI were mainly
in the range of 0.6–0.8, >0.7, and >0.7, respectively, with these respectively accounting for
92.21%, 96.91%, and 93.39% of Chongqing’s total area. Only 3.35%, 0.63%, and 3.42% of
the Chongqing area had NDVI values below 0.6. The percentage of its land area with an
NDVI > 0.8 expanded substantially, from 4.45% in 2000 to 75.88% in 2019, a net increase
of 71.43%. Chongqing’s average NDVI over the entire 20-year period (2000 to 2019) was
0.78, with values primarily distributed between 0.70 and 0.80 that characterized 59.6% of
its entire area. The multi-year average of NDVI in the WMA, TGR, and MCA was 0.80, 0.79,
and 0.75, respectively.

The regional distribution of trends in the NDVI’s change over time in Chongqing
is depicted in Figure 4a and Table 4. Those areas distinguished by obvious vegetation
restoration (i.e., NDVI rate of increase > 0.07/10 year) together accounted for 28.37% of
Chongqing’s territory, being mainly distributed in the TGR (42.8%) and WMA (31.05%).
Roughly 1.49% of Chongqing’s total area consisted of declining NDVI (i.e., a changing
slope of less than −0.01/year), this primarily concentrated in the MCA. We found areas
with an extremely significant recovery of NDVI as high as 75.19%; these were chiefly
concentrated in the WMA and TGR. The parts of Chongqing featuring extremely significant
and significant degradation areas, respectively, amounted to just 1.94% and 0.85% of its
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total area, being mainly concentrated in the MCA (Figure 4b and Table 4). Overall, 52.19%
of the study area’s vegetation dynamics are in an extremely stable state. Where extremely
unstable and general unstable vegetation dynamics did occur, this only affected 1.38% and
3.61% of the total area, principally in the MCA and along either side of the Yangtze River
(Figure 4c and Table 4).
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Table 3. Spatial distribution characteristics of vegetation NDVI in Chongqing, China, from 2000
to 2019.

Year 2000 2010 2019 2000–2019

NDVI Area (km2) Proportion
(%) Area (km2) Proportion

(%) Area (km2) Proportion
(%) Area (km2) Proportion

(%)

<0.4 214 0.26 49 0.06 575 0.7 361 0.44
0.4–0.5 634 0.77 140 0.17 1008 1.22 374 0.45
0.5–0.6 1912 2.32 326 0.40 1239 1.5 −672 −0.82
0.6–0.7 26,547 32.22 2032 2.47 2619 3.18 −23,928 −29.04
0.7–0.8 49,430 59.99 42,332 51.37 14,431 17.51 −34,999 −42.48

>0.8 3665 4.45 37,523 45.54 62,530 75.88 58,865 71.43
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Figure 4. Spatial distributions for (a) slope in changing vegetation NDVI dynamics, and their
(b) significance testing and (c) stability analysis, in Chongqing, China, over the entire study period
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Table 4. The slope, significance, and stability of vegetation NDVI in Chongqing, China, from 2000
to 2019.

Type Range MCA TRG WMA Chongqing

Slope −0.034 to −0.010 3.36% 0.62% 0.31% 1.49%
−0.010 to −0.001 7.93% 2.26% 1.44% 4.03%
−0.001 to 0.004 35.88% 16.84% 8.36% 21.40%
0.004 to 0.007 37.67% 49.23% 47.08% 44.71%
0.007 to 0.027 15.17% 31.05% 42.80% 28.37%

Significance Extremely significant decrease 4.40% 0.76% 0.43% 1.94%
Significant decrease 1.65% 0.49% 0.32% 0.85%
Non-significant decrease 8.29% 2.37% 1.52% 4.22%
Non-significant increase 22.26% 6.67% 3.56% 11.32%
Significant increase 10.74% 4.80% 3.23% 6.48%
Extremely significant increase 52.65% 84.90% 90.95% 75.19%

