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Abstract: Soybean (Glycine max) is a protein-rich oilseed crop that is extensively used for cooking
oil and poultry feed and faces significant challenges due to adverse global climatic conditions
aggravated by the ongoing climate crisis. In response to this critical issue, this study was initiated
to assess suitable zones for soybean cultivation, aiming to facilitate informed land use decisions
within the semi-arid terrestrial ecosystem. Through the utilization of geostatistical interpolation,
data layers encompassing soil, irrigation water, land use and land cover, topographic features, and
climate information were generated and overlaid based on criterion weightage derived from the
Analytic Hierarchy Process. The accuracy of land use and land cover was rigorously evaluated,
yielding a 70% overall accuracy and a Kappa (K) value of 0.61, signifying an acceptable level of
precision. Validation through the Receiver Operating Characteristic curve for soybean crop suitability
demonstrated a highly satisfactory area under the curve of 0.738. The study estimates that out of
172,618.66 hectares, approximately 47.46% of the land is highly suitable (S1) for soybean production,
followed by 21.36% moderately suitable (S2), 11.91% marginally suitable (S3), 7.00% currently not
suitable (N1), and 12.28% permanently not suitable (N2). Conclusively, the findings suggest that the
study area exhibits conducive climatic conditions, optimal soil health, and access to quality irrigation
water, all of which have the potential to support soybean crops with improved agronomic practices.
This investigation offers valuable insights to both farmers and policymakers concerning irrigation
water quality, agricultural productivity, and soil degradation.

Keywords: soybean; land suitability; water quality; climatic conditions; weighted overlay analysis;
analytical hierarchy process

1. Introduction

Soybean (Glycine max) is a leguminous crop native to East Asia that is extensively
grown globally, including in Pakistan, due to its high protein content [1]. It is a crucial
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source of protein for both humans and animals. It is commonly used in animal feed
formulations, especially in the poultry industry, as it provides essential amino acids and
high-quality bird protein [2]. Recently, Pakistan has encountered crises related to soybean
production and availability, and the frequent shortage of soybean meal, a vital ingredient in
poultry feed. The soybean shortage in Pakistan primarily results from increasing demand
closely tied to the expanding population. This shortage is exacerbated by inadequate
domestic plant protein production and competition for land and water with other crops
such as wheat and rice, as farmers prioritize profitability and risk.

The scarcity of soybean meal has resulted in higher prices for poultry feed, making it
difficult for farmers to maintain their flocks and causing a decline in overall poultry pro-
duction [3]. In addition, Pakistan has encountered challenges regarding importing soybean
products due to fluctuations in global prices and shifts in government policies. Importantly,
strict GMO soybean import restrictions in Pakistan have led to a notable reduction in
crushing activity, leading to uncertainty and disruptions in the market. According to the
Pakistan Soybean Market Overview 2022 report, Pakistan imported 4.8 billion metric tons
of soybeans from various countries, worth USD 2.44 billion, in 2021 [4]. This import volume
has added more pressure on the challenging economic situation of Pakistan. Thus, there
is a need for additional legislative and scientific initiatives to improve domestic soybean
production under the current climatic conditions.

In order to make sustainable land use decisions, it is critical to evaluate the soybean
cropland suitability of an area based on irrigation water availability, soil quality, and climatic
conditions. A land use plan should be implemented using feasible technologies to conduct
a reliable evaluation and interpretation of appropriate, valid, and precise natural resource
databases [5]. In the case of land suitability analysis (LSA), choosing the most suitable site
for crop production is a complicated process that includes technical criteria and physical, so-
cioeconomic, political, and climatic preferences, which may result in contradictory demands.
Such complexities necessitate using multiple decision-support tools simultaneously [6].
Thus, geographic information system (GIS) is a multipurpose tool increasingly employed as
a powerful spatiotemporal decision-making system for land suitability assessment, assisting
in the proper handling of such detailed and diverse maps [7].

In crop suitability analysis, two powerful techniques, the Analytic Hierarchy Process
(AHP) and Weighted Overlay Analysis, stand out. AHP integrates expert knowledge and
stakeholder preferences while structuring criteria hierarchically [8]. Weighted Overlay
Analysis, a GIS method, efficiently combines spatial data layers to derive suitability indices.
Compared to other methods, AHP excels in capturing expert insights and accommodating
multiple criteria, and Weighted Overlay Analysis streamlines spatial data handling [9],
collectively enhancing decision-making in crop suitability analysis.

This pioneering study investigates the suitability of soybean cultivation in a unique
geographic context encompassing non-conventional soybean crops, offering an innovative
and significant contribution to agricultural research with a specific focus on Tehsil Jaran-
wala, Faisalabad District, Pakistan. It distinguishes itself as the first systematic and rigorous
assessment of soybean cultivation potential within the semi-arid terrestrial ecosystem of
this region. Leveraging a multi-criteria decision analysis approach, the research seamlessly
integrates a wide range of critical datasets, including factors such as soil quality, water
availability, climatic conditions, topographic features, and land use and land cover data.
While previous studies, such as that of Radočaj et al. [10], have utilized a land evaluation
model (LEM), this research aligns with the methodology proposed by Kamkar et al. [11] by
employing weighted overlay analysis (WOA), providing a streamlined approach involving
the assignment of weights to individual criteria and synthesizing these diverse factors
into a single suitability score. In essence, this study represents a substantial and rigorous
contribution to the field of land suitability assessment, delivering a comprehensive and
accurate evaluation of land suitability for soybean cultivation within the unique context
of Tehsil Jaranwala, Faisalabad District, Pakistan. This research also fills a critical gap as
no similar work has been reported for the agro-ecological regions of Pakistan regarding
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soybean cultivation, making it a necessary and timely endeavor to identify the most suitable
regions for soybean cultivation in the Faisalabad District (Punjab, Pakistan).

