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Abstract: In cellular automata (CA) modeling, spatial heterogeneity can be delineated by geograph-
ical area partitioning. The dual constrained space clustering method is a prevalent approach for
providing an objective and effective representation of differences within urban regions. However,
previous studies faced issues by ignoring spatial heterogeneity, which could lead to an over- or
under-estimation of the simulation results. Accordingly, this study attempts to incorporate spatially
heterogeneous area partitioning into vector-based cellular automata (VCA), producing more accurate
and reliable simulations of urban land-use change. First, an area partition strategy with DSC algo-
rithm was employed to generate multiple relatively homogeneous sub-regions, which can effectively
capture the spatial heterogeneity in the distribution of land-use change factors. Second, UrbanVCA,
a brand-new VCA-based framework, was utilized for simulating land-use changes in distinct urban
partitions. Finally, the constructed partitioned VCA model was applied to simulate rapid urban
development in Jiangyin city from 2012 to 2017. The results indicated that the combination of DSC
clustering and UrbanVCA model could obtain satisfying results as the average FoM values for the
partitions and the entire study area exceeded 0.22. Furthermore, a comparative analysis of results
from traditional area-partitioned CA models revealed that the proposed area partitioning approach
had the potential to yield more accurate simulation outcomes as the FoM values were higher and
SHDI and LSI metrics were closer to real-world observations, indicating its good performance in
simulating fragmented urban landscapes.

Keywords: urban land-use change simulation; area partitioning; spatial heterogeneity; vector-based
cellular automata (VCA); Jiangyin city

1. Introduction

Urban growth is a complex and dynamic process, which is influenced by various
factors, including natural, social, and economic factors [1]. “Spatial heterogeneity” refers
to the non-uniform and complex distribution of land-use patterns. Rapid urban growth,
in turn, leads to increasingly fragmented landscapes characterized by heightened spatial
heterogeneity [2]. Cellular automata (CA) have emerged as effective tools for describ-
ing historical land-use transformations and forecasting prospective land scenarios, thus
enhancing our comprehension of land-use dynamics [3,4]. Accordingly, it is crucial to
integrate spatial heterogeneity into the CA model to yield accurate land-use simulation
and prediction results.
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According to the difference in the cells’ design, CA can be generally divided into two
groups: raster cellular automaton and vector cellular automaton. In a raster urban CA
model, geographic space can be described with regular units (often square) in a raster
structure, which can facilitate subsequent computations by harnessing the extensive raster
analysis functions available in GIS [5,6]. The unavoidable loss of detail induced by the
raster data format motivated researchers to employ some irregular-shaped frameworks
(e.g., land parcels) as the minimum space description modules, hereafter referred to as
vector-based CA (VCA) [7,8]. Due to the inherent morphological advantage of vector cells,
available VCA models have illustrated their considerable potential in simulating fine-scale
urban growth, helping produce the model output more realistically [9,10].

Early VCA models were built using graph theory, which included Voronoi poly-
gons [11] and Delaunay triangulation [12]. Nevertheless, VCA models rooted in graph
theory may not entirely encompass real-world geographical objects due to their automated
generation. As an enhancement to this spatial representation, the urban area was subdi-
vided into various spatial units, such as land-use parcels, census blocks, and planning
zones, which enhanced the model’s realism by establishing connections between land use
and socioeconomic information. Among the different VCA models, those built upon land
or cadastral parcels play a vital role in urban planning and provide a more realistic represen-
tation of ground objects. In brief, VCA models exhibit a substantial advantage in modeling
land-use changes at a very fine scale [13]. Nevertheless, several issues in VCA models
remain to be addressed. Firstly, the complexity increases due to the diversity of polygon
shapes, leading to varying connections between neighboring cells. The neighborhood
definitions in VCA models can be roughly classified into two categories: topology-based
neighborhood and buffer-based neighborhood [10]. Dahal and Chow [14] defined 30 neigh-
borhood configurations to evaluate parameter sensitivity in simulation results, revealing
that VCA models with center-buffer neighborhoods can achieved the highest simulation
accuracy. Additionally, urban land-use change is frequently characterized as an incremental
and fragmented process, rather than an abrupt conversion of an entire land parcel from
one land-use type to another within a short period [15]. Yao [8] introduced the dynamic
land parcel subdivision-based vector cellular automaton (DLPS-VCA) framework. This
framework efficiently simulates urban expansion, land parcel fragmentation, and land-use
type transitions during urban development. Despite its advantages in urban simulation,
the complex vector subdivision mechanism has limited the widespread use of DLPS-VCA.

