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Abstract: Land use/cover change (LUCC) detection and modeling play an important role in global
environmental change research, in particular, policy-making to mitigate climate change, support land
spatial planning, and achieve sustainable development. For the time being, a couple of hybrid models,
such as cellular automata–Markov (CM), logistic–cellular automata-Markov (LCM), multicriteria
evaluation (MCE), and multicriteria evaluation–cellular automata–Markov (MCM), are available.
However, their disadvantages lie in either dependence on expert knowledge, ignoring the constrain-
ing factors, or without consideration of driving factors. For this purpose, we proposed in this paper a
new hybrid model, the logistic–multicriteria evaluation–cellular automata–Markov (LMCM) model,
that uses the fully standardized logistic regression coefficients as impact weights of the driving factors
to represent their importance on each land use type in order to avoid these defects but is able to better
predict the future land use pattern with higher accuracy taking Hefei, China as a study area. Based on
field investigation, Landsat images dated 2010, 2015, and 2020, together with digital elevation model
(DEM) data, were harnessed for land use/cover (LUC) mapping using a supervised classification
approach, which was achieved with high overall accuracy (AC) and reliability (AC > 95%). LUC
changes in the periods 2010–2015 and 2015–2020 were hence detected using a post-classification
differencing approach. Based on the LUC patterns of the study area in 2010 and 2015, the one of 2020
was simulated by the LMCM, CM, LCM, and MCM models under the same conditions and then
compared with the classified LUC map of 2020. The results show that the LMCM model performs
better than the other three models with a higher simulation accuracy, i.e., 1.72–5.4%, 2.14–6.63%, and
2.78–9.33% higher than the CM, LCM, and MCM models, respectively. For this reason, we used the
LMCM model to simulate and predict the LUC pattern of the study area in 2025. It is expected that
the results of the simulation may provide scientific support for spatial planning of territory in Hefei,
and the LMCM model can be applied to other areas in China and the world for similar purposes.

Keywords: LUCC; logistic model; CA–Markov model; MCE model; LMCM model

1. Introduction

The International Geosphere-Biosphere Programme (IGBP) and the International
Human Dimensions Programme (IHDP) on Global Environmental Change jointly proposed
the international core research project, Land Use/Cover Change (LUCC), in 1995. This is
an important part of global environmental change research and a key component of land
systems, and it has been playing an active role in climate change mitigation and sustainable
land use planning [1–3]. LUCC involves a variety of research and applications, including
social, economic, environmental, and other fields, and fully demonstrates the interaction
among the land use types, land use and environmental elements, and human-land system.
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These made the project quickly become a research hotspot in the global communities of
geography, land management, and climate change in a short period of time, and also the
focus of public management for decision-making [4,5].

Since the beginning of the 21st century, a typical land use change is urbanization,
on which significant progress of research has been made. According to the United Na-
tions, the urbanization rate at the global scale exceeded 50% for the first time in 2000 and
reached 56.2% in 2020, becoming one of the most striking environmental changes in recent
decades [6]. The urbanization process is also growing rapidly in China, and it was reported
that it reached 63.89% in 2020, which exceeded the global average urbanization rate [7]. The
urbanization process has caused changes in land cover, resulting in a series of problems in
land resources, climate, and environment that affect sustainable development [8]. At the
same time, different types of land use contradictions have become increasingly apparent, es-
pecially in Central and Eastern China, which is a consequence of rapid urbanization [9–11].
By monitoring and predicting the changing trend of urban areas, it will be possible to
effectively reduce the negative impact of unreasonable land use change by intervening with
certain measures, and this will lay a foundation for sustainable development in an urban
environment. Land use modeling and simulation, as important components of LUCC
research, are also important tools for analyzing the mechanism of land use change and its
impact on the environment. They play an irreplaceable role in understanding the LUCC
process and predicting its trends [12]. Research on such modeling and simulation can
help us reasonably utilize land resources, provide important technical support for spatial
planning of territory at the national level, and achieve sustainable development in the
socioeconomy [13].

At present, the common LUCC models include mainly quantitative simulation models
of land demand, spatial simulation models focusing on microscopic spatial allocation of
land, and coupled simulation models. Quantitative simulation models emphasize the anal-
ysis of area changes and change rates of different land cover types without consideration
of their spatial distribution, and the representative ones include system dynamics (SD)
models [14,15] and Markov models [16,17]. The spatial simulation model focuses on the
simulation of the spatial distribution of land use patterns and analyzes the spatial differ-
ences in the impact of natural and human driving factors on LUCC. Frequently applied
models include cellular automata (CA) [18,19], agent-based models [20,21], and land use
conversion and its impact on small area (CLUE-S) models [22,23]. The hybrid simulation
model, such as the CA–Markov model (abbreviated as CM), integrates the advantages
of multiple models and breaks through the inherent limitations of a single model [24].
Therefore, considering the quantification of land demand and the simulation of spatial
allocation, the hybrid simulation model has become the mainstream choice at present.

As a representative of microscopic dynamic models, CA has been applied in the field of
land use change simulation [25] and urbanization analysis [26] in conjunction with spatial
decision support systems [27], ecological protection [28], scenario planning [29,30], and
other technically or theoretically integrated applications. John von Neumann, the father of
modern computers, officially proposed the CA model in 1948. This model is discrete in time,
space, and state and has the advantages of simulating the dynamic process of the system
and predicting future trends. The key part of CA is to define the conversion rules and the
parameters in the rules that have an important influence on the simulation results [31].
Since the 1970s, Tobler has first applied the concept of CA to geography and simulated
the expansion of Detroit in the Great Lakes region of the United States [32]. Clarke et al.
(1997) used the CA model to simulate urban changes in San Francisco [33], and Besusi et al.
(1998) employed it to predict the future spatial pattern of the main urban area of Venice
and explore the internal driving mechanism of urban expansion [34]. The CA model has
obvious advantages in spatial simulation and can accurately predict the spatial changes in
different land use types. Its main drawback is that its ability of quantitative analysis for
land use types is weak, making it difficult to quantitatively represent the specific changes
in different land use types.
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The second model is the CM hybrid model, proposed by Clark University in the
United States in 1987, aiming to use the strengths of CA and Markov models to simulate
and predict quantitative changes in the space of complex human earth systems. This model
has been widely applied and has become an effective method for predicting LUCC. The key
part of the CM model is to define transformation rules. Mixing CA and Markov models
not only facilitates the simulation of land use change at different stages but also improves
its prediction accuracy [35]. Araya et al. analyzed the land use change situation in some
parts of Portugal using the CM model [36]; Etemadi and other scholars have successfully
predicted the land cover change in the mangrove areas in Iran using this model [37].
However, the CM hybrid model ignores to some extent the influence of socioeconomic
factors and relies overly on the transition matrix between different land use/cover [27],
which has certain shortcomings in the process of predicting and simulating land use change.