Stability Extremely stable 52.54% 57.37% 42.74% 52.19%
Generally stable 38.03% 39.12% 56.10% 42.82%
Generally unstable 6.65% 2.59% 0.99% 3.61%
Extremely unstable 2.78% 0.92% 0.17% 1.38%

Notes: MCA, the major city metropolitan area; TGR, the Three Gorges Reservoir Area town cluster in northeast
Chongqing; WMA, the Wuling Mountain Area town cluster in southeast Chongqing. We define the significance
level as follows: p < 0.01 represents extremely significant; p < 0.05 represents significant.
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3.3. Single-factor driven analysis

By using the factor detection module, each factor’s q statistic was generated to uncover
its relative impact on changing vegetation dynamics (Table 5). These results revealed
differential impacts of numerous factors among Chongqing as a whole and its three sub-
regions, MCA, WMA, and TGR. In the MCA, vegetation change was most influenced by
night light brightness (NLB, 0.406), population density (POP, 0.302), atmospheric pressure
(PRS, 0.263), and elevation (ELE, 0.258); accordingly, this implied it was mainly affected
by human activities and topography. In the TGR, vegetation change was best explained
by air temperature (TEM, 0.544), atmospheric pressure (PRS, 0.536), ground temperature
(GST, 0.529), and elevation (ELE, 0.511), suggesting it was mainly affected by climate and
topography. In the WMA, vegetation change was mainly affected by air temperature (TEM,
0.330), ground temperature (GST, 0.330), PRS (atmospheric pressure, 0.328), and relative
humidity (RHU, 0.308), indicating climate was largely responsible.

Table 5. The q statistics value of driving factors of changing vegetation NDVI dynamics in Chongqing,
China, at different scales.

Category Variable Abbrev. MCA TRG WMA Chongqing

Climate Annual average precipitation PRE 0.121 ** 0.363 ** 0.102 0.303 **
Annual average evaporation EVP 0.104 ** 0.453 ** 0.220 ** 0.297 **

Annual average relative humidity RHU 0.188 ** 0.171 ** 0.308 ** 0.168 **
Annual average air temperature TEM 0.258 ** 0.544 ** 0.33 ** 0.470 **

Annual average ground temperature GST 0.243 ** 0.529 ** 0.33 ** 0.457 **
Annual sunshine hours SSD 0.013 0.255 ** 0.121 ** 0.150 **

Annual average atmospheric pressure PRS 0.263 ** 0.536 ** 0.328 ** 0.458 **
Soil Soil type SOT 0.089 ** 0.260 ** 0.090 0.227 **

Soil sand content SSAC 0.053 ** 0.200 ** 0.043 0.152 **
Soil silt content SSIC 0.092 ** 0.099 ** 0.084 0.092 **
Soil clay content SCLC 0.071 0.163 ** 0.101 0.153 **

Vegetation Vegetation type VET 0.059 * 0.109 ** 0.061 0.148 **
Topography Elevation ELE 0.258 ** 0.511 ** 0.287 ** 0.444 **

Slope degree SLD 0.148 ** 0.135 ** 0.069 0.214 **
Human activity Land use type LUT 0.215 ** 0.206 ** 0.101 0.234 **

Gross domestic product GDP 0.186 ** 0.096 0.092 0.197 **
Population density POP 0.302 ** 0.296 ** 0.270 * 0.370 **

Night light brightness NLB 0.406 ** 0.187 ** 0.139 0.519 **

Notes: * and ** indicate significant coefficients at p < 0.05 and p < 0.01, respectively. MCA, the major city
metropolitan area; TGR, the Three Gorges Reservoir Area town cluster in northeast Chongqing; WMA, the Wuling
Mountain Area town cluster in southeast Chongqing.