2. Materials and Methods
2.1. Site Description

The research site was Jaranwala, located in the Faisalabad District, Pakistan, at
31◦20′10.0′′ N 73◦25′22.0′′ E and an altitude of 188 m above sea level, covering an area of
approximately 1726.69 km2 (Figure 1). It is a region of climatic diversity, with its monthly
mean temperature varying between chilly and hot and fluctuating annual rainfall, as de-
picted in Figure S1. This region is renowned for its fertile agricultural land, contributing
significantly to Pakistan’s economy by producing main crops such as wheat, rice, sugarcane,
and vegetables, while the availability of Lower Gogera Branch and Burala Branch irrigation
water resources has enabled farmers to cultivate crops all year round.
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2.2. Methodological Framework

The methodology can be outlined in three primary phases: first, data collection and
database creation; second, the application of the Analytical Hierarchy Process (AHP) and
Weighted Overlay Analysis (WOA); and finally, the evaluation of cropland suitability,
delineated through a series of steps (as depicted in Figure S2).

2.3. Soil and Water Sampling

The boundary of the study area was delineated through digitization using ArcGIS
10.5 software (Esri, Redlands, California, United States), followed by drawing 7 × 7 km
grids. A total of 40 sampling sites, with each sample taken from a specific pinpoint location
(as shown in Table S1) within a designated grid, were selected to collect soil samples (at
a depth of 0 to 15 cm) and available irrigation water (IW) samples, each spaced by 7 km
intervals, as illustrated in Figure 1. This sampling strategy was designed to facilitate sys-
tematic data collection with precision to ensure accurate results and reduce the potential for
sampling errors.
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2.4. Irrigation Water Quality Analysis

Irrigation water quality analysis was performed by following the standard methods as
described in USDA Agriculture Handbook No. 60. The pH of IW samples was determined
using a BANTE PHS-25CW benchtop meter, and the EC (dS m−1) was calculated using a
calibrated digital DDS-307W meter (BANTE, Shanghai, China). A hand-held TDS-3 (HM
Digital, Carson, California, United States) meter was used to measure the irrigation water
TDS (ppm), and the titrimetric method was followed to analyze carbonates (CO3

2−), bi-
carbonates (HCO3

−), chloride (Cl−), and total hardness (Ca2+ + Mg2+) using the methods
outlined by Richards [12].

Residual sodium carbonate (RSC) is an indirect property of water, indicating its
potential alkalinity or salinity for irrigation purposes. It is calculated in meL−1 as follows:

RSC
(

meL−1
)
=
(

CO−2
3 + HCO−1

2

)
−
(

Ca2+ + Mg2+
)

(1)

The sodium adsorption ratio (SAR) is a relative proportion of Na+ ions to Ca2+ + Mg2+

ions in IW. It predicts how much Na+ will build up in soil at the expense of Ca2+ + Mg2+

and K+ ions due to the regular use of sodic IW. It is stated as follows:

SAR
(

mmolL−1
)1/2

=
Na+√

Ca2++Mg2+

2

(2)

2.5. Soil Health Analysis

To measure soil reactions (pHs), 2 mm sieved air-dried soil-saturated paste was uti-
lized, and the ECe (dS m−1) of saturated paste extract was determined. The soil extract was
analyzed for Na+ and Ca2+ + Mg2+ to calculate the soil SAR, following the same procedure
described in Section 2.4. The relative proportion of sand, silt, and clay in the soil samples
was determined using the hydrometer method [13], and the USDA [14] soil textural classifi-
cation system was used to evaluate soil texture. A famous gravimetric method was utilized
to determine the soil saturation (%) [15]. The soil saturation (%) was calculated using the
following formula:

SSP(%) =
Container weight with saturated soil paste− Container weight

Dry soil weight− Container weight
× 100 (3)

The Walkley and Black [16] wet oxidation method was employed to measure the soil
organic matter (%). The plant-available soil phosphorus (mg kg−1) was determined using an
APFL (PD-303S), Saitama, Japan spectrophotometer, and a standard curve at a wavelength
of 882 nm, as described by Olsen [17]. The extractable K+ was determined using a flame
photometer (Model DV-710), acquired from Digiflame company located in Carpi, Italy, to
detect the emission at a specific wavelength of 766.5 nm using the NH4-acetate method
established by Schollenberger and Simon [18].

2.6. Topographic Features and Climate Variables

The Digital Elevation Model (DEM) is a standard tool used in geological sciences
to represent terrain elevations in 3D. The Shuttle Radar Topography Mission (STRM)
void-filled DEM data for the study area was downloaded from the USGS Earth Explorer
(https://earthexplorer.usgs.gov/; accessed on 26 March 2022) website and processed for
elevation (m) and slope (%) in ArcGIS 10.5 software, as illustrated in Figure 2a,b. Ten-year
mean annual climatological met data with 2 m resolution, allowing highly detailed and
accurate representation of climate variables, was collected for temperature and precipitation
using the NASA enhanced power Data Access Viewer (DAV) (https://power.larc.nasa.
gov/data-access-viewer/; accessed on 13 January 2023) to generate a climate suitability
map, as depicted in Figure 2c,d.

https://earthexplorer.usgs.gov/
https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
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2.7. Land Use and Land Cover (LULC)