The third one is the logistic–cellular automata–Markov (LCM) model, a combination
of logistic regression (LR) and the cellular automata–Markov (CM) model proposed by
Wu and Yeh [38] in 1997, and they noted that the LR overlying CA and Markov, i.e., the
LCM model, is able to improve the simulation accuracy by obtaining the transfer rules
of CA through the LR model. However, the drawback of this model is that it lacks a
comprehensive consideration of driving factors such as natural and socioeconomic factors,
which deviates from the actual changes in land types and will affect the accuracy of
prediction results [39].

The fourth one is the multicriteria evaluation (MCE)–cellular automata–Markov
(MCM) model [40,41], a combination of analytic hierarchy, expert knowledge, and field
research to characterize land cover dynamics and predict urban growth [42,43]. The MCM
model is a decision tool through multicriteria analysis and provides a suitability score to
define the parameter values of CA models [44–47]. In 2020, Nath et al. simulated the land
use situation in the Jiangyou region for the next three different years by combining CA–
Markov and MCE-AHP (multicriteria evaluation analytical hierarchy process) models and
conducted a comprehensive evaluation of the results [48]. Although the MCM model fully
considers the importance of driving and constraint factors in the simulation process, they
are often influenced by expert knowledge and do not have local conditional features [49].

In addition, Verburg et al. (2002) developed the CLUE-S model based on the conversion
of land use and its effects modeling framework [22], which has ideal results for simulating
land use change in small areas. The CLUE-S model starts from social, economic, natural,
and other aspects, has stronger practicality, and is widely applied. However, it has certain
limitations due to the need to obtain quantitative changes through other methods before
simulating spatial changes.

In view of the above understanding, the aim of this paper is to develop an integrated
hybrid model, i.e., the logistic–multicriteria evaluation–cellular automata–Markov (LMCM)
model, which is expected to effectively overcome the shortcomings of the existing models,
e.g., reduction in the dependence on subjective factors such as expert knowledge, leading to
more convincing and comprehensive results with a better capability of the LUCC modeling
taking both driving and constraining factors into account. For this purpose, Hefei City,
Anhui, China, where rapid urbanization and cropland loss have occurred, was selected as
the study area to demonstrate the development of the LMCM model and its application
using multitemporal remote sensing imagery, socioeconomic, and environmental data. A
specific objective of this study is to provide a relevant reference for decision-making to
guide future spatial planning of territory to achieve the goal of sustainable urbanization
and socioeconomic development in Hefei.

2. Materials and Methods

To test the reliability of the LMCM model and its superiority to other existing hybrid
models, our experiment was designed as follows:

(1) Land use/cover (LUC) mapping using multitemporal Landsat images dated 2010,
2015, and 2020 and validation by ground-truth data; (2) LUCC detection, calculation of
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area changes and the transition matrix of each land cover type; (3) identification of LUCC
drivers and constraining factors, and screening out those relevant for land use change
modeling through collinearity analysis; (4) definition of the optimal units for simulation
and modeling by calculating the area under the ROC curve (AUC) for each land use type
at different simulation units, and using AUC as the evaluation criterion for selecting the
optimal unit; (5) modeling and prediction of LUC in 2020 using the CM, LCM, MCM, and
LMCM models; (6) validation of the LMCM model through a comparison of the predicted
results by all these models with the classified map of 2020 to evaluate the reliability of the
LMCM model and its superiority to others using Kappa coefficients; and (7) application of
the LMCM model to predict LUC of 2025 based on the classified LUC maps of 2015 and
2020. The detailed technical roadmap is presented in Figure 1.
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Figure 1. Technical roadmap designed for this study.

2.1. Study Area

As the capital city of Anhui Province, China, Hefei is geographically located between
116◦40′ and 117◦58′ E in longitude and between 30◦56′ N and 32◦32′ N in latitude. The
total area is about 11,445 km2, including four urban districts, namely Baohe, Yaohai,
Shushan, and Luyang, four counties, i.e., Feidong, Feixi, Lujiang, and Changfeng, and one
municipality city (Chaohu) (Figure 2). Situated in a humid subtropical monsoon climate
zone, Hefei receives an annual precipitation of about 1000 mm, whereas the average annual
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temperature is 15.7 ◦C [50,51]. The landform is mainly plains and hills, with an altitude
ranging mostly from 15 to 80 m, except for Niuwangzhai hill, reaching 595 m [52].
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According to the data of the seventh national census, the permanent population of
the study area reached 9.37 million at the end of 2020, and the urbanization rate rose from
63.2% in 2010 to 82.28% in 2020. The proportion of the primary, secondary, and tertiary
industries changed from 4.9/53.9/41.2 in 2010 to 3.3/35.6/61.1 in 2020, while the growth
of GDP (gross domestic product) reached 238% in this period [53]. With the continuous
adjustment of the industrial structure and rapid urbanization, the distribution pattern of
land use in Hefei has also undergone tremendous changes in the past decade, causing a
series of problems such as intensified man-land contradiction, environmental degradation,
water pollution, and huge loss of fertile croplands. It is, hence, necessary to conduct a
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LUCC simulation and prediction study in this area for a better understanding of the future
LUC pattern. Up to today, few studies on this topic have been reported for Hefei, and
that is why we selected this city as our study area for LUCC modeling and prediction,
expecting that the results of this study may provide advice to the governments for solving
the above-mentioned problems.

2.2. Data Processing

As mentioned, this study involves a variety of data, including satellite remote sensing
and terrain data, socioeconomic data, geographic information data, planning restriction
data, and field investigation data, as shown in Table 1.

Table 1. Data used in the research.

Data Type Data Content Year Spatial Resolution Data Source

Remote Sensing
Data

Landsat 5 TM 2010
30 m × 30 m

USGS (https://glovis.usgs.gov,
accessed on 1 April 2022)Landsat 8 OLI 2015

Landsat 8 OLI 2020

Terrain Data DEM 2010 30 m × 30 m
NASA

(https://www.earthdata.nasa.gov,
accessed on 10 April 2022)

Socioeconomic Data
Population density 2015

2020
30 m × 30 m

http://tjj.ah.gov.cn, accessed on 5
May 2022GDP

Station-based
Rainfall Data Monthly rainfall 2009–2021 /

Data Center of Resources and
Environment Science, the Chinese

Academy of Sciences (CAS)
(https://www.resdc.cn, accessed on

1 July 2023)

Basic Geographic
Information Data

Road

2015
2020

30 m × 30 m

OSM
(http://www.openstreetmap.org,

accessed on 10 May 2021)

Motorway
Railway

Lakes/Reservoir
River

Urban residential area Obtained from Amap using API
interface written by Java language

Planning
Constraint Data

Protective zone of basic
farmland

2015 Vector polygon http://zrzyhghj.hefei.gov.cn,
accessed on 1 July 2021Primary water source

protection area
National forest park

Main urban built area

Field Investigation
Data

Field LUC observation
points 2021 /

Using OvitalMap to conduct field
surveys and record survey data for

each observation point

2.2.1. Data

(1) Remote Sensing data
To choose remote sensing data, two aspects must be taken into account; that is, one is

cloud-free [9,54,55], and the other is the continuity of the sensor in operation [56,57]. We
obtained three low cloud-cover scenes of Landsat 5 TM (19 March 2010) and Landsat 8 OLI
images (1 March 2015 and 14 March 2020) with path/row number 121/38 from the USGS
(United States Geological Survey, Reston, VA, USA) data server.