For Chongqing’s territory, each factor’s level (q value) of influence upon the NDVI
weakened in this descending rank order: NLB (0.519), TEM (0.470), PRS (0.458), GST (0.457),
ELE (0.444), POP (0.370), PRE (0.303), EVP (0.297), land use type (LUT, 0.234), soil type
(SOT, 0.227), slope degree (SLD, 0.214), GDP (0.197), RHU (0.168), soil clay content (SCLC,
0.153), soil sand content (SSAC, 0.152), SSD (0.150), vegetation type (VET, 0.148), and soil
silt content (SSIC, 0.092). Evidently, a mix of human activities, climate, and topography
were the key factor variables that drove the changing vegetation dynamics of Chongqing,
whereas the influence of soil and vegetation factors was relatively weak.

3.4. Two-Factor Driven Analysis

By using the interaction detector module, it was possible to calculate how all paired
variables could affect changing vegetation dynamics (Table 6). We discovered that the
factors influencing vegetation in Chongqing interacted in three different ways: via single-
factor nonlinear weakening, nonlinear enhancement, and two-factor enhancement. Among
all pairwise interactions, 159 pairs (92.9%) showed two-factor enhancement, indicating this
form predominantly drove spatio-temporal changes in vegetation in a complex manner,
being affected by the interaction of many factors.
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Table 6. Interaction detector results for 18 influencing factors (variables) of changing vegetation
NDVI dynamics in Chongqing, China.

Factors PRE EVP RHU TEM GST SSD PRS SOT SSAC SSIC SCLC VET ELE SLD LUT GDP POP NLB
PRE 0.303
EVP 0.400 0.297
RHU 0.403 0.412 0.168
TEM 0.492 0.490 0.488 0.470
GST 0.478 0.483 0.480 0.472 0.457
SSD 0.367 0.381 0.447 0.484 0.473 0.150
PRS 0.489 0.484 0.478 0.477 0.472 0.476 0.458
SOT 0.365 0.382 0.322 0.478 0.464 0.292 0.472 0.227

SSAC 0.353 0.350 0.285 0.480 0.469 0.247 0.470 0.259 0.152
SSIC 0.355 0.359 0.256 0.486 0.474 0.261 0.473 0.275 0.232 0.091
SCLC 0.348 0.351 0.282 0.483 0.469 0.260 0.470 0.249 0.232 0.180 0.153
VET 0.342 0.364 0.265 0.476 0.463 0.277 0.471 0.277 0.229 0.224 0.233 0.148
ELE 0.478 0.473 0.471 0.486 0.479 0.463 0.475 0.460 0.458 0.463 0.459 0.459 0.444
SLD 0.387 0.400 0.366 0.491 0.479 0.288 0.481 0.316 0.273 0.273 0.280 0.284 0.472 0.214
LUT 0.430 0.441 0.369 0.545 0.532 0.347 0.532 0.362 0.323 0.317 0.320 0.306 0.526 0.351 0.234
GDP 0.424 0.419 0.337 0.551 0.539 0.310 0.541 0.357 0.320 0.271 0.314 0.296 0.529 0.340 0.333 0.197
POP 0.496 0.498 0.447 0.558 0.546 0.444 0.549 0.423 0.412 0.409 0.404 0.395 0.542 0.414 0.416 0.408 0.370
NLB 0.551 0.536 0.473 0.627 0.619 0.452 0.627 0.495 0.463 0.429 0.458 0.434 0.619 0.484 0.478 0.419 0.530 0.519

Notes: Blue represents a two-factor enhancement, green represents a non-linear enhancement, and orange
represents a single-factor non-linear reduction. More information can be found in Table 2. For details about the
factor abbreviations, please see Table 1.

The average value of each interacting factor was next examined. The factor’s level
(q value) of influence on the NDVI weakened in this descending rank order: ELE (0.522),
NLB (0.519), TEM (0.504), PRS (0.502), GST (0.495), POP (0.450), EVP (0.419), PRE (0.415),
RHU (0.371), LUT (0.365), SLD (0.361), GDP (0.341), SOT (0.336), VET (0.332), SSD (0.328),
SCLC (0.328), SSAC (0.309), and SSIC (0.295). This demonstrated that although soil type
and vegetation type can exert some influence, it was still minor compared to human
activities, climatic variables, and topographic conditions. Within these similar categories,
the strongest prevailing interactions were found for the paired variables: POP ∩ NLB
(0.530), TEM ∩ PRE (0.492), SLD ∩ ELE (0.472). Overall, however, between differing
types of factors, the strongest dominant interaction factors were the TEM ∩ NLB (0.627),
PRS ∩ NLB (0.627), and ELE ∩ NLB (0.619). We found that interactions between differing
types of factors were stronger than those arising between similar ones.