In CA modeling, the concept of spatial heterogeneity can be captured by locally
varying transition rules, spatially heterogeneous neighborhoods, and geographical area
partitioning. To account for the spatially heterogeneous impacts of drivers on land-use
change, researchers have employed local spatial statistical models, such as the spatial
autoregressive (SAR) model and geographically weighted regression (GWR) [16], to derive
the transition rules of the CA model by assigning weights to regression coefficients based on
local proximity. Other studies adopted a hybrid modeling approach, such as GWANN [17]
and ART-P-MAP [18], to describe a comprehensive exploration of the spatially heteroge-
neous driving forces influencing urban sprawl by coupling the spatial statistical model with
the intelligent model. The neighborhood, as a critical internal component of the CA model,
is notably influenced by spatial heterogeneity [19,20]. The most common types of neigh-
borhood definitions are typically referred to as Von Neumann, Moore neighborhoods, and
topology-based, buffer-based neighborhoods, where the size and shape of neighborhood is
equivalent. This assumption obviously violates the spatial heterogeneity in reality, even
with a well analysis of size sensitivity in related studies [21,22]. Recently, there have been
some studies taking the distance–decay, multi-layer, and orientation weighted into account
to investigate the influence of heterogeneous neighborhoods on individual cells [23,24].
These studies on heterogeneous neighborhoods have significantly contributed to the ex-
pansion of our knowledge regarding spatially varying interactions among adjacent cells.

Area partitioning in geographic space is another common strategy to address spatial
heterogeneity in CA modelling [25,26]. By adopting a partitioning-based approach to
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acquire cell transition rules, the model’s ability to capture the similar patterns of land-use
change evolution within each partition is notably improved, thereby leading to more pre-
cise and realistic representations of land-use dynamics. Area partitioning can be achieved
through two primary methods: the administrative-based approach and the dual spatial clus-
tering method. The former usually refers to administrative division such as administrative
districts [27], planning zones [28], urban spatial structure [29], and other custom-defined
units [30]. Although the administrative-based approach was simple and practical, these
partitioning strategies mainly relied on empirical evidence, resulting in subjective outcomes
and growing complexity with an increasing number of driving factors [31]. Furthermore,
they may face challenges in capturing the inherent similarity characteristics of land-use
changes, as they tend to overlook the spatial variations at micro scales [32]. Using the dual
spatial clustering method, the entire cell space was segmented into several homogeneous
regions considering both spatial proximity and attribute similarity, and then transforma-
tion rules were obtained for each partition individually. This process entails partitioning
the cellular space based on the spatial heterogeneity characteristics of land-use change.
They aimed to comprehensively account for the similarity in both spatial and attribute
relations of land-use change. Therefore, they employed a clustering method to achieve
the partitioning of the cellular space. As such, the conversion rules for each partition can
effectively express the driving mechanism behind land-use changes. The existing dual
spatial clustering algorithms, such as MK-means [33], SOM (self-organizing map) [26], and
KDE (kernel density function) [29], were utilized for partitioning, providing an objective
and effective representation of urban area differences with minimal human interference.
Incorporating the non-uniform distribution of driving factors during the partitioning pro-
cess, several limitations of these algorithms can be highlighted. First, land parcels are
nonuniformly distributed with varying concentrations or dispersion [8]; the existing parti-
tioning algorithms have difficulties in detecting clusters of irregular shapes and varying
densities. Additionally, the results of these algorithms’ clustering can often be sensitive to
noise. Second, attribute similarity measurements in these algorithms primarily relies on a
binary predicate that utilizes Euclidean distance as the fundamental metric. However, in
the face of uneven distributions in the attribute space, their inherent transitivity could lead
to the continuous propagation and accumulation of differences between attribute values
during the clustering process. As a result, the clustering results may fail to accurately
reflect the transitional nature of geographical features in spatial distributions, eventually
leading to over- or under-simulation results [34,35]. One dual spatial clustering algorithm,
denoted as DSC, can handle both spatial proximity and attribute similarity in the presence
of heterogeneity and noise [36]. The detection of these clusters is valuable for gaining
insights into the localized patterns of geographical phenomena, and it has been successfully
used for urban element identification and urban spatial structure analysis [37,38].

In view of the problems described above, this study attempts to incorporate spatially
heterogeneous area partitioning into vector-based cellular automata (VCA), facilitating
more accurate modeling of urban dynamics. First, an area partition strategy with DSC
algorithm was employed to generate multiple relatively homogeneous sub-regions, which
could effectively capture the geographic heterogeneity in the distribution of land-use
change factors. Second, UrbanVCA, a brand-new vector CA-based framework to simulate
the urban land-use change at the land parcel level, was adopted for the study [8,39]. By
employing a set of pre-defined rules driving urban land-use changes, the UrbanVCA model
can not only simulate the process of land fragmentation but also support a variety of
machine learning algorithms to mine the probability of urban land-use changes. Finally, the
constructed partitioned VCA model was applied to simulate rapid urban development in
Jiangyin city, China, from 2012 to 2017. In addition, a comparison and analysis of traditional
partitioned CA models were performed to validate the effectiveness of the proposed
partitioned CA model using accuracy statistics and vector-based landscape indexes.
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2. Study Area and Datasets