(2) Terrain data
The terrain data are the digital elevation model (DEM), and in total, five tiles of ASTER

GDEM V3 data (30 m resolution) were acquired from NASA (National Aeronautics and Space

https://glovis.usgs.gov
https://www.earthdata.nasa.gov
http://tjj.ah.gov.cn
https://www.resdc.cn
http://www.openstreetmap.org
http://zrzyhghj.hefei.gov.cn
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Administration, Washington, DC, USA). Slope and aspect were derived from the DEM using
a topographic modeling tool within ENVI (ENvironment for Visualizing Images).

(3) Socioeconomic data
Socioeconomic data such as population density and GDP of 2010, 2015, and 2020 were

acquired from the statistical yearbooks of various districts and counties from the Hefei
Bureau of Statistics.

(4) Rainfall data
The rainfall data mainly include the monthly and average annual rainfall from 2009 to

2021 recorded by weather stations in each county or district. Considering that the remote
sensing images were acquired in March, we used the 6-month preacquisition rainfall data
from September to February for this study.

(5) Basic geographic information data
Basic geographic data dated 2010, 2015, and 2020, mainly including the distances from

highways, railways, main roads, rivers, lakes, and urban settlements, were derived from
the OpenStreetMap V5.1, of which the urban settlement data were obtained from Amap
V13 by writing an application programming interface (API) using java language.

(6) Planning constraint data
According to the governmental documents such as the Hefei Master Land Use Plan

(2006–2020) and Master Urbanization Plan (2011–2020), the national natural reserves, the
protected areas of class-1 water sources, cultural relics protection, and other factors were
taken into account to delineate the prohibited areas for construction within the scope of
Hefei to ensure sustainable development of the city.

(7) Field investigation data
A field survey was effectuated in the spring and summer of 2021 using OvitalMap

V9.8.5, a smartphone application that allows recording not only the geographical location
(GPS/Beidou) but also the survey data of each observation point. In total, 682 field LUC
observation points were visited and recorded.

2.2.2. Processing Procedures

(1) Remote sensing data processing
Chavez (1996) found that cosine theta (θ, the solar zenith angle) is a good approxima-

tion of the upwelling transmittance from surface to sensor, and hence, the atmospheric cor-
rection approach can be simplified, and an image-based correction was proposed. Chavez
(1996) called this COST (COSine Theta) model [58]. This study employed the COST model
for atmospheric correction of Landsat images, in which the band minimum was used to
eliminate the haze effect, and the at-satellite radiance of each band was transformed into
surface reflectance [59,60]. LST (land surface temperature) was also calculated from the
thermal infrared band of Landsat TM and OLI images [61–64].

Slope and aspect were produced from the DEM data and utilized as part of the
environmental factors for land use classification [63]. A dataset of 13 bands, including
elevation, slope, aspect, and three vegetation indices shown below, blue, green, red, near-
infrared, SWIR1, SWIR2, and LST, were combined by layer-stacking function [63].

Considering the actual land cover characteristics of Hefei, three vegetation indices,
namely the normalized difference vegetation index (NDVI) [65], the enhanced vegetation
index (EVI) [66], and the generalized difference vegetation index (GDVI) (n = 2) [64] were
employed. It is known that EVI can effectively reduce soil and atmospheric impacts [66],
and GDVI is of higher sensitivity and wider dynamic range to low vegetated land covers
such as bareland, urban areas, grasslands, or rangelands than other vegetation indices [64],
and NDVI lies in between EVI and GDVI, a compromise of the two indices. Thus, utilization
of the three indices may contribute to identifying land cover with more detail. These three
vegetation indices can be obtained with the following formulae:

NDVI = (ρNIR − ρR )/(ρNIR + ρR ) (1)
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EVI = 2.5× ρNIR − ρR
ρNIR + 6.0ρR − 7.5ρB + 1

(2)

GDVI =
(

ρ2
NIR − ρ2

R )/
(

ρ2
NIR + ρ2

R

)
(3)

where ρNIR is the spectral reflectance of the near-infrared band; ρR is that of the red band
and ρB the blue band.

(2) Factor processing
Selection of the relevant driving and constraining factors of land use in Hefei is an

important step in modeling. Ten socioeconomic and geographic driving factors were
selected for this purpose, i.e., population, population density, GDP and per capita GDP, and
urbanization rate from 2010 to 2020, which were all interpolated using the inverse distance
weighting (IDW) approach. This method mainly applies larger weights to observations
closer to the target point and smaller weights to observations farther away from the target
point in order to predict spatial positions that have not yet been observed. Though Milillo
and Gardella (2008) found that ordinary kriging is more accurate than IDW in retention of
original image features [67], Spokas et al. (2003) and Gong et al. (2014) have shown that
IDW is superior to kriging in the estimation of landfill methane flux [68] and groundwater
arsenic concentrations [69] whereas Munyati and Sinthumule (2021) found that for the
forest, kriging has a higher correlation of tree density with NDVI than IDW while for
woodlands, IDW has a higher correlation than kriging in estimating tree density [70]. Thus,
whether kriging or IDW interpolation performs better is case-dependent. For simplicity,
we selected IDW for the interpolation of these factors.

Geographical factors, including elevation, slope, and distances from the main roads,
highways, railways, rivers, reservoirs, and urban settlements, were obtained by Euclidean
distance analysis. In addition, four constraining factors were identified as well, and they
are the protected farmland area, the first-class protected water source area, the core area
of the scenic spot, and the main urban area. The constraining factors are in Boolean, set
either 0 or 1, where “0” means the forbidden area for development, and “1” represents the
developable ones.

To match the Landsat and DEM data, all factors were resampled to 30 m in resolution
within datum WGS 84 and projection UTM Zone 50N and kept in the same dimension
(same row and column number).