On 26 March 2022, at 05:46:39 UTC, Sentinel-2A satellite images with a resolution
of 10 m (blue, green, red, and near-infrared bands) were acquired from the USGS Earth
Explorer portal for the study area, with less than 10% cloud cover. In ArcGIS 10.5, image
enhancement was achieved by integrating the image-sharpening panchromatic band-8,
available in the Sentinel-2A images package download from the USGS Earth Explorer data
portal (https://earthexplorer.usgs.gov/; accessed on 26 March 2022), and using a contrast-
stretching technique to enhance the visual quality of satellite images, as recommended

https://earthexplorer.usgs.gov/
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by [19,20]. This study used supervised classification with support from ground truth data
during field surveys and incorporated high-resolution Google Earth images to classify the
different Land Use and Land Cover (LU/LC) classes existing in the study area (Figure 3).
To accomplish this, representative sampling sites of known cover types, called training
areas, were used to create parametric signatures of each class. The Maximum Likelihood
Classification algorithm, a widely recognized approach in remote sensing, was then used
to numerically compare each pixel in the dataset to each category in the interpretation key
and assign the name of the category to which it was most similar [21].
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2.8. LU/LC Classification Accuracy Assessment

The crucial final step in the classification process involves accuracy assessment.
Figure S3 illustrates the schematic of the workflow for LU/LC classification and accu-
racy assessment. Its primary objective is to quantitatively evaluate the effectiveness of pixel
sampling for correct LC&LU classification. We established 40 random points within the
study area’s classified image. Real-time ground truth data was used to fill the accuracy
assessment reference column, serving as the definitive reference for point classification.
Figure S4 illustrates the connection between ground truth data and the corresponding
classified data derived from the confusion/error matrix report.

Table S2 presents a theoretical error matrix for a LU/LC classification. It shows how
pixels in the validation set are assigned to classes (ground truth) and compares this to
their assignment in the image. The diagonal represents correct classifications, while off-
diagonal elements in the rows indicate commission errors, signifying confusion between
the classes. Additional metrics in Table S3 provide further accuracy details. The study also
computes various statistics, including the overall Kappa statistic from [22], which measures
agreement. A Kappa coefficient of one implies perfect agreement, while a value near zero
suggests chance-level agreement (Table S4). Refer to [23–25] for more in-depth information.

2.9. Geostatistical Analysis

In the present study, Inverse Distance Weighted (IDW) interpolation was used to
predict the spatial distribution of soil and water characteristics (except texture), topographic
features, and climatic data using ArcGIS 10.5 software. The USDA texture scheme and Soil



Land 2023, 12, 2034 8 of 28

Texture Plugin of QGIS 2.18.22 software were used to create a soil texture map from input
sand, silt, and clay raster files, as illustrated in Figure 4.
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2.10. Decision-Making Process

In the decision-making process, Table S8 serves as a comprehensive resource present-
ing an overview of datasets and thematic maps, complete with sources, resolutions, and
pertinent information. Detailed information on the hierarchical organization of criteria,
standardization of criteria, and the Multicriteria Weighted Overlay Analysis (MCWOA) is
provided below.

2.10.1. Hierarchical Organization of Criteria

Analytic Hierarchy Process (AHP) is a decision-making technique that involves break-
ing down complex problems into a hierarchical structure of criteria, sub-criteria, and
alternatives [26]. This study demonstrates the spatial AHP procedure using a typical
four-level hierarchy of goals, objectives, attributes, and alternatives (Figure S5). A matrix
for pairwise comparison was created to evaluate the main criteria, with input obtained
from experts, public institutions, and stakeholders. The opinions received were scored
using binary comparisons, and the criteria were weighed on a scale of 1–9, as shown in
Table 1. This scoring system is based on previous studies [8,27]. The pairwise comparison
matrix was assessed using the Consistency Ratio (CR) index to ensure consistency. The CR
index measures the matrix’s degree while accommodating both consistent and inconsistent
interactions. The studies conducted by Chen [28] have shown that the value of CR depends
on the Consistency Index (CI) and Ratio Index (RI), as given below:

Consistency Ratio (CR) =
Consistency Index (CI)

Ratio Index (RI)
(4)

Ratio Index (RI) =
λmax − n

n− 1
(5)

where λmax indicates the maximal eigenvector and n denotes the rank of the matrix. As
discussed by Prasad and Kousalya [29], if the pairwise comparison matrix obtained does not
satisfy Saaty’s CR condition (<10%), decision-makers must revise their decisions. Saaty [8]
demonstrates that the weight values in Figure 5a–c, calculated by using the AHP technique
as given in Tables S4, S5, and S7, are logically reasonable based on CR (%).

Table 1. The SAATY 1–9 scale for pairwise comparisons study.

Magnitude Numeric Score Reciprocal

Equally important 1 1
Moderately important 3 1/3

Strongly important 5 1/5
Demonstrated importance 7 1/7

Absolutely important 9 1/9
Intermediate or transition values 2, 4, 6, and 8 1/2, 1/4, 1/6, and 1/8
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Figure 5. Assigned weightage values to each factor for (a) irrigation water suitability; (b) land suitable
for soybean cultivation, and (c) soybean crop suitability.

2.10.2. Standardization of Criteria

During the standardization process, mapping units were classified using the FAO guide-
lines for land-use planning, as shown in Table S9. For the assessment of soil health, IW quality,
climate, and topographic features suitability, mapping units were classified using expert
opinion, FAO criteria, and the Soil Fertility Research Institute of Pakistan (SFRI) manual, and
to classify mapping units for the evaluation of land suitability for soybean crops, various
academic studies were consulted in addition to expert opinions, as shown in Table S10.