3.5. Ecological Detector Analysis

Whether the effects of interactions between two factors on vegetation NDVI differ
significantly can be evaluated using the ecological detector module. As seen in Table 7,
there were significant differences (p < 0.05) in the explanatory power of nearly half (46.4%)
of the factor combinations for NDVI. The following scenarios exhibited notable variation
in how two factors affected the geographical differentiation of changing vegetation NDVI
dynamics in Chongqing: among all climatic variables, TEM ∩ factors (PRE, EVP, RHU), GST
∩ factors (PRE, EVP, RHU), PRS ∩ factors (PRE, EVP, RHU, SSD); among all soil variables,
SOT ∩ factors (RHU, SSD), SCLC ∩ SSIC; in the vegetation variables, VET and SSIC; among
all human activities variables, LUT ∩ factors (RHU, SSD, SSAC, SSIC, SCLC, VET, SLD),
GDP ∩ factors (RHU, SSD, SSAC, SSIC, SCLC, VET), POP ∩ factors (PRE, EVP, RHU, SSD,
SOT, SSAC, SSIC, SCLC, VET, SLD, LUT, GDP), NLB and all factors. Additionally, there
was no discernible difference between the impacts of the other interactions between two
factors on the NDVI’s regional differentiation across Chongqing.
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Table 7. Statistical tests of 18 influencing factors of changing vegetation NDVI dynamics in
Chongqing, China, based on the ecological detector module (significant at p < 0.05).

Factors PRE EVP RHU TEM GST SSD PRS SOT SSAC SSIC SCLC VET ELE SLD LUT GDP POP NLB

PRE
EVP N
RHU N N
TEM Y Y Y
GST Y Y Y N
SSD N N N N N
PRS Y Y Y N N Y
SOT N N Y N N Y N

SSAC N N N N N N N N
SSIC N N N N N N N N N
SCLC N N N N N N N N N Y
VET N N N N N N N N N Y N
ELE Y Y Y N N Y N Y Y Y Y Y
SLD N N Y N N Y N N Y Y Y Y N
LUT N N Y N N Y N N Y Y Y Y N Y
GDP N N Y N N Y N N Y Y Y Y N N N
POP Y Y Y N N Y N Y Y Y Y Y N Y Y Y
NLB Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Notes: The ‘Y’ indicates significant difference in the effects of the two factors on changed vegetation NDVI,
whereas the ‘N’ denotes no significant difference detected. For information about the factor abbreviations, please
refer to Table 1.

3.6. Types or Range of Suitable Influencing Factors

We presumed that the factor of type or range with a higher NDVI would be better
suited for vegetation growth when the risk detector assesses how vegetation changes in
response to various factors. As seen in Table 8, in terms of meteorological conditions, PRE,
RHU, and SSD tended to increase as the interval increased, whose most suitable ranges
were 1538~1682 mm, 81.9%~84.5% and 1526~1646 h, respectively. Conversely, EVP, TEM,
GST, and PRS tended to decrease as the interval increased, for which the most suitable
range was 640~715mm, 4.7~7.8 ◦C, 7.3~10.4 ◦C, 742~802 hPa.

Table 8. The suitable range or type of 18 factors influencing the changing vegetation NDVI dynamics
in Chongqing, China.