2.3. Methods
2.3.1. LUC Mapping and Its Dynamic Changes

Mapping LUC is one of the important components of LUCC modeling. Based on the
third national land survey in combination with field investigation, we defined 21 initial
categories of the ground-truth samples (regions of interest, ROIs) for the study area, half
of which was employed for training, i.e., the training set (TS) and the remaining half for
verification, or more precisely, the verification set (VS). The maximum likelihood algorithm
was applied to the 13-band datasets for supervised classification, with the TS for training
and the VS for verification of the classified maps. In order to facilitate further research,
all the initial classes are merged into six main categories according to their similarity,
namely, waters, built-up areas, croplands, grasslands, barelands, and woodlands, including
local patches of forests and shrublands (Table 2). Accuracy evaluation was performed by
confusion matrix, and the main indicators are overall accuracy (OA), Kappa coefficient
(KC), producer accuracy (PA), and user accuracy (UA).

After classification, different LUC types and their spatial distribution of each observed
year (2010, 2015, and 2020) were quantified, and their change trends were analyzed.
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Table 2. Main land use/cover (LUC) categories.

Final Land Use Types Descriptions

Waters River channels, lakes, reservoirs, ponds, and wetlands

Built-up areas Urban construction, rural settlements, industrial and mining
areas, and infrastructures

Croplands Paddy fields, other irrigated lands, and sown areas
Woodlands Including local patches of forests, woodlands, and shrublands
Grasslands Natural grasslands and pastures
Barelands Bare soil and bare rocks

2.3.2. Determination of the Driving Factors and Optimal Simulation Units

To reduce spatial dependence and ensure adequate sample size, this study adopted an
approach by combining systematic sampling of land use data and driving factors (25 grid
intervals) with random sampling (additional 5%).

(1) Driving factors
Before LUCC modeling, it is critical to eliminate the multicollinearity of the driving

factors. The multicollinearity diagnosis was effectuated by the tolerance (TOL) and the
variance inflation factor (VIF), which are reciprocal to each other. When the VIF falls
between 0 and 10, there exists no collinearity among the factors, but when the VIF > 10,
it implies a collinearity exists among the factors [71]. Our test revealed that the VIF of
almost all variables is < 10 except rainfall and temperature, and thus, these two factors
were removed for further analysis. There is no collinearity or inter-dependency among the
remaining factors (Tables 3 and 4).

Table 3. Remaining drivers, limiters, and their symbols.

Factor Types Potential Factors Units Variable Symbol

Natural factors
Elevation m D1

Slope ◦ D2

Geographic factors

Distance to roads m D3
Distance to motorways m D4

Distance to railways m D5
Distance to

lakes/reservoirs m D6

Distance to rivers m D7
Distance to urban
residential areas m D8

Socioeconomic factors
Population density Persons/km2 D9

Average GDP per unit land Yuans/ km2 D10

Constraining factors

Protected farmlands - L1
Protected areas of first-class

water source - L2

National forest parks - L3
Main urban areas - L4

Table 4. Collinearity diagnosis of the driving factors using variance inflation factor (VIF).

Land Use Types D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Waters 2.139 1.793 1.163 1.702 1.595 1.255 1.437 1.235 6.961 7.304
Built-up areas 1.750 1.477 1.198 1.544 1.698 1.122 1.380 1.131 5.355 5.637

Croplands 1.978 1.745 1.157 1.513 1.607 1.118 1.338 1.128 5.738 6.061
Woodlands 2.101 1.958 1.190 2.074 2.123 1.301 1.315 1.238 7.021 7.607
Grasslands 1.912 1.538 1.181 1.466 1.632 1.123 1.459 1.127 7.023 7.256
Barelands 1.722 1.375 1.162 1.211 1.268 1.093 1.490 1.090 6.675 6.990
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(2) Best simulation unit
The factors, mechanisms, and characteristics of land use change in space may arise

differently if simulation is conducted at different unit sizes, and it is necessary to select an
appropriate simulation unit size for this purpose. Considering the actual surface area in this
study and the requirements for accuracy, four simulation units (cell size) were proposed for
the test: 30× 30 m2, 60× 60 m2, 90× 90 m2, and 120× 120 m2. Logistic regression analysis
was used for this optimal analysis, where the results were tested by using the receiver
operating characteristic (ROC) approach developed by Pontius and Schneider (2001). The
area under the ROC curve (AUC) of each land use type with different simulation units was
calculated, and the AUC was regarded as the evaluation criterion for the selection of the
best unit. Usually, the AUC value comes between 0.5 and 1, and when 0.5 ≤ AUC < 0.7,
the accuracy of the prediction result is low; when 0.7 ≤ AUC < 0.9, indicating a medium
precision, and when 0.9 ≤ AUC < 1.0, it means a high precision [72].

2.3.3. Simulation and Validation

(1) Characters of the different hybrid models and simulation
The CM model is a combination of CA with the Markov model, in which the latter is a

stochastic model that allows us to obtain the transition matrices of LUC from one state to
another [73–75]. The transition equation for land use status is shown as follows:

S(t+1)= PijS(t) (4)

where S is land use states, t, t + 1 are the observed time points, and Pij is the probability
matrix of state transition and is expressed as follows:

Pij=

P11 · · · P1n
...

...
...

Pn1 · · · Pnn

 (5)

where 0 ≤ Pij < 1 and
n
∑

j=1
Pij = 1 (i, j = 1, 2, · · · , n); n is the land use type number. The

disadvantage of this kind of model lies in that it provides neither information of precise
spatial location nor driving forces [76].

CA are discrete models regarded as spatiotemporal dynamic systems based on local
rules [77,78], determined by a series of rules constructed by the model, and the core part
is the definition of transformation rules [79]. The three main characteristics of CA are
parallelism, consistency, and locality, which provide great help in dealing with complex
and ever-changing geographic systems and demonstrate strong adaptability to geographic
systems. CA systems usually include five components: cell, cell space, cell neighbors,
transformation rules, and transformation time. The formula is demonstrated as follows:

S(t+1)= f
[
S(t), N

]
(6)

where S is a set of states of the finite cells; f is the transformation rule of local space; t and
t + 1 are different moments of time; and N is the neighborhood of cells.

The prediction of land use change using the Markov model is mainly a quantitative
prediction, which cannot predict the spatial distribution of different land types in the
study area. However, the CA model has the concept of spatial information and the ability
to simulate dynamic evolution. Therefore, the CM model takes advantage of both the
Markov chain and CA models and may lead to a better spatiotemporal prediction of land
use change.