Jiangyin is located in the Jiangsu Province of China, situated at the northern end of
the Yangtze River Delta (Figure 1). It is comprised of five districts: Central, Chengdong,
Chengxi, Chengnan, and Chengdongnan, with a nearly 1.775 million residential population
and a total area of 987.5 km2. In 2020, Jiangyin achieved a notable GDP of 411.375 billion
yuan, affirming its standing as the second-ranked county-level city on the Chinese mainland
(http://www.jiangyin.gov.cn/, accessed on 31 December 2020). Jiangyin city has experienced
fast urbanization in the last two decades because the city has attracted significant direct foreign
investment since the 1990s, leading to industrial development and an enhanced foundation. It
is appropriate for a detailed analysis of neighborhood features due to its complex, fragmented
land-use parcels, as well as its ongoing urban expansion and its size.
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Figure 1. Location of the study area.

The cadastral parcel data of Jiangyin was acquired from planning bureaus between the
years 2012 and 2017. Each land-use pattern map was further recategorized into eight groups
based on the land-use/cover features in Jiangyin, including commercial (C), residential (R),
industrial (I), public service (P), transportation (T), farm (F), village construction (V), and
other lands (O). During the period from 2012 to 2017, there was a rapid occurrence of land-
use changes in Jiangyin, with the number of land parcels increasing by 31.5% from 18,327
to 24,101. This observation suggests a noticeable fragmentation trend in the landscape.

In the wake of the early studies in CA modeling [27,29,40], several driving factors were
introduced to provide a quantitative measure of the suitability for the occurrence of different
land types, including topographical and geographical conditions, transportation factors,
location factors, economic and population factors, some POI information, and government
planning policy. Specially, the distance variables indicate accessibility to transportation
and location factors using the “Euclidean Distance” tool within ARCGIS. The density of
POI information was computed through the kernel density estimation (KDE) method. The
primary data sets employed in this study were derived from Jiangyin urban master plan
(2011–2030) (http://www.jiangyin.gov.cn/, accessed on 24 October 2012), Open Street
Map (https://www.openstreetmap.org), Geospatial Data Cloud (http://www.gscloud.cn),
and Resource and Environment Data Cloud Platform (http://www.resdc. cn, accessed on
25 December 2012) (see Supplementary Table S1). A stratified random sampling approach
was employed to acquire 20% of the samples from the spatial variables for the determination
of transition rules. As part of the data processing, all datasets underwent normalization,
which standardized them within a common range from 0 to 1. Moreover, to ensure spatial
consistency, all data were resampled to a uniform spatial resolution of 30 m (Figure 2).

http://www.jiangyin.gov.cn/
http://www.jiangyin.gov.cn/
https://www.openstreetmap.org
http://www.gscloud.cn
http://www.resdc
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3. Methodology

The proposed model contains three main parts (Figure 3): (1) input data; (2) area parti-
tioning by DSC method; (3) UrbanVCA simulation. Firstly, the land parcels used for the
DSC runs were abstracted into a Delaunay triangulation (DT) representation, where each
parcel was represented by a node (i.e., centroid), and their neighboring relationships were
defined through edges, establishing connections between pairs of centroids. DT containing
two-level edge-length restrictions considering irregular distributions was adopted to estab-
lish spatial proximity relationships among land parcels. On this basis, an iterative clustering
strategy utilizing information entropy (IE) was then employed. This strategy employed
breadth-first search (BFS) to sequentially traverse kth-order neighbors for each land parcel,
enabling the precise identification of clusters with similar attributes (i.e., driving factors of
land-use change listed in Figure 2), while accounting for heterogeneity and noise. Secondly,
a collection of urban development factors was gathered to train the transition potential
map through UrbanVCA for each partitioned zone to simulate the urban land-use changes
of Jiangyin, and various assessment metrics were employed to evaluate and compare the
performance of different area partitioning models.
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3.1. Spatially Heterogeneous Area Partitioning by DSC Method