Category Variable Abbrev. Units Suitable Range
or Type NDVI Mean

Climate Annual average precipitation PRE mm 1538 to 1682 0.851
Annual average evaporation EVP mm 640 to 715 0.847

Annual average relative humidity RHU % 81.9 to 84.5 0.833
Annual average air temperature TEM ◦C 4.7 to 7.8 0.856

Annual average ground temperature GST ◦C 7.3 to 10.4 0.855
Annual sunshine hours SSD hour 1526 to 1646 0.855

Annual average atmospheric pressure PRS hPa 742 to 802 0.854
Soil Soil type SOT - Semi-leached soil 0.842

Soil sand content SSAC % 33 to 34 0.85
Soil silt content SSIC % 38 to 42 0.835
Soil clay content SCLC % 12 to 16 0.84

Vegetation Vegetation type VET - Broad-leaved forest 0.828
Topography Elevation ELE m 2000 to 2624 0.854

Slope degree SLD ◦ 39.2 to 56.2 0.824
Human activity Land use type LUT - Woodland 0.808

Gross domestic product density GDP 104 Yuan/km2 0 to 1954 0.788
Population density POP persons/km2 0 to 143 0.809

Night light brightness NLB DN 0 to 1.6 0.793
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In terms of soil conditions, the most suitable SOT was semi-leached soil, and the
most suitable ranges for SSAC, SSIC and SCLC were 33%~34%, 38%~42%, and 12%~16%,
respectively. In terms of vegetation types, it was most suitable to grow broad-leaved forest.
Regarding topography, across Chongqing, NDVI increased with the SLD and ELE, these
being most suitable in the range of 39.2~56.2◦ and 2000~2624 m, respectively.

In terms of human activities, woodlands were the most conducive land use type
for vegetation growth, and the NDVI was highest in areas with low GDP, POP, and
NLB, meaning that these were most suitable when in the range 0~1954 × 104 Yuan/km2,
0~143 person/km2, and 0~1.6 DN.

4. Discussion
4.1. NDVI’s Spatio-Temporal Changes

The results of this study demonstrated an upward trend in the vegetation NDVI in
Chongqing between 2000 and 2019 (Figure 2), with its vegetation conditions found greatly
improved at various temporal and geographical scales (Figure 4). These recovery areas,
mainly situated in the southeast and northeast parts of Chongqing, together expanded
to 75.19% of its territory from 2000 to 2019, a result consistent with the findings of Xiao
et al. [45] and Zhang et al. [23]. This may be attributed to the ecological conservation
projects implemented by the government. For example, based on Landsat and MODIS
data, Li et al. [46] showed that ecological engineering measures in the Three Gorges
Reservoir area, such as the ecological migration project, the ecological protection and
restoration project, and Grain for Green, played a positive role in ecological restoration and
effectively improved local vegetation coverage. Li Z. and Li X. [47] reported that human
activities, such as agricultural production, cultivated land protection, and vegetation
ecological construction, were the primary factors responsible for vegetation growth and
expansion in Chongqing. Work by Liu et al. [48] quantified the relative contribution rates
of human activities and climate to vegetation change in Chongqing as 90.96% and 9.04%,
respectively, revealing the overwhelmingly dominant role of human activities. Those areas
with significant degradation and instability of vegetation NDVI are mainly concentrated in
the major metropolitan area, near water, and some surrounding areas (Figure 4), a pattern
basically consistent with the findings of Zhu et al. [49]. According to Li et al., the expansion
of human urban construction land across the world’s cities is the main reason for the
downward trend of regional vegetation NDVI, and the process of urbanization is directly
and indirectly having adverse impacts on global urban vegetation growth [50,51].

4.2. NDVI Response to Driving Factors

Previous research has demonstrated that both natural and human activities can distort
and modulate the temporal and spatial variation in vegetation dynamics [15,38], making
it difficult to investigate the mechanisms underlying the spatial heterogeneity of vegeta-
tion [34]. We found that the interaction of most dual-factor variables increased their degree
of influence on vegetation change, the latter often affected by the interaction of multiple
factors (Table 6). In short, the interaction of two factors is more important to vegetation
change than each factor alone, an outcome consistent with previous studies [15,38,52].
Therefore, when considering the change of NDVI, we need to fully consider the interaction
between factors. For example, we found that the suitable range of annual mean temperature
for vegetation growth in the Chongqing area is 4.7–7.8 ◦C (Table 8), which was located at
higher altitudes (Figure A1, TEM and ELE). Therefore, it is actually a trade-off considering
multiple factors, rather than the most suitable temperature for plant physiology. This may
be closely related to our hypothesis that the range of factors affecting the maximum NDVI
value was the range of the most suitable growth factors.