The LCM model is mainly based on the LR and CM models. The LR model has been
widely used in the prediction of land use change [80] and natural disaster (e.g., landslide)
risk assessment [81,82]. The LR model is a binary logistic regression (BLR) relationship
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formed between a dependent variable and multiple independent variables to predict the
probability of an event occurring in a certain region. Its advantage is that the independent
variables can be continuous or discrete [83]. In this study, a certain land use type, such as
croplands, grasslands, etc., was treated as the dependent variable, and the corresponding
grid attribute was assigned a value of 1; on the other hand, the driving factors, such as
elevation and population density, serve as independent variables. The equation of the BLR
model is shown as follows:

logit(Pi)= ln
[

Pi
1− Pi

]
= β0 + β1X1 + β2X2 + · · ·+ βnXn (7)

where Pi is the probability that land use type i may appear in the given pixel; Xn is the
influencing or driving factors; β0 is a constant; and βn is the partial regression coefficient of
the corresponding factor Xn.

The MCM model is a combination of MCE and CM. The MCE model is an analytical
method that evaluates a series of unrelated influencing factors in order to provide optimal
decision-making. The core of the MCE model is to establish corresponding standards for
different land types and then provide a reference for decision-making by analyzing the
factors that affect different land types. MCE involves two types of influencing factors,
namely the constraining and the driving factors. The constraining factor is to maintain the
current status of areas that do not undergo land type conversion within the observation
year, which is closer to the actual situation, takes dichotomous values of either “0” or “1”,
and there is no intermediate gray area [84]. Among them, ‘0’ represents areas that are
prohibited from development, and ‘1’ represents areas that can be developed. This is a hard
decision and does not require standardized processing in later land use change modeling.
The driving factor represents the degree to which a certain land use type is suitable for
development, which refers to the factors that will affect the mutual conversion between
different land types during the observation year. Different factors will have different
impacts on the conversion results. In the process of creating the suitability atlas, we used
the fuzzy membership function to control points for normalization of the influencing factors
to a continuous value ranging from 0 to 255, which belongs to soft decision-making. Finally,
the weights of all factors are determined by the analytic hierarchy process (AHP), and each
standardized factor is integrated with its corresponding weights and superimposed on the
constraining factor by the weighted linear combination (WLC) approach, and the suitability
distribution map of each local class is obtained as a supplement to the local rules of CA.
The equation for the MCE model is shown as follows:

S = ∑ wixi∏ cj (8)

where S is the score of suitability as a combination of all selected factors; wi is the weight of
the observed driving factor i; xi is the score assigned to the observed driving factor i; and cj
is the value of the selected constraining factor j.

The LMCM model, as mentioned earlier, is composed of LR, MCE, CA, and Markov
models, taking advantage of all these different models but avoiding their disadvantages.
The LMCM model places more emphasis on the inherent characteristics of the sample data,
making it more accurate in simulating and predicting land use changes. The fully stan-
dardized logistic regression coefficient was proposed by American scholar Scott Menard in
1995 [85]. Unlike other standardized regression coefficients, it not only considers the stan-
dardization of independent variables but also the standardization of dependent variables.

Firstly, through the logistic regression and linear regression models, the significance,
nonstandardized regression coefficient, standard deviation, and other parameters were
obtained, and then, according to the approach proposed by Menard (1995) [85], the fully
standardized LR coefficient was calculated in terms of Equation (9):

γm = c(SX)R/Slogit(Ŷ) (9)
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where γm is the fully standardized LR coefficient; c is the unstandardized LR coefficient;
SX is the standard deviation of the driving factor X; Slogit(Ŷ) is the standard deviation

of logit(Ŷ), i.e., the standard deviation of the predicted values of logit(Y); and R is the
correlation coefficient between the observed values of Y (either 0 or 1) and the predicted
values of Y (predicted probabilities for each type). Equation (9) provides information on
the importance of each driving factor.

The logistic regression coefficient with a significance level of greater than 0.05 was
excluded, and the remaining one was retained for weight calculation:

wm=
|γm|

|γ1|+ |γ2|+ · · ·+|γn|
(10)

where wm is the normalized regression coefficient with the driving factor m; γm is the fully
standardized LR coefficient; and γn is the normalized regression coefficient value for the
last driving factor after screening, 1 ≤ m ≤ n.

After obtaining the weight values (wm) of the driving factors of each land use type,
the probability of land use type in each raster cell was determined by the WLC in the MCE
model, and then LUCC prediction was obtained by the collection editor.

In the simulation process, the constraints on the conversion rules were divided into
two groups, i.e., mandatory and ordinary. The mandatory constraints were used as con-
straining factors, and the ordinary constraints were used as driving factors. The processing
methods of the two groups of constraints are different, and the collinearity analysis of the
driving factors allows for reducing their spatial autocorrelation and thereby minimizing
the interference of data errors on the simulation accuracy. Furthermore, in the test of all
the models through linear regression and LR analyses with a significance level of < 0.05,
a fully standardized LR coefficient was obtained and converted into the weight value
(or probability) of each driving factor. The latter, which defined the weight value, was
combined with the constraining factor through the WLC approach in the MCE model. Then,
the CM model was harnessed for land use modeling where adjustment of parameters by
expert experience or knowledge was avoided.

(2) Validation phase
The performance of the above models was evaluated using the Kappa coefficients

or indices, which include Kappa for no information (Kno), Kappa standard (Kstandard), and
Kappa location (Klocation) [86]. Kappa indices usually come between 0 and 1, and when
they are less than 0.5, it indicates that the consistency is not satisfactory; when they come
between 0.5 and 0.75, it is a moderate degree of consistency; when they are equal to or
greater than 0.75 but less than 1, it represents a high degree of consistency; and when
Kappa indices = 1, it implies a complete consistency.

Kno= ( P0 −NQNL)/(1−NQNL) (11)

Kstandard= (P0 −MQNL)/(1−MQNL) (12)

Klocation= (P0 −MQNL)/(MQPL−MQNL) (13)

where P0 is the proportion of correct classification; NQNL is neither quantitative nor location
information; MQNL is the ability to maintain a medium amount of information but no
ability to maintain location information; and MQPL is the ability to maintain a medium
amount of information but also has the ability to perfectly maintain location information.

In addition, to evaluate the rationality of LUC mapping and simulation, especially the
prediction of waters, the mean standard deviation classification method [87] was applied to
establish a weighted Markov chain model to estimate the 6-month rainfall from September
2024 to February 2025 using the monthly precipitation data from 2009 to 2021 as reference.



Land 2023, 12, 1899 13 of 27

3. Results
3.1. Classification and LUCC
3.1.1. LUC Maps

In terms of the above procedures, LUC maps of 2010, 2015, and 2020 were obtained
and presented in Figure 3. The classification accuracy was evaluated in two ways: One
was using the VS to calculate, through the confusion matrices, in which the OA, PA, and
UA are all above 96%, and the KC is above 0.93 (Table 5, see Appendix A for the confusion
matrices). The other was to use the 682 field observation points (samples) obtained in the
summer of 2021 to verify the classified map of 2020, and the observation accuracy is greater
than 95%. These show that our classified land use maps are of high accuracy and reliability
and can be used for LUCC modeling.