DSC aims to address the challenges of heterogeneity and noise by incorporating both
spatial proximity and attribute similarity [36]. In real-world scenarios, spatially adjacent
clusters usually exist in a spatial dataset where the difference of observations in attribute
distribution is homogeneous within each cluster but inhomogeneous between clusters.
However, in the face of uneven distributions in the attribute space, attribute similarity
measurements in these algorithms primarily relied on a binary predicate that utilizes
Euclidean distance as the fundamental metric; their inherent transitivity could lead to
the continuous propagation and accumulation of differences between attribute values
during the clustering process. As a result, the clustering results may fail to accurately
reflect the transitional nature of geographical features in spatial distributions, eventually
leading to over- or under-simulation results (the validation of this point was demonstrated
using both simulated and real-world data in [36]). The DSC algorithm primarily addresses
the challenge of discovering homogeneous spatially adjacent clusters while dealing with
between-cluster inhomogeneity and noise where those spatial points are described in the
attribute domain. The detection of these clusters is valuable for gaining insights into the
localized patterns of geographical phenomena. DSC methodology is initiated through the
application of DT with edge-length constraints. This approach considers diverse geometric
shapes, varying land parcel densities, and spatial noise to effectively establish spatial
proximity relationships among the land parcels. Subsequently, an IE clustering strategy is
devised to identify clusters that exhibit similar attributes. This approach enables adaptive
and precise cluster detection while taking into account the existence of heterogeneity
and noise.

3.1.1. Clustering Constrained by Spatial Proximity

Following the construction of the DT of the points (parcel centroids), the DSC algo-
rithm proceeded to utilize global and local proximity criteria to partition the points into
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multiple spatial clusters. Through the application of global criteria, the long edges will be
removed at the global level. This process can be expressed as follows:

Global_LongEdges(p) = {ei|ei〉GlobalMean + GlobalSD ∗ GlobalMean
PartialMean(p)

} (1)

where Global_LongEdges(p) represents the set of long edges that need to be deleted at point
p. GlobalMean refers to the average length of all edges in DT, PartialMean(p) denotes the
average length of the edges directly connected to point p, and GlobalSD denotes the standard
deviation of edge lengths in DT.

Subsequently, the local proximity constraint is applied to eliminate any remaining
lengthy edges. The local process follows the following criteria:

F(p) = Local−SD(p)/Local−Mean−Length(p)

Local−Mean−Length(p) = 1
d(p)

d(p)
∑

i=1
|ei|

Local−SD(p) =

√√√√ d(p)
∑

i=1
(Local−Mean−Length(p)−|ei |)2

d(p)

(2)

where Local_Mean_Length(p) represents the mean length of edges in N(p), and Local−SD(p)
is the standard deviation of the lengths of edges in N(p). d(p) denotes the number of edges
incident to p, and |ei| is the length of edges in N(p). The final spatial proximity comprises
all connected mutation points for which F(p) ≤ γ.

3.1.2. Clustering Constrained by Attribute Similarity

DSC utilizes an attribute clustering method that relies on IE to classify the clustering
results according to the attributes of the points (i.e., driving factors of land-use change
listed in Figure 2). The attribute entropy represents the degree of similarity between the
central point and the neighboring points within the first-order neighborhood. It can be
computed using the following formula, where a higher value indicates a smaller difference
between the central point and the connected points:

DAEnei(O) = Eoc
n+1

Eoc = −
n+1
∑

i=1
pi ln pi

pi =
vi

∑n+1
j=1 vj

(3)

where DAEnei(O) represents the attribute entropy of point O, and Eoc represents the
attribute similarity between point O and clustering cluster C. The clustering cluster C
consists of n points {C1, C2, C3, . . . , Cn}, where point O represents the central point and
cluster C is the set of points within the first-order neighborhood of point O. The driving
factor values of each point in the cluster are denoted as {v1, v2, v3, . . . , vn}, and the driving
factor values of the central mutation point O is represented as vn+1.

After calculating the attribute entropy for each point, the point with the highest at-
tribute entropy is selected as the starting point. Using Equation (3), the starting point
is considered as the central point O, and each neighboring point is treated as a separate
clustering cluster C. The attribute similarity Eoc between the central point and each sur-
rounding point is computed. The initial clustering cluster is formed by combining the
mutation point O with the highest attribute entropy and the point with the maximum
attribute similarity Eoc among its surroundings. The candidate points are determined as
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the points within the first-order neighborhood of the initial clustering cluster. Equation (4)
is employed to compute the Eoc between each candidate point and the initial cluster:{

θ = Eoc
Eocmax

Eocmax = ln(n + 1)
(4)

where θ is the standardized variable; the maximum information entropy between mutation
point O and the temporal cluster C, denoted as Eocmax , is obtained by the hypothesis that
the attribute values of the mutation points within temporal cluster C are equal. When θ
is greater than the threshold, the mutation point O will be added into cluster C. If this
exceeded the threshold, we allowed the mutation point O to be added to temporal cluster
C. By choosing an appropriate value for θ, the PBM index is employed to achieve favorable
outcomes. Achieving a high score for the PBM index confirms the acceptability of the result
in terms of the attribute entropy measurement [41].

The cluster was iteratively expanded by repeating the steps of candidate selection until
the first-order neighborhood of the cluster no longer contained similar points. Subsequently,
the remaining points in the initial cluster were evaluated based on their DAEnei(O) values,
and the point with the highest DAEnei(O) value was selected as the starting point for the
second cluster. The aforementioned steps were repeated to group all points into different
sub-clusters.