2.10.3. Multicriteria Weighted Overlay Analysis (MCWOA)

MCWOA is a GIS-based technique used to assess the suitability of different zones for a
specific land use or management option [30]. This method combines multiple input layers
to generate an output map, with each location ranked based on its overall suitability for
the decision at hand [31]. The relevant decision criteria were identified in this study, and
separate thematic layers were created. Each layer was standardized by rescaling the values
to a common scale ranging from 1 to 5. All layers were combined in ArcGIS 10.5 software
using the weighted overlay tool to generate a composite suitability map that reflects the
relative importance of each criterion.
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2.10.4. Model Accuracy Assessment

When employing the AHP framework for classification tasks, such as object grouping
based on computed weights, the area under the receiver operating characteristic (ROC–
AUC) curve is commonly used to validate conclusions [32]. In AHP-based cropland
suitability analysis, ROC–AUC assesses the AHP model’s performance in categorizing
suitable zones based on provided weights and variables [33]. It involves ROC curve
calculation by adjusting classification thresholds for potential zones and determining the
AUC to differentiate high and low potential zones [34].

Validation in the Analytic Hierarchy Process (AHP) involves gathering testing samples
(True Positive Rate) from field surveys or secondary data sources to establish training sets for
the AUC-ROC curve evaluation, as depicted in Figure S6. Suitability analysis was performed
using AHP and Weighted Overlay to create a suitability raster map (False Positive Rate),
later categorized into ‘Suitable’ and ‘Not Suitable’. Both the testing samples and the binary
suitability raster were reprojected to a shared UTM Zone 43N coordinate system for easy
comparison. Finally, the ArcSDM tool was utilized to compute the AUC-ROC curve, assessing
the relationship between the True Positive Rate and False Positive Rate (Figure S7).

3. Results
3.1. Water Quality Evaluation

This evaluation entails gathering, analyzing, and visualizing data on factors that can
influence the quality of irrigation water (IW) by using GIS and RS techniques. Table 2 shows
the pH values of IW samples, which ranged from 6.30 to 8.90, and spatial distribution results
revealed that 83.97% of the total 172,618.66 ha falls in the S1 FAO classification category
and 0.07% in the N2 category (Figure 6a). Groundwater quality is typically assessed using
electrical conductivity (EC), which is a major concern in the Indian subcontinent. The
results showed that the EC of IW samples ranged from non-saline (0.18 dS m−1) to very
slightly saline (2.48 dS m−1), as shown in Figure 6b, with most of the study area falling into
the S2 (47.32%) and S3 (50.31%) categories (Table 2).

Table 2. Irrigation water hierarchical structure with suitability classes, scores, and covered areas.

Irrigation Water Suitability
Main Criteria Unit Sub-Criteria Suitability Class Score Hectare Coverage Area (%)

pH - 6.0–6.5 S1 1 144,946.31 83.97
6.5–7.5 S2 1 25,195.17 14.60
7.5–8.0 S3 2 2049.49 1.19
8.0–8.5 N1 3 427.68 0.18

>8.5 N2 4 120.83 0.07

EC (dS m−1) ≤0.25 S1 1 952.76 0.55
0.25–0.75 S2 2 81,683.15 47.32
0.75–2.00 S3 3 86,836.52 50.31
2.00–3.00 N1 4 3146.22 1.82

RSC (me L−1) ≤1.0 S1 1 167,905.67 97.27
1.0–1.25 S2 2 1329.63 0.77
1.25–2.0 S3 3 2405.19 1.39
2.0–2.5 N1 4 978.17 0.57

SAR (mmol L−1)1/2 ≤10 S1 1 172,030.06 99.66
10–18 S2 2 588.59 0.34

Chloride (me L−1) ≤4.0 S1 1 136,854.22 79.28
4.0–7.0 S2 2 27,676.57 16.03
7.0–12.0 S3 3 8087.86 4.69

TDS (ppm) ≤200 S1 1 4242.95 2.46
200–500 S2 2 84,532.96 48.97

500–1500 S3 3 83,453.17 48.35
1500–3000 N1 4 389.57 0.23
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Water RSC indicates the potential alkalinity or salinity of IW. The findings regarding
the RSC of IW, shown in Figure 6c, revealed that the highest RSC value (2.5 me L−1) of
N1 quality was observed in tube-well water taken from the boundary of Chak No. 282 GB
and 52 RB. However, the remaining area had access to IW with RSC values below the
SFRI-specified permissible limit of 1.5 me L−1. SAR measures the abundance of Na+ in
water relative to the soluble divalent ions (Ca2+ + Mg2+). The lab analysis revealed that the
SAR in the study area IW ranged from 0.00 to 11.19 (Figure 6d), and the spatial analysis
indicated that 99.66% of the area has access to S1 quality of IW and 0.34% has access to N1
quality of IW (Table 2).
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3.2. Land Suitability Analysis

Evaluating agricultural land suitability is critical in crop growth and development
management. The lab analysis results indicated that the soil pH is primarily alkaline, with
pH values ranging from 7.5 to 8.90, as depicted in Figure 7a. The geostatistical analysis
indicated that 64.41% of the study area falls in the N1 class, followed by 31.56% in the S3
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class of the FAO system (Table 3). The ECe of the soil-saturated paste extract ranged from
0.03 dS m−1 to 4.95 dS m−1, as shown in Figure 7b. The soil quality in terms of ECe ranged
from S1 (76.65%) to S3 (1.30%), as given in Table 3, indicating that soil ECe is within the
acceptable range. SAR in soil samples varied from 0.59 to 36.88, as illustrated in Figure 7c.
The IDW analysis estimated that 48.23% of the land in the study area falls into the S1 class
and only 0.84% in the N2 class, as given in Table 3.