Table 5. Accuracy of LUC classification.

Year OA KC PA UA

2010 96.36% 0.9329 96.36% 99.18%
2015 98.66% 0.9733 98.66% 98.66%
2020 97.67% 0.9566 97.67% 97.67%
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3.1.2. Changes in Land Use

LUC types, areas, and their percentages of the three observation years are shown in
Table 6, and the mutual conversion of different land use types is presented in Figure 4. We
see that the most important land use type from 2010 to 2020 is croplands, accounting for
61.65%, 58.99%, and 56.67%, respectively. During this period, croplands had been decreas-
ing at an annual rate of 0.49%, with a total reduction of 568.14 km2, in which croplands were
converted into built-up areas, waters, and forests/woodlands. Woodlands, grasslands,
and barelands also appear to have a decrease, but the rate of reduction was relatively
moderate. Built-up areas are the only land use type that had been continuously increasing
by 804.69 km2 in surface area from 2010 to 2020, mainly converted from croplands, partially
from waters, grassland, and barelands (Figure 4). Different from the other LUC types,
waters showed a variation in surface area in the observed period, more concretely, gained
an increase in 2010–2015 and then experienced a decrease in 2015–2020. The details of
mutual conversion and net change among the different land use types can be checked in
the Sinogram (Figure 4).

Table 6. Land use/cover (LUC) types and LUC changes from 2010 to 2020.

LUC Types
2010 2015 2020 LUC Changes (km2)

Area (km2) % Area (km2) % Area (km2) % 2015–2010 2020–2015 2020–2010

Built-up Areas 2094.75 18.35 2394.86 20.98 2899.44 25.40 300.11 504.58 804.69
Waters 1240.13 10.86 1296.46 11.36 1110.41 9.73 56.33 −186.05 −129.72

Croplands 7037.41 61.65 6734.75 58.99 6469.27 56.67 −302.66 −265.48 −568.14
Woodlands 713.56 6.25 695.12 6.09 681.54 5.97 −18.44 −13.58 −32.02
Grasslands 66.62 0.58 60.90 0.53 49.65 0.43 −5.72 −11.25 −16.97
Barelands 263.71 2.31 234.09 2.05 205.87 1.80 −29.62 −28.22 −57.84

Total 11,416.18 100.00 11,416.18 100.00 11,416.18 100.00 0.00 0.00 0.00
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3.2. Simulation Factors and the Optimal Simulation Unit

The ten driving factors with a VIF < 10 and four constraining factors used for simula-
tion were mapped and are presented in Figure 5.

Corresponding to different modeling units, i.e., 30 m, 60 m, 90 m, and 120 m, respec-
tively, their AUC values of the modeling results, or rather, the predicted LUC maps versus
(vs.) the VS were calculated and shown in Figure 6. It was found that the AUC values of
various types of land cover are best when the modeling unit is 30 m. Hence, all the results
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were produced when the simulation unit was set to 30 m. Here, woodlands reached the
highest fitting, 0.96, among all the LUC types.

Figure 5. Driving and constraining factors for land use simulation. Here, L1–L4 represent limit-
ing/constraining factors and D1–D10 driving factors. The meaning of the symbols can be referred to
in Table 3.

3.3. Simulation Results and Accuracy Evaluation
3.3.1. Simulation Results of Different Models

Based on Equation (10), we obtained Figure 7, indicating the driving factors for
different land use. As for the built-up areas, the population density (D9), distance to
roads (D3), elevation (D1), and average GDP per unit land (D10) are the socioeconomic
and spatial determinants, while croplands are associated with the population density (D9),
average GDP per unit land (D10), distance to motorways (D4), and elevation (D1). For
waters, distances to lakes/reservoirs (D6), elevation (D1), and slope (D2) are the most
important physical determinants, accounting for 55.4%; whereas elevation (D1), slope (D2),
and average GDP per unit land (D10) have the strongest impact on woodlands, including
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forests and shrublands, taking up 44%, which is in line with the ground-truth observation
in field; and grasslands are susceptible to the influence of neighborhood, i.e., distance to
roads (D3).
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The simulated 2020 LUC maps were obtained from different modeling (Figure 8). As
we can see in Figure 8, the LCM model is quite different from the other three, and the most
intuitive is that the spatial distribution of the built-up areas is more concentrated than the
mapped one using remote sensing data. The CM and MCM models have produced similar
results but overestimated barelands. The LMCM model performed well in a simulation
of different LUC types, especially built-up areas and barelands, in comparison with the
classified LUC map of 2020.
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Figure 7. Weights of the driving factors of different land use types.

In order to better display the effect of different models, four representative zooms
were selected for a detailed insight and comparison of the models (Figure 9). In Zoom (a),
it is seen that the simulation effect of CM and LCM models is not as good as LMCM. Zoom
(b) reveals that the MCM model is able to simulate correctly the built-up areas as grasslands
and barelands, similar to LMCM. Zoom (c) exhibits that the LMCM model has a good
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performance in the simulation of woodlands and a better effect than other models. Zoom
(d) shows that the above models cannot simulate the impacts of policy-driven change, such
as newly constructed highways, in the realistic land use in 2020.
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Figure 9. Zooms revealing land use/cover (LUC) pattern predicted by different models in 2020:
(a) the north of Chaohu Lake and south of Hefei, (b) Dongpu Reservoir, (c) Fenghuang Mountain,
and (d) Yefu Mountain National Forest Park.

3.3.2. Accuracy Comparison

Table 7 demonstrates that LUC prediction by the LMCM model performed better
(with higher Kno, Kstandard, and Klocation) than others. Kno and Klocation are 0.8106 and 0.8025,
respectively, 2.14%–6.63% higher than those of other models, indicating a better simulation
effect of the new hybrid LMCM model than others in terms of location and quantity.

Table 7. Accuracy comparison of different models.

Kappa Values CM LCM MCM LMCM

Kno 0.7786 0.7616 0.7984 0.8156
Kstandard 0.7166 0.6949 0.7398 0.7612
Klocation 0.7313 0.7092 0.7747 0.8025

3.4. Predicted Land Use Pattern of 2025

Taking the LUC maps of Hefei in 2015 and 2020 as the benchmark, combined with the
driving and constraining factors, the LMCM model was employed to predict the land use
pattern of Hefei in 2025, and the final LUC map of 2025 obtained is presented in Figure 10.
Table 8 shows that all six land use types would experience varying degrees of change from
2020 to 2025. Compared with 2020, built-up areas, grasslands, and barelands are likely to
have an increasing trend, among which the increase in built-up areas is the most evident,
amounting to 443.39 km2, which shall be the most significant change in the next five years,
with an annual growth of 88.68 km2. Waters, croplands, and woodlands are likely to have
a decreasing trend during this period. Among them, croplands would decrease the most,
reaching 294.14 km2, with an annual decrease of 58.83 km2, followed by waters, with a
decrease of 159.67 km2, with an annual reduction of 31.93 km2.
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Table 8. Predicted land use/cover (LUC) pattern in 2025.