3.2. Urban Land-Use Change Simulation by UrbanVCA Model

UrbanVCA starts by utilizing a subdivision approach to establish the fundamental
cellular unit as the minimum vector land parcel. In the context of this model, the segmented
land-use parcels were characterized by the averages of spatial variables, denoted as X.
These spatial variables served as the basis for defining probabilities of transformed land-
use types, represented as Y. Subsequently, a model denoted as Y = f (X) is formulated.
Ultimately, the probability of the segmented parcel transitioning into the specific land-use
type in the initial year, denoted as Yi, served as the comprehensive suitability measure for
land-use transformation when utilizing a VCA model (Figure 4).
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3.2.1. Deriving the Minimum Vector Land Parcels

The use of raw land parcels as the primary simulation units poses a challenge due to
their coarse granularity, which ultimately results in a significant reduction in simulation
precision [39]. Thus, an appropriate land subdivision tool must be employed. The DLPS
tool, which was developed by Yao [8], can divide land parcels into finer layouts according to
the initial plots’ shape, size, and direction. The iterative and subdivision process continues
until the area of each plot becomes smaller than the average area of the initial input
plots (For more detailed information about data processing and execution, please refer to:
https://www.urbancomp.net/archives/urbanvca-v2, accessed on 26 May 2022).

3.2.2. Mining the Urban Development Probability

After the subdivision of parcels through the DLPS module, the parcels were treated as
fundamental units for simulation based on a VCA model. The urban developmental proba-
bility (P) of each cell was mainly determined by four factors: the land-use suitability (Pg),
constraint factor (Pc), neighborhood effect (Ω), and random factor (RA). The probability of
the i-th land parcel transitioning into the k-th type of land use at time t can be determined
through the following calculation:

Pk,t
i = Pgk,t

i ×Ωt
i,j × Pct

i × RA (5)

The calibration of land-use suitability (Pg) as defined in Equation (5) was carried out by
employing a selection of geospatial variables outlined in Figure 2. The UrbanVCA provided
a selection of three machine learning algorithms to obtain the overall suitability: logistic
regression (LR), neural network (NN), and random forest (RF). Here, we employed the RF-
based model to perform the calibration and estimation of land-use suitability. Compared
with LR, it proves highly effective in addressing the issue of multicollinearity among spatial
variables, rendering it highly efficient when dealing with tasks that involve fitting in high-
dimensional spaces. In addition, the RF-based model is better suited for extracting a variety
of transformation rules in different regions compared with NN. Therefore, the land-use
suitability of the i-th land parcel transitioning into the k-th land-use type at time t can be
expressed as follows:

Pgk,t
i =

∑M
n−1 I(hn(x) == Yk)

M
(6)

where i serves as an indicator for the ensemble of decision trees, with M representing
the total number of decision trees. The vector x encompasses auxiliary spatial variables
that are linked to the specific land parcel, and hn(x) indicates the predicted type of the
n-th decision tree for vector x. The determination of the optimal number of decision
trees involved iterative parameter adjustments, with comparison of the corresponding
simulation accuracy results.

The fundamental units of VCA are irregular parcels, making it impossible to obtain
the homogeneous neighborhoods commonly found in patch-based or raster-based CAs.
Consequently, defining rules for VCA neighborhoods is both intricate and sensitive. In
UrbanVCA, a centroid-based buffering rule was employed, which considered parcel area
as a weight, facilitating the capture of actual parcel neighborhood effects (Ω), and thereby
enhancing the accuracy of simulating diverse land-use types. Assuming that the j-th parcel
is located within a buffer zone centered on the i-th parcel with a buffer range of d, and there
are no physical barriers between the i-th and j-th parcels, the formula for the neighborhood
effect of the j-th parcel on the i-th parcel at time t is as follows:

Ωt
i,j = e−di,j/d ∗

Sj/Si

Smax/Smin
(7)

where e represents an exponential constant, while di,j indicates the central distance between
the i-th and j-th parcels. The variables Si and Sj, respectively, represent the areas of the i-th

https://www.urbancomp.net/archives/urbanvca-v2
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and j-th parcels. Additionally, Smax and Smin denote the maximum and minimum parcel
areas within the study area. Consequently, the formula expressing the neighborhood effect
of the k-th land-use type on the i-th parcel at time t is as follows:

Ωk,t
i = ∑

j
Ωk,t

i,j
(
i f disi,j ≤ bu f f er_d and No River between i and j

)
(8)

Constraint factor (Pc) refers to a specific land-use type that remains unchanged during
the simulation process and does not transition into other land-use types. In this study,
water area factor and ecological redline zones were considered as development-restricted
areas. The constraint factor for the i-th parcel can be computed based on the following
formula, where Si represents the suitability status of the parcel for development:

Pct
i =

{
0{ Si = restriction development area}

1 {Si = suitable development area} (9)

Taking into account the uncertainty inherent in the land-use change process, the random
factor RA = 1 + (− ln y)α was introduced, where α is a parameter ranging within (1, 10),
and y represents a stochastic variable with values that falls within the range of 0 to 1.