Plant-available phosphorus and K+ are essential plant macronutrients. Their concen-
tration is used to determine the soil fertility status. Lab analysis showed that phosphorus
content in soils ranged from 2.1 mg kg−1 to 24.1 mg kg−1, as illustrated in Figure 7d.
According to SFRI criteria, approximately 55.65% of the study area falls in S2, 49.71% in S3,
and 3.64% in N1 class (Table 3). On the other hand, NH4-acetate extracted K+ varied widely
from as low as 60 mg kg−1 to as high as 580 mg kg−1, as shown in Figure 7e. Geostatistical
interpolation showed that above half of the study area falls under the class of S3 followed
by S2, covering an area of 50.79% and 39.94%, respectively (Table 3). Notably, soil OM (%)
ranges from 0.4% to 1.37%, as depicted in Figure 7f. Based on the IDW analysis, OM (%) in
soils covering 1.15% to 17.70% area ranged from poor to adequate, and most contained no
more than 1% (Table 3).

Long-term productivity and profitability in agriculture require adequate soil saturation
(%). The analysis results, shown in Table 3, show that the SSP (%) of the study area ranges
from 32% to 38% and falls into the S1 and S3 categories, covering 71.20% and 28.80% area,
respectively, as shown in Figure 7g. Crop growth depends on soil texture for water retention,
nutrient availability, and root development. The soil texture evaluation revealed that loam
and clay loam are the most common soil textural classes in the study area as shown in
Figure 7k. The textural suitability classification along with the covered area is given in
Table 3.

The slope is the inclination or steepness of the ground and is usually measured in
percentages. It is essential in pedogenesis and soil conservation because it influences runoff,
soil drainage, erosion, machine operations, and crop selection. The DEM data analysis
revealed that 99.57% of the study area has slopes less than 1%, and only 0.05% has slopes
between 3% and 4% (Table 3). This indicates that approximately 99.57% of the land is
classified as S1 in terms of productivity and erosion control (Figure 2b). The LU/LC type
in the study area includes cropland, fallow land, barren land, water bodies, built-up areas,
and forest/vegetation, as shown in Figure 3. According to the analysis, approximately
65.59% of the study area is classified as S1, which includes cropland (31.25%) and fallow
land (34.34%). Water bodies (1.60%) and built-up areas (12.32%), on the other hand, are
classified as N1 and N2 (Table 3).

The land-use and land-cover classification accuracy assessment results in Table S3 reveal
valuable insights into the classification model’s accuracy and performance. Cropland dis-
played a low omission error, with only 33.33% of pixels mistakenly excluded, indicating a high
user accuracy of 0.91, showcasing the model’s proficiency in identifying cropland. in contrast,
water bodies and built-up areas showed high commission errors, implying significant misclas-
sification. Producer accuracy was notably high for water bodies and built-up areas, reflecting
accurate classification. The Kappa coefficient (K) indicated a substantial overall agreement
at 0.61, signifying that the model’s performance is quite robust and practical for real-world
use, while the 70% overall accuracy (OA) demonstrated the model’s effectiveness across all
classes. These findings highlight the model’s strengths and weaknesses, emphasizing the
need to reduce commission errors in water bodies and built-up areas and fine-tune the model
for enhanced accuracy and reliability in future applications.
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The weightage calculated from AHP analysis for all ten factors, including LU/LC,
was used to evaluate agriculture land suitability in the study area. Figure 8a,b shows
that more than half of the study area, covering 112,509.76 ha (65.59%), is highly suitable,
28,526.10 ha (16.63%) is moderately suitable, 6562.02 ha (3.83%) is marginally suitable,
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2752.92 ha (1.60%) is currently not suitable, and 21,183.19 ha (12.35%) is permanently not
suitable for supporting farming practices.

Table 3. Agriculture land and climate hierarchical structure with suitability classes, scores, and
covered areas.

Agriculture Land Suitability

Main Criteria Unit Sub-Criteria Suitability Class Score Hectare
Coverage Area (%)

pHs - 7.0–7.5 S2 1 669.05 0.39
7.5–8.0 S3 2 54,485.08 31.56
8.0–8.5 N1 3 111,184.79 64.41

>8.5 N2 4 6279.74 3.64

ECe (dS m−1) <2.0 S1 1 132,319.09 76.65
2.0–4.0 S2 2 38,063.76 22.05
4.0–8.0 S3 3 2235.81 1.30

SAR (mmol L−1)1/2 <10.0 S1 1 83,254.10 48.23
10.0–13.0 S2 2 49,141.20 28.47
13.0–18.0 S3 3 28,506.50 16.51
18.0–26.0 N1 4 10,272.90 5.95

>26.0 N2 5 1443.96 0.84

Soil Saturation (%) 30.0–35.0 S1 1 122,901.60 71.20
35.0–45.0 S3 2 49,717.05 28.80

Soil Texture - Silt Loam S1 1 5222.43 3.02
Sandy Clay Loam S2 2 1804.59 1.05

Silty Clay S2 2 639.72 0.37
Loam S1 1 88,478.55 51.24

Silty Clay Loam S2 2 1618.56 0.94
Clay Loam S2 2 74,629.80 43.22

Clay S3 3 272.88 0.16

Slope (%) 0–1 S1 1 171,960.00 99.57
1–2 S1 1 464.67 0.27
2–3 S2 2 184.02 0.11
3–4 S2 2 88.68 0.05