Our results suggest that the effects of human activity on vegetation change should
not be disregarded (Table 5). The explanatory power of nocturnal light brightness (NLB)
for vegetation change reached as high as 51.9% (Table 5), confirming that human activities
heavily impact changing vegetation dynamics in Chongqing and are of paramount concern.
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These findings are in line with those of Liu et al. [48], who estimated that human activities
contributed as much as 90.96% to vegetation change in Chongqing. In general, there is
a positive correlation between NLB and socio-economic factors, meaning that NLB can
effectively express the intensity of human activities such as urbanization level, population
density, and GDP [53,54]. Indeed, human driving factors, both population density and
GDP, often emerge as the dominant ones affecting regional vegetation change. For example,
Sun et al. [55] found that agricultural vegetation NDVI is very sensitive to economic as
well as population growth, which may lead to changes in vegetation NDVI in Chongqing
given its extensive distribution of cultivated land (Figure 2). Herrero et al. [56] reported a
significant negative correlation between population density and NDVI around Southern
African national parks during the 21st century (2000–2016). We found that NDVI tends to
be augmented in woodland, and by a lower GDP, POP, and NLB (Table 8). This may be
due to sparse and small populations and small-scale economies in certain areas, which are
less apt to incur damage to vegetation from humans. This suggests trade-offs likely loom
between future ecological and economic development, but devising sustainable human
interventions may contribute to promoting vegetation recovery and diversity, thereby
restoring the ecological balance in the study area.

Climatic factors are generally considered critical to the growth and distribution of
vegetation [57,58]. Among these, we found that the explanatory power of annual mean
temperature, annual mean pressure, annual mean ground temperature and annual mean
precipitation for vegetation change weakened in that order (Table 5). Hence, the influence
of air temperature on changing vegetation dynamics in the studied region was greater
than that of precipitation. These results are consistent with those of Zhang et al. [59] and
Liu et al. [60], and can be explained by Chongqing’s location in the upper reaches of the
Yangtze River and the central zone of the Three Gorges Reservoir Area. The water needed
for vegetation growth here is sufficient, so temperature probably becomes a more perti-
nent factor than precipitation in modulating vegetation growth and dynamics. Under the
premise of sufficient rainfall, a rising temperature can enhance plant photosynthesis, which
should favor the growth of most plant species. However, the influence of climatic factors on
the changing dynamics of vegetation growth often harbors a threshold effect [61–63]. For
example, in Chongqing, the area with sufficient precipitation and annual sunshine duration
will most favor the growth of its vegetation, while the area with higher temperature and
increased evaporation is more likely to limit that growth in vegetation (Table 8). This
may be attributed to the humid subtropical monsoon climate of Chongqing, which has
hydrothermal conditions suitable for growing vegetation. When at a low level, temper-
ature often becomes a limiting factor for the plant’s physiological processes; hence, an
appropriate temperature rise can promote photosynthesis and accelerate the absorption of
soil nutrients, thus promoting the growth of vegetation [64]. However, once temperatures
exceed the tolerable range of plant species, extreme heat increases transpiration and res-
piration rates, which accelerate dry matter consumption and soil water losses, leading to
reduced photosynthesis and nutrient uptake and transport, which is clearly detrimental to
vegetation growth [65].