By calculating the probabilities for the conversion of each land parcel into different
land-use types, the conversions that exceeded the development thresholds and had the
highest probabilities were chosen for execution. For specific land-use classes in this study,
the development thresholds were determined by computing the average probabilities of
transition from all non-built-up land parcels to these particular land-use classes.

3.3. Model Performance Assessment

In this study, the figure-of-merit (FoM) method was employed to assess the accuracy of
the simulation results [42]. FoM serves as a valuable indicator used to gauge the consistency
between the actual transition pattern and the simulated transition pattern, calculated as
the ratio between the intersection and union of the actual change and simulated change
as follows:

FoM = B/(A + B + C + D) (10)

where A denotes the area undergoing change, which remains constant during the sim-
ulations. B represents the common area of change shared between the actual and the
simulation results. C corresponds to the area where changes are observed in both the actual
and simulated maps, even though the specific land-use change types may differ between
them. D represents the area that remains constant in the actual map but experiences changes
throughout the simulations.

According to previous studies [26,43,44], several landscape indices, including PD
(patch density), LPI (largest patch index), LSI (landscape shape index), and SHDI (Shan-
non’s diversity index), were employed to assess how closely the patterns of the simulated
results matched those of the actual scenario. PD plays a crucial role in describing landscape
fragmentation. The higher the PD value, the more pronounced the landscape fragmentation
becomes. LPI is determined by calculating the ratio between the area of the largest patch
and the total landscape area, which quantifies the level of aggregation within the simulated
landscape. A higher LPI value indicates a higher degree of aggregation within the simu-
lated urban landscape. LSI provides a measure of the shape complexity of the landscape
by quantifying the extent to which the shape of the simulated landscape deviates from
that of a square with an equivalent area. The complexity of the shape of simulated urban
patches increases with a higher LSI value. The SHDI is a metric that gauges the complexity
and heterogeneity of various types of patches within a landscape. As SHDI increases, it
tends to be a more uniform distribution of different patch types throughout the landscape.
The landscape indices calculation process was performed using VecLI v3.0.0 software:
https://www.urbancomp.net/archives/vecliv300, accessed on 18 September 2022.

https://www.urbancomp.net/archives/vecliv300
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4. Results and Discussions
4.1. Area Partitioning Implementation

To partition the research area, we employed the DSC algorithm. The land parcels are
represented using DT, revealing an uneven dispersion of points that densely cover the
entire city (Figure 5a). In such instances where spatial datasets are irregularly distributed,
the natural neighbors distinguished through DT are imperfect with varying densities.
The constrained DT is firstly employed to model the spatially heterogeneous adjacency
relationships among these points (Figure 5b). It entails the use of varying search radii, with
larger radii applied to low-density regions and smaller radii to high-density regions. As
a result, every node and edge can retain the essential data required for model execution,
such as parcel land-use type, neighboring parcels, and parcel development factors. On
this basis, high-order extension strategy is iteratively implemented to traverse kth-order
neighbors for each parcel based on IE-based attribute similarity, enhancing the capability of
DSC to handling multidimensional data into a number of clusters. In Figure 5c, the points
of the same color indicate that they belong to the same clusters. Finally, a Delaunay-based
shape reconstruction method, as outlined by Peethambaran and Muthuganapathy [45],
was utilized to accurately identify the boundaries of 17 different zones (Figure 5d).
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4.2. Spatial Stratified Heterogeneity Measurement

In this study, we employed Geodetector [46] to quantify the degree of spatial stratified
heterogeneity using various area partitioning strategies. Spatial stratified heterogeneity
(SH) is represented by the q value: a higher q value indicates greater SH, signifying
the need to divide the entire sample into stratified samples for modeling. The q value
falls within the range of (0, 1), where 0 indicates insignificant spatial stratification of
heterogeneity, and 1 signifies a perfect spatial stratification of heterogeneity. Under different
area partitioning strategies in this study, Mk-means-based zoning indicates a q value of
0.327 and administrative-based zoning indicates a q value of 0.241. DSC-based zoning has
the largest q value of 0.748. This means that DSC-based zoning helps to divide the whole
urban space into more homogeneous sub-region areas (Figure 6).
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4.3. Urban Land-Use Changes Simulation