Plant Avail.
Phosphorus (mg kg−1) <5.0 N1 4 6275.50 3.64

5.0–10.0 S3 3 70,279.69 40.71
10.0–30.0 S2 2 96,063.45 55.65

Extractable (K+) (mg kg−1) <80 N1 4 834.19 0.48
80–160 S3 3 87,679.20 50.79
160–240 S2 2 68,937.40 39.94
240–350 S1 1 11,403.50 6.61

>350 S1 1 3764.45 2.18

Soil Organic
Matter (%) <0.86 S3 3 30,560.30 17.70

0.86–1.29 S2 2 140,072.00 81.15
>1.29 S1 1 1985.97 1.15

LU/LC Type - Crop Land S1 1 53,967.63 31.25
Fallow Land S1 1 59,301.04 34.34

Forest/Vegetation S2 2 28,723.20 16.63
Barren Land S3 3 6661.44 3.86
Water Bodies N1 4 2768.45 1.60
Built-Up Area N2 5 21,279.75 12.32

Climate Suitability

Temperature (◦C) 24–28 S1 1 172,616.43 100

Precipitation (mm) <400 S3 3 99.24 0.06
400–500 S2 2 77,592.61 44.95

500–1000 S1 1 94,924.58 54.99
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3.3. Climate Suitability Assessment

The analysis of ten years of climatological data for temperature and precipitation (rain,
snowfall, and hailstorm) suitability showed that the mean ten-year temperature varied
from as low as 25.40 ◦C to as high as 26.31 ◦C, and the precipitation varied from as low as
381.27 mm to as high as 597.75 mm in the region (Tables S11 and S12). The geostatistical
interpolation analysis results are shown in Figure 8c.

3.4. Soybean Suitability Analysis

All factors have a different impact on crops. Some crops require a higher concentration
of one factor than others. When determining land suitability for soybean production,
the factors listed in Table 4 were considered. According to the analysis results, the most
promising areas for expanding soybean production within the study area were identified as
highly suitable (S1) and moderately suitable (S2), covering an area of 81,524.33 ha (47.46%)
and 20,452.01 ha (11.91%), respectively, as shown in Figure 9a,b. Soybean crop suitability
(SCS) results validation was conducted using the AUC–ROC (area under the receiver–
operating characteristic curve), a widely recognized statistical method. The results of this
validation analysis demonstrated a commendable level of reliability, yielding an AUC–ROC
value of 0.738, as graphically represented in Figure S7. This suggests that the model can
reliably classify and make accurate predictions, laying a strong foundation for its potential
application in real-world scenarios.
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Table 4. Hierarchical structure for soybean cropland suitability mapping.

Main Criteria Suitability Class Score Hectare Coverage Area (%)

Irrigation Water S1 1 79,426.18 46.01
S2 2 91,028.66 52.73
S3 3 2163.82 1.25

Agriculture Land S1 1 112,509.76 65.59
S2 2 28,526.10 16.63
S3 3 6562.02 3.83
N1 4 2752.92 1.60
N2 5 21,183.19 12.35

Climatic Conditions S1 1 172,517.00 99.94
S2 2 99.00 0.06
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4. Discussion
4.1. Irrigation Water Suitability

In agricultural systems, water pH affects soil health and plant nutrient uptake. The
high pH of the tube-well water samples collected near urban/industrial areas could be
attributed to a higher propensity of soil salts to dissolve, releasing Na+ and Ca2+ ions,
which hinders plant growth [35]. EC (dS m−1) significantly impacts soil structure and
crop growth, mainly when the IW contains higher salinity [36]. The EC in tube-well
water was higher than in canal water due to the accumulation of dissolved minerals
in underground aquifers caused by low rainfall, high evaporation rates, and industrial
effluent leaching [37]. High RSC in Chak 52 RB and 282 GB might be due to human
and agricultural activities, such as overuse of Ca2+- and Mg2+-containing fertilizers and
IW. Ahmed [38] stated that Na+ in groundwater can be from natural sources (mineral
weathering) and human activities (irrigation, industrial processes). The SAR index indicates
that the available IW in the study area is safe for agriculture. Khan and Wen [39] found
SAR values of 1.34 to 7.69 (mmol L−1)1/2 in Faisalabad groundwater, which is below the
10 (mmol L−1)1/2 safe limit suggested by Richards [12].

Irrigating crops with water from zones with high Cl− levels can cause leaf burn, leaf
scorch, and leaf tissue death, reducing crop yields. Cl− sources include weathering silicate-
rich rocks and human activities, such as industrial processes, wastewater treatment plant
discharges, and road salt use [39,40]. TDS (ppm) in study area IW ranges from S2 to S3,
owing to the high mineral content of canal water. According to Iqbal et al. [41], water with
TDS > 1000 ppm becomes harder and more corrosive. Additionally, salt buildup in the root
zone can impede water absorption and cause crop stress [42].

The study area is an agricultural hub that relies heavily on irrigation for crop produc-
tion due to arid to semi-arid climatic conditions. The Lower Chenab Canal, Upper Chenab
Canal, Jhang Branch Canal, Gogera Branch Canal, and groundwater irrigate the region.
Marginal groundwater quality in some areas is due to improperly managed landfills, leach-
ing of industrial effluents, excessive use of agrochemicals, and natural processes [43]. Our
findings agree with those of Mukherjee et al. [44], who discovered that salinity, sodicity,
magnesium hazard risks, and water toxicity are important indicators of IW suitability.
Efficient water-management practices and effective strategies for irrigation must be imple-
mented to guarantee a consistent supply of good-quality IW for the cultivation of crops in
study area.