In terms of topography, with an increase in elevation or slope, the vegetation NDVI
in Chongqing gradually increased as well in tandem (Table 8), a trend consistent with the
study by Zhu et al. [66], who found that Chongqing had a high vegetation coverage in
those areas at high elevations (>1200 m) and with steeper slopes (>15◦). Our study showed
that ELE explained 44.4% of the vegetation change, likely because it determines the flow
and stability of surface materials, modulates the spatial distribution of air temperature
and water, and alters vegetation dynamics via temperature, precipitation, soil moisture,
soil nutrients, and other factors [67–69]. In fact, temperature tends to have a greater
effect on vegetation growth at higher elevations than at lower elevations. For example,
Pan et al. [70] used Landsat NDVI and climate data from 1992 to 2020 to explore the impact
of topography on vegetation change on the Qinghai-Tibet Plateau. Their results showed
that precipitation had a greater impact than air temperature upon vegetation growth in
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the region lying below 3000 m, and vice versa in the region above 3000 m. Thus, in high-
elevation areas, temperature may be the main factor limiting the growth of vegetation [71];
low temperatures often limit the growth of plants by reducing their photosynthesis, soil
nutrient absorption rate, and delaying key phenological events, among other impacts [72].
In addition, with rising elevation, the corresponding reduced water availability may also
limit vegetation recruitment and growth.

4.3. Caveat and Future Work

Vegetation dynamics are closely related to a variety of factors [37,38,70]. Although
this work fully considered the impact of 18 influencing factors, including climate, soil,
vegetation, topography, and human activities, upon vegetation change, which helps to
further improve our understanding of its driving mechanism, some limitations and un-
certainties persist. In terms of method, these are as follows. (1) We found that elucidating
the driving mechanisms of vegetation dynamics depends on spatial scale, so we need to
consider further the main vegetation drivers involved at multi-scale spatial scales to further
reduce the uncertainty concerning how they impact vegetation dynamics. (2) Although
Geodetector has realized the measurement, significance test, and attribute analysis of
spatial differentiation, it also has limitations in discussing the interactions with temporal
vegetation dynamics. (3) The most significant of these is that it cannot simultaneously
evaluate the joint influence of multiple variables on changing dynamics of vegetation.
Therefore, in future work, we plan to explore the nonlinear driving mechanism of multiple
factors on vegetation dynamics. In terms of method, among the 18 variables, the non-time
variable data (vegetation type, soil type, soil sand content, soil silt content, soil clay con-
tent, elevation, slope degree, etc.) is often difficult to change in a certain period of time,
which makes it difficult to understand the driving mechanism of NDVI change from the
perspective of time change.

5. Conclusions

This study illustrated the dynamic trends in NDVI’s temporal and geographical
variability in Chongqing from 2000 through 2019. We discovered that whereas the majority
of Chongqing’s vegetation recovery area—75.19%—was located in the WMA and TRG, the
majority area of the vegetation degradation and lower stability was located within the MCA.
As a result, in the future, we need to concentrate on and increase vegetation management
and restoration in the MCA. The influencing factors associated with human activities,
climate, and topography upon changing vegetation dynamics cannot be ignored. Among
all 18 factors considered, NLB (51.9%), TEM (47%), PRS (45.8%), GST (45.7%), ELE (44.4%),
POP (37%), and PRE (30.3%) were the main single factors affecting vegetation change,
and the relative impacts on vegetation change gradually lessened. We discovered that it
was most often (92.9% of all cases) achieved by synergetic interactions between factors
(two-factor enhancement)—that is, the combination of two factors has a greater impact
on vegetation change than either single component has, and the interaction of differing
factors has a greater impact than that of similar factors. For Chongqing, we were able to
discern the range of favorable meteorological conditions, adequate precipitation, and yearly
sunshine hours that promote vegetation growth there, whereas increased evaporation and
rising temperature were more likely to hinder it. In terms of terrain, the Chongqing
area’s NDVI steadily rises with increasing elevation and slope. In terms of human activity,
those areas in the woods and with lower GDP, POP, and NLB were more favorable for
sustaining vegetation growth and dynamics. These results could serve as a foundation
for improving the management and regeneration of vegetation in the upper parts of the
Yangtze River Basin.
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