As described in the previous section, the transition rules were independently calcu-
lated with UrbanVCA in each partition. By using the DLPS tool, the initial 18,327 and
24,101 parcels from 2012 and 2017 have been respectively subdivided into 23,204 and
27,839 individual parcels. In the training of the RF model, we conducted a random se-
lection of 60% of the data for training the model, reserving the remaining portion for
cross-validation, to evaluate the model’s accuracy. Specially, we established 90 decision
trees with a 30% utilization of OOB data. Cross-validation was carried out through boosted
random sampling over 100 epochs to calculate the average accuracy, thereby ensuring the
utmost reliability of the outcome. Through the configuration of the RF, we can derive the
land-use transition probability for each parcel by integrating the spatial variables listed
in Table 1 within the partitioned study area. Additionally, the optimal value of Ω was
determined by the best simulation result according to the FoM metric. For the purpose of
determining the optimal radius value, we established the search step as 100 m in the range
(200, 900) to conduct simulation. In this study, the neighborhood distance was adjusted to
700 m, resulting in the highest simulation accuracy being achieved (Figure 7).

Table 1. The FoM of different sub-regions and whole study area by administrative-based zoning.

Comparison Method Sub-Region FoM

Administrative-based zoning

Chengdong 0.192221
Chengxi 0.239187

Chengnan 0.215116
Chengdongnan 0.192636

Central 0.256496
Jiangyin 0.221000

Transition rules for the partitioned CA model were determined by incorporating con-
straint factors, neighborhood effects, random factors, and land-use transition probabilities.
Subsequently, the partitioned CA model was executed to simulate the evolution of urban
land use in Jiangyin from 2012 to 2017, where the urban growth pattern in Jiangyin in
2017 was simulated. Figure 8 displays the FoM values of the simulation results in differ-
ent partitions. The accuracy of each area was relatively high and the FoM of the whole
study area was significantly larger than 0.22. Especially, the average FoM values for the
partitions exceeded 0.22, except for partitions 11 and 16. The main reason for this is the
significantly small number of land parcels in these two subzones, coupled with the ab-
sence of comprehensive land-use types. Among the numerous subzones, they constituted
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only a tiny fraction, leading to their notable low accuracy (0.098 and 0.039, respectively).
These results indicated two key points: (1) The partition VCA model, which relies on DSC
clustering and RF-based rule mining, is capable of achieving a high degree of accuracy
in simulating land-use patterns for both individual subzones and the entire study area;
(2) The DSC algorithm is well-suited for identifying clusters within datasets characterized
by an uneven distribution of non-spatial attributes. Nevertheless, it has the potential to
lead to an over-segmentation of urban space into numerous smaller areas, thereby affecting
the accuracy of partition simulation.
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Additionally, we conducted a comparison between the simulated results and the
actual urban land use, as illustrated in Figure 9. This comparison specifically focuses on
landscape indices within the study area. It can be observed in Figure 10 that the proposed
framework can obtain acceptable results as the PD, LPI, LSI, and SHDI metrics are similar
to the actual case. In a more detailed analysis, the PD values obtained in simulation results
were typically higher than the actual values, leading to a significantly greater degree of
land fragmentation, coupled with lower LPI values. This could be due to the increased
landscape fragmentation caused by parcel subdivision, as well as an over-segmentation
of the zoning scheme. Notably, the SHDI obtained from DSC clustering is higher than the
actual land-use situation. This observation suggests that, when applying DSC, there is a
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tendency for different patch types to exhibit a balanced distribution within the landscape.
This capability effectively illustrates landscape heterogeneity, particularly in capturing the
non-uniform distribution of various patch types within the landscape.
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4.4. Model Comparison and Assessment
4.4.1. Comparison of Simulation Using Administrative-Based Zoning

As described in the previous section, Jiangyin city was divided into five administrative
districts: Chengdong, Chengxi, Chengnan, Chengdongnan, and the Central Zones. The Ur-
banVCA model was then employed to simulate each partition, and the simulation accuracy
is presented in Table 1. Overall, the administrative-based approach demonstrated accept-
able simulation performance. There remain differences between the proposed approach and
the two models. As Figure 11 demonstrates, the results of the proposed area partitioning
approach tend to be more fragmented than that achieved through administrative-based
zoning, as characterized by both the PD and LPI metrics showing a great difference from
the actual scenario. Nevertheless, the proposed area partitioning approach, taking spatial
heterogeneity into account, has the potential to generate more accurate simulation results,
as FoM values are higher and SHDI and LSI metrics are closer to real-world observations.
Through details in Part 1, Part 2, and Part 3 (Figure 12), it is evident that the administrative-
based zoning scheme displays cases of misclassifying agricultural land as residential land
and rural construction land. In comparison, the simulation results obtained using DSC
clustering came closest to representing the actual land-use situation. Furthermore, when
considering the shapes of individual land parcels, they also closely resemble the real land
use. These findings suggest that the administrative-based zoning scheme results in a
higher degree of urban landscape aggregation and lower shape complexity, highlighting its
effectiveness in simulating regular urban landscapes [47,48].
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4.4.2. Comparison of Simulation Using Traditional Dual Spatial Clustering Zoning