Types Waters Built-Up Areas Croplands Woodlands Grasslands Barelands

Area (km2) 950.74 3342.83 6175.13 643.85 59.77 243.85
∆2025–2020 (km2) −159.67 443.39 −294.14 −37.69 10.12 37.98

Annual average change (km2) −31.93 88.68 −58.83 7.54 2.02 7.60
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4. Discussion
4.1. LUC Detection, Prediction, and Their Driving Forces

As the above change detection and simulation revealed, the net increase in built-
up areas was 804.69 km2 in 2010–2020, but this expansion will continue and may reach
3342.83 km2 in 2025, with an increase of 443.39 km2 from 2020 to 2025 (Tables 6 and 8). This
increase shall be associated with urban extension, or rather, urbanization driven by popula-
tion growth and different policies [88–91], as the demand for residential, transportation,
commercial, medical health, and other construction has been increasing, resulting in the
rapid expansion of built-up areas.

A net decrease of 568.14 km2 in croplands was detected in the period 2010–2020,
and this may continue and decline by 294.14 km2 from 2020 to 2025. Croplands are a
key land use for food production; nevertheless, a substantial part of croplands has been
converted into built-up areas in the past decades (Figure 4) [88–91]. To meet the demand
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of food production and security in the context of a growing population, it is essential to
compensate for the loss of croplands due to urbanization, and hence, reclamation has been
effectuated in grasslands and woodlands/forests via slash-and-burn procedure in the past
decades [88]. But as a whole, the conversion of croplands into built-up areas seems faster
than reclamation, leading to a continuous decrease in the former.

Though the variation in the water looks different from other land use, an increase
of 56.33 km2 from 2010 to 2015, followed by a decrease of 186.08 km2 from 2015 to 2020
(Table 6), may be partially related to the conversion of the waters into built-up areas
because of the more rapid urbanization in 2015–2020 (504.58 km2) than in 2010–2015
(300.11 km2). Another reason for this variation is the fluctuation in rainfall. We calculated
the 6-month preacquisition rainfall from September to February and found that they
were, respectively, 362.97 mm, 448.06 mm, and 283.21 mm in 2009–2010, 2014–2015, and
2019–2020 (see Appendix B). Thus, the variation in water surface may be a consequence of
both urbanization and changes in rainfall. As the LUCC simulation revealed, the surface of
waters in 2025 is likely to be 950.73 km2, indicating a decrease in waters from 2020 to 2025.
This can be an integrative result of urbanization and possible rainfall reduction, the same
as the period 2010–2020. As we have modeled, the 6-month rainfall from September 2024
to February 2025 is likely to be 237.57 mm–310.60 mm with a mean of 274.09 mm, slightly
lower than that of 2019–2020. The prediction of waters of 2025 using the LMCM model, a
reduction of 159.68 km2 from that of 2020, seems reasonable.

LUCC is mainly due to the combined action of natural and human driving factors.
The effect of natural factors on LUCC is lasting and profound, and it is the controlling
factor of the macro-LUC pattern. Landform and climate are the main natural factors
influencing LUCC. The landform of Hefei is generally declined in the southeast and
northwest, relatively flat in the middle and north, and hilly in the southeast. The river
system is well developed, including the Chaohu Lake, and thus, the LUC types, such as
built-up areas, woodlands, and croplands, are obviously distributed in space, taking the
topographic advantages. For example, built-up areas and croplands are concentrated in flat
terrain, while grassland and forests are mostly distributed in places with large undulations
and relatively high altitudes.

The impacts of human factors on LUCC are active and significant, e.g., the imple-
mentation of the “New Urbanization Plan of Anhui Province (2016–2025)” emphasizes
urbanization as the core growth of Hefei and makes the regional central city bigger and
stronger. The strategy to “Develop Strong and Big Capital” puts economic development
superior to others and has led to the transformation of a large amount of croplands, waters,
and forests into built-up areas (Anhui Government, http://fzggw.ah.gov.cn, accessed on 1
July 2021).

In short, the impacts of human activities on LUC are increasing, and it is urgent to
adopt relevant policies and measures to rationally plan land use in space and to make the
disorderly expansion of cities in order.

4.2. Performance of Different Models

As presented in Table 9, the previously published models and their combinations
expose disadvantages, whereas the one we proposed avoids these shortcomings. We noted
that the driving and constraining factors do not take part in the simulation of the CM model,
and the LCM model does not incorporate the constraining factors in this process either.
Although the MCM model involves driving and constraining factors, the disadvantage
lies in its dependence on expert knowledge, which increases the uncertainty of simulation.
However, the proposed LMCM model does not rely on expert knowledge and is able to
combine both driving and constraining factors to effectuate land use simulation based on
local conditions and may achieve a better land use prediction where rapid socioeconomic
development has been taking place.

Through the comparison of simulation results, we found that the MCM model is
superior to the LCM and CM models, and this is consistent with the previous research

http://fzggw.ah.gov.cn
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by other authors. Nevertheless, as we can see in Table 9 and Figures 8 and 9, the LMCM
model performs even better than MCM and the other two hybrid models as its Kstandard is
2.14–6.63% higher than the latter three. Moreover, the LMCM model has a better simulation
effect in built-up areas, waters, and woodlands/forests. These indicate an improvement of
the LMCM model in terms of simulation accuracy over the others.

However, attention should also be paid to the prediction errors of different LUC
types, such as newly built railways, new urbanization, and lake reclamation for farming or
urbanization. There may be other measures in the predicted year 2025, which should be
further studied in conjunction with policy promulgation to improve the reliability of the
simulation and prediction.

Table 9. Comparison of the model features.

Hybrid Model Driving Factors Constraining
Factors

Expert Knowledge
Integration

Analysis of Drivers and
Constraining Factors

Markov Model No No No No
CM No No No No

LCM Yes No No LR
MCM Yes Yes Yes MCE

LMCM Yes Yes No LR, MCE

4.3. Reproducibility, Limitations, and Future Work

As mentioned, the proposed methods, including the required materials and proce-
dures, allow the development of the new hybrid LMCM model and its application in
LUCC simulation to predict future land use/cover patterns. The approaches are, hence,
reproducible, and the new model is applicable elsewhere for a similar purpose.