4.2. Agriculture Land Suitability

The soil analysis revealed that the study area has predominantly alkaline pH lev-
els, which could be attributed to either soil salinity or sodicity. This increase in soil pH
(>7.0) results from its location in a semi-arid region. Aimen et al. [45] noted that soils in
Pakistan are typically calcareous and alkaline (pH > 7.0). Meanwhile, pH values rang-
ing from 6.5 to 7.82, resulting in only slightly increased alkalinity levels, are considered
moderately suitable for agriculture [46]. The decreasing behavior of ECe indicates that the
agricultural lands in the study area are low in soluble salts. It is possible that the mixing of
soil, resulting from plowing, and irrigation of cultivated lands with canal water, contributes
to the dispersion of accumulated salts in the soil. In contrast, salts in barren regions often
accumulate on the surface of undisturbed soils [47].

Sodium may have substantial effects on soil properties and plant health. The SAR results
revealed that soils in the S1 and S2 classes are ideal for crop production. The areas in N1 and
N2, near residential and industrial sites, have high SAR values, implying that anthropogenic
activities are the primary cause of elevated soil SAR, whereas S3 may be attributed to barren
landscapes in addition to natural factors such as parent material and climatic conditions. Vari-
ation in soil sodicity (SAR) relates to on-site mineral weathering, natural salt accumulation,
IW quality, climate, management practices, and soil OM contents [48].

The SSP (%) behavior is due to the loam-to-clay loam soil texture in the study area.
According to Gharaibeh et al. [49], the SSP (%) of medium- to fine-textured soils ranges
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between 30 and 45%. Loam soil is a well-balanced blend of sand, silt, and clay, enabling
adequate drainage, aeration, moisture retention, and nutrient supply [50]. As a result, over
half of the soil in the region is designated as ideal for growing major cereal, oilseed, fodder
crops, vegetables, and fruit plants.

Phosphorus is an essential nutrient for plant growth. Its availability varies spatially
due to factors such as climate patterns, soil type, moisture, pH, OM, and the presence of
other nutrients like Ca2+, Mg2+, and Zn2+ [51–54]. Phosphorus deficiency in the study
area is caused by high soil pH, low OM (%), insufficient P-fertilizer use, arid to semi-arid
climatic conditions, and soil calcareousness, which fixes phosphorus with Ca2+, making
it unavailable to plants. It is important to note that soil parent material, OM, chemical
fertilizers, and canal water are the primary sources of K+ in Pakistan [55]. The soils
are low to moderate in plant-available K+. These findings are consistent with those of
Wakeel and Ishfaq [56], who reported that only 6% of Pakistan’s cotton-growing soils had
available K+ concentrations of <80 mg kg−1, while 15% had available K+ concentrations of
>120 mg kg−1. Most soil samples collected from the study area contained no more than 1%
OM. This is due to Pakistan’s arid to semi-arid climatic conditions, vegetative cover, soil
drainage, soil texture, tillage intensity, and plowing depth [57,58]. International standards
consider healthy soil to have 1.2% OM, but different soil series in Pakistan have been
reported to have between 0.52 to 1.38% OM [59].

The topography in and around the study area is flat (slope < 1%) with a gently sloping
landscape. However, certain city areas have significantly steeper to undulating slopes due
to man-made or natural structures such as embankments, buildings, or canals. The slope
(%) may be slightly higher in such areas, but the overall slope is relatively low and well
suited for agriculture farming. Brouwer et al. [60] stated that a slope ranging from 2% to 5%
is generally deemed appropriate for agricultural purposes. The slopes in this range offer an
excellent combo of drainage, erosion management, and moisture retention. The optimal
slope for crop cultivation, on the other hand, can vary based on soil type, rain distribution,
and the cropping pattern in the given area. According to Chen et al. [61], soil slopes over
2% often erode when subjected to farming operations.

In the study area, rapidly changing LU/LC due to urbanization and industrialization
pose unusual land use planning and sustainable development challenges. Strategies to
tackle these issues include sustainable farming, water management, crop selection, crop
rotation, nutrient management, land reclamation and remediation, and training to increase
barren land productivity [62,63]. The findings imply that the study area has huge potential
for agricultural development.

Palombi and Sessa [64] found that most crops grow best between 15–30 ◦C (59–86 ◦F),
with some preferring warmer or cooler temperatures. Singh et al. [65] reported that
20–27 ◦C is optimal for crop growth and development. This suggests that the study area
has a 10-year mean annual temperature that is within the ideal range for crop growth. Crop
precipitation needs vary by type and stage [66]. Generally, 500–900 mm (20–35 inches) of
rain per year is suitable for many crops, but this varies with climate. The region has a
semi-arid climate with 300–500 mm annual rainfall [67].

Land suitability is classified based on soil salinity, fertility, physical properties, land
topography, and LU/LC. S1 land is considered non-saline, well-fertile, and physically suit-
able. S2 land is fertile and subsaline but can be farmed with proper techniques. S3 land has
low fertility and slight salinity, requiring extra nourishment and conservation for optimal
crop production. N1 land has severe soil fertility, salinity, or other physical/topographic
issues that make farming difficult, whereas N2 land has additional environmental con-
straints that make farming impossible. Our results indicate that much of the area is suitable
for farming, with varying degrees of suitability based on variables. These results have
significant implications for crop cultivation and can aid in land use decisions.