For comparative purposes, we also introduced two typical dual spatial strategies:
modified k-means (MK-means) [49] and DBSC [50]. The K-means method calculates the
spatial distance of the clustering targets, while the MK-means algorithm not only focuses
on the spatial clustering of the targets but also takes into account their attribute distance.
Therefore, the MK-means algorithm uses a generalized Euclidean distance as the clustering
metric, replacing the spatial distance used in the K-means method. The generalized
Euclidean distance is defined as follows:

D
(

pi, pj
)
=
√

w1DS
(

pi, pj
)
+ w2DA

(
pi, pj

)
(11)

In this equation, D(pi,pj) between pi and pj is calculated as the weighted sum of the
normalized spatial distance DS(pi,pj) and non-spatial distance DA(pi,pj). The default values
for the weights, w1 and w2, are both set to 0.5 [51].

The DBSC algorithm is a clustering method that identifies spatial clusters by modelling
the spatial proximity and attribute similarity relationships among spatial objects with the
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help of constrained Delaunay triangulation (for more details, refer to [50]). The DBSC
algorithm has proven to be efficient and applicable in detecting clusters characterized by
irregular shapes and varying densities.

For the first experiment, the optimal value of K was also determined by the best
simulation result according to the FoM metric. We conducted the clustering for five
different values of k: 3, 4, 5, 6, and 7, and the k value was adjusted to 4, resulting in
the highest simulation accuracy being achieved (i.e., FoM = 0.223). Figure 13 visually
represents the partitioning results obtained through Mk-means, dividing the area into four
sub-regions. Interestingly, these sub-regions exhibit a resemblance to the administrative
divisions. This is primarily due to the challenge of the MK-means method in detecting
clusters of arbitrary shapes and different densities. Moreover, the sensitive to noise parcels
in the partition results could lead to systematic bias of simulated results [29]. Similar to the
outcomes observed with the administrative zoning scheme, the MK-means method also
presented instances of misclassification. It is detailed in Part 1, Part 2, and Part 3 (Figure 14)
that while the MK-means zoning scheme effectively simulates the agricultural and public
service land within the specified area, it still encounters instances of misclassifying certain
agricultural land as other land-use types. Figure 15 displays the landscape metrics of the
urban landscape, which were simulated using the three zoning schemes. The landscape
metrics of the simulation results of MK-means are all positioned at a moderate level in
comparison with that of the other two models. This suggests that the simulation accuracy of
spatially heterogeneous area partitioning by different methods is DSC-based > Mk-means-
based > administrative-based zoning.
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For the second experiment, DBSC algorithm had difficulties in obtaining satisfactory
results, where urban space was over-segmented into 2750 clusters (see Supplementary
Figure S1). This is mainly attributed to the fact that the attribute similarity measurements
in DBSC is treated as the Euclidean distance. Existing research has indicated that clustering
methods developed for Euclidean scenarios can introduce systematic bias, leading to
either an overestimation or underestimation of the clustering tendency [35]. Through the
utilization of the information entropy clustering strategy, the DSC algorithm is able to
identify appropriate indivisible clusters and mitigate the challenges associated with both
over- and under-segmentation phenomena. The outcome demonstrates that the DBSC
algorithm is unsuitable for datasets characterized by uneven attribute distributions.

5. Conclusions

Spatial planning in China not only encompasses individual regions but also requires
the consideration of synergistic effects among different regions, resulting in distinctive
interactive characteristics during the land evolution process [52]. Spatially heterogeneous
area partitioning refers to the distribution and variations in various geographical features,
conditions, and resources. These differences serve as the medium for interactions between
different regions, influencing land-use decisions. By effectively utilizing information from
spatial heterogeneity, planners can gain a more profound understanding of the structured
development patterns in different regions. This aids in making spatial planning adjustments
more effectively to promote balanced development across various regions, preventing
excessive concentration or unreasonable dispersion of land use. These considerations hold
significant practical importance for optimizing spatial planning at the urban level.

In CA modeling, spatial heterogeneity can be effectively characterized through geo-
graphical area partitioning. DSC is regarded as a suitable method to enhance the partition
VCA model, as it can efficiently capture the spatial heterogeneity in the distribution of
land-use change factors. We adopted the DSC clustering to produce multiple relatively
homogeneous sub-regions, thereby strengthening the transition rules of the UrbanVCA
model and accurately simulating the urban growth of Jiangyin city. Three comparisons
of traditional partitioned models (i.e., administrative-based, Mk-means-based, and DBSC-