During this research, some problems were also encountered. Although the proposed
LMCM model has led to a good simulation of LUCC, better than other models, the impact
of policy implementation and some pandemics and natural disasters such as COVID-19
and earthquakes have not been integrated into the simulation due to the difficulty of
quantification of these factors. This is expected to be sorted out in future work.

There may exist uncertainty in the predicted LUC of 2025 as the real LUC situation
in the future may be much more complex, and land use change may not exactly occur as
we have simulated. Therefore, further research should include the following solutions:
(a) Higher resolution remote sensing data should be used to obtain more precise LUC
maps with higher accuracy and reliability. (b) For cities with similar policy implementation,
urban development trends, and urbanization stages, more data on policy implementation
in space and time should be integrated for modeling to help design a more realistic land
use simulation model for advising sustainable land management.

5. Conclusions

Based on the field observation and LUC mapping by remote sensing, this paper
proposed a new hybrid model LMCM for LUCC simulation, or rather, prediction of the
future LUC pattern. The novelty lies in that the new LMCM model is able to combine both
the driving and constraining factors without dependence on expert knowledge and perform
better LUCC simulation and prediction than other models, e.g., CM, LCM, and MCM, in
terms of three indicators, Kno, Kstandard, and Klocation. Our test demonstrated that these
three indicators of the LMCM model are higher by 1.72–5.4%, 2.14–6.63%, and 2.78–9.33%,
respectively, than CM, LCM, and MCM models. Moreover, the fully standardized logistic
regression coefficients were used as a weight link for model development for the first time,
and this can be regarded as a prototype for future model development. The predicted LUC
pattern of 2025 in Hefei may provide a crucial reference to the governments for their policy-
making as the predicted reduction in croplands, waters, and forests is likely to become a
heavy burden or even an overburden to ecological resources. Thus, our study may help
the implementation of different policies such as “Division of the Ecological Function in
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Anhui” and “Integrated Urban Planning of Hefei” as the obtained results may provide
pertinent advice for optimization of land use and resource allocation in different domains.
In addition, taking advantage of the LMCM model, we would suggest extending the study
to provincial and even national scales for simulating LUCC in the future. This is likely to
be the added value of the study in guiding urban planning and spatial planning of territory
not only in Hefei but also in the whole province and even in the whole country. The model
can also be applied to other areas of the world for the same purpose.

However, there are still some shortcomings in the research process of this article; for
example, the driving and constraining factors selected in this study are still not compre-
hensive enough, which will, to some extent, affect the accuracy of LUCC simulation and
prediction. Although the LMCM hybrid model performs better than other models in LUCC
simulation, it still faces uncertainties in the simulation process due to unforeseeable factors
such as policy implementation. We hope to address these issues in future work.
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IGBP International Geosphere-Biosphere Programme
IHDP International Human Dimensions Programme on GlobalEnvironmental Change
LUCC Land Use/Cover Change
CA Cellular automata
CM CA–Markov
LCM Logistic–cellular automata–markov
LR Logistic regression
BLR Binary logistic regression
MCE Multicriteria evaluation
MCM MCE–CA–Markov
LMCM Logistic–multi-criteria evaluation–cellular automata–markov
LUC Land use/cover
USGS United States Geological Survey
DEM Digital elevation model
NASA National Aeronautics and Space Administration
GDP Gross domestic product
API Application programming interface
COST Cosine function of the solar zenith angle (theta)
LST Land surface temperature
NDVI Normalized difference vegetation index
EVI Enhanced vegetation index
GDVI Generalized difference vegetation index
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IDW Inverse distance weight
WGS84 World Geodetic System 1984
UTM Universal Transverse Mercator grid system
ROIs Regions of interests
TS Training set
VS Verification set
OA Overall accuracy
KC Kappa coefficient
PA Producer accuracy
UA User accuracy
TOL Tolerance
VIF Variance inflation factor
ROC Receiver operating characteristic
AUC Area under the ROC Curve
AHP Analytic hierarchy process
WLC Weighted linear combination
Kno Kappa for no information
Kstandard Kappa standard
Klocation Kappa location
AI Artificial intelligence

Appendix A. Confusion Matrices of Land Use/Cover Mapping Dated 2010, 2015,
and 2020

Table A1. Mapping of 2010, overall accuracy = (42,745/44,358) 96.3637%, Kappa coefficient = 0.9329.

Class Producer Accuracy
(Percent)

User Accuracy
(Percent)

Producer Accuracy
(Pixels)

User Accuracy
(Pixels)

Waters 93.20 96.51 1356/1455 1356/1405
Built-up areas 98.79 95.13 1386/1403 1386/1457

Croplands 99.82 91.41 15,527/15,555 15,527/16,987
Woodlands 94.45 99.96 15,527/25,887 24,450/24,459
Grasslands 45.16 36.84 14/31 14/38
Barelands 44.44 100.00 12/27 12/12

Table A2. Mapping of 2015, overall accuracy = (50,989/51,684) 98.6553%, Kappa coefficient = 0.9733.

Class Producer Accuracy
(Percent)

User Accuracy
(Percent)

Producer Accuracy
(Pixels)

User Accuracy
(Pixels)

Waters 98.83 98.26 678/686 678/690
Built-up areas 99.59 91.20 3847/3863 3847/4218

Croplands 99.10 97.63 12,879/12,996 12,879/13,191
Woodlands 99.04 100.00 33,551/33,876 33,551/33,551
Grasslands 34.69 100.00 31/98 34/34
Barelands 0.00 0.00 0/165 0/0

Table A3. Mapping of 2020, overall accuracy = (35,217/36,057) 97.6704%, Kappa coefficient = 0.9566.

Class Producer Accuracy
(Percent)

User Accuracy
(Percent)

Producer Accuracy
(Pixels)

User Accuracy
(Pixels)

Waters 69.71 98.89 1335/1915 1335/1350
Built-up areas 99.59 94.29 1469/1475 1469/1558

Croplands 99.92 93.46 10,436/10,444 10,436/11,166
Woodlands 99.14 99.98 21,822/22,011 21,822/21,827
Grasslands 51.16 97.78 44/86 44/45
Barelands 88.10 100.00 111/126 111/111
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Appendix B

Table A4. Rainfall Data from 2009 to 2021.

Year Annual Rainfall (mm) Rainfall from September to February (mm)

2009 1099.82 362.97
2010 1430.02 372.87
2011 1048.77 209.80
2012 1037.34 352.30
2013 1043.43 271.02
2014 1303.27 448.06
2015 1386.33 324.36
2016 1658.11 667.51
2017 1058.93 390.14
2018 1772.41 570.23
2019 651.00 283.21
2020 1530.60 359.67
2021 1194.82 279.15

Appendix C
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