These findings are consistent with the previous study conducted by SA Rashed [68] in
Azad Jammu and Kashmir (AJK), who discovered that soil pHe, EC (dS m−1), OM (%), soil
NPK-macro and micronutrients, and soluble ions are essential indicators of agricultural
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land suitability. Similarly, research by Kılıc et al. [69] emphasized the importance of
elevation (m), slope (%), aspect, soil texture, and soil depth (m) in determining wheat crop
suitability classes. Moreover, Kumar et al. [70] demonstrate that GIS and remote sensing
techniques can identify suitable agricultural areas.

4.3. Soybean Crop Suitability

Soybean requires 400–500 mm of annual rainfall and grows at 10–36 ◦C temperatures,
with a maximum yield at 24 ◦C. It prefers loam soils with pH 6.5–7.5 and can tolerate
salinity of up to 5 dS m−1 with a 50% yield reduction. The region is suitable for climatic
conditions; flat to undulating slopes and loam-to-clay loam texture are ideal for soybean
growth. These results align with the findings of Vanger et al. [71], who found that climate,
slope (%), LU/LC, and available nutrients are beneficial. In contrast, soil OM (%), pH, and
drainage impede sustainable soybean production in the area. Radočaj et al. [72] found that
machine-learning techniques accurately predicted soybean crop cultivation areas based on
climate, soil health, topography, and vegetation indices. Furthermore, Salunkhe et al. [73]
reported similar findings and found that weighted overlay and AHP analysis had high
sensitivity in cropland suitability analysis.

These findings not only surpassed the acceptable threshold when compared against
the training data but also closely aligned with similar studies. For instance, the AUC curve
accuracy in the study by Fitzgibbon et al. [74] was recorded at 81%, while Ghosh [75] demon-
strated validation outcomes of 73%, both of which closely resemble the outcomes of the
current study. This analysis serves as a robust framework to guide agricultural decisions, aid-
ing farmers and policymakers in identifying regions with the highest potential for successful
soybean crops. By optimizing agricultural productivity and resource allocation in this way,
the model can help to improve food security and sustainable agricultural practices.

4.4. Multi-Criteria Decision Making (MCDM)

The weighted overlay is a specific type of data fusion technique that plays a pivotal
role in modern GIS and remote sensing research by combining different thematic layers
(such as land use, slope, soil type, etc.) through weighted mathematical operations to
generate a composite raster layer indicating site suitability for agriculture and urban
planning [76,77]. The integration of diverse data sources, such as satellite imagery and
ground-based measurements, allows for a more comprehensive and accurate understanding
of the Earth’s surface. This integrated approach facilitates the extraction of valuable
information, supports more robust analyses, and enhances the effectiveness of decision-
making processes in various fields, including agriculture, environmental monitoring, and
disaster management. Recent studies by [9,78–81] have emphasized the significance of
weighted overlay in improving the accuracy and scope of land suitability assessments,
highlighting its indispensable role in advancing GIS and remote sensing applications for
agricultural and environmental studies.

This study employed an AHP-based weighted overlay approach that effectively in-
tegrated various criteria to create a reliable model for determining soybean cropland
suitability. This model exhibited a more than acceptable level of predictive accuracy. The
incorporation of multiple criteria ensured a robust assessment of cropland suitability that
lines with the findings of [74,75]. However, the model’s sensitivity to variations in criteria
and their weights emphasizes the need for refining its accuracy in future studies. Despite
limitations in input data resolution and temporal dynamics, the combination of WOA and
AHP offers a promising approach for guiding land-use planning and agricultural manage-
ment. Continued research is essential to enhance the model’s accuracy and applicability
across diverse landscapes.

5. Conclusions

The findings revealed that the usefulness of IW for agriculture varied greatly depend-
ing on its source and composition. Except for unusual circumstances, canal water has lower
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salt levels unless it becomes contaminated by industrial and domestic waste, leading to
soil salinization. Soil analysis showed that loam and clay loam are dominant soil textures
in the study area, facilitating drainage, aeration, moisture retention, and nutrient supply.
The results also suggested that suitability-promoting factors (soil pH, EC (dS m−1), OM
(%), available phosphorus, SSP (%), slope (%), and texture) and suitability-limiting factors
(extractable K+, SAR, and LU/LC) were the main factors affecting agricultural farming
in the study area. In some areas, a sizable amount of the land is fallow and ideal for
farming, whereas just a small portion is submerged in water and, therefore, unsuitable
for agriculture. Furthermore, although barren areas only show marginal suitability for
such uses, urbanized areas are permanently unfit for agricultural activity. This presents a
unique set of challenges for land use planning and sustainable development. Researchers
proposed strategies like sustainable farming, optimal water resource utilization, and land
reclamation to tackle these issues to boost barren land productivity. The suitability of
the research area for soybean crops varied throughout the spectrum, ranging from highly
suitable to permanently unsuitable. The findings of this study are essential for farmers and
policymakers seeking to manage irrigation water quality, agricultural productivity, and soil
degradation sustainably.

6. Recommendations

Strategic approaches are required to introduce novel crops in barren lands that are
marginally suitable for agriculture. Weeds and debris must be removed, and the soil should
be amended if necessary. Water usage efficiency and crop yield can be maximized through
modern agricultural techniques, such as drip irrigation. Overall, current findings emphasize
the need for an integrated and holistic approach to land use planning and management
that considers numerous stakeholders’ varying requirements and interests while ensuring
the sustainable use of natural resources. This method is effective for mapping the results of
suitability and their relative marginality.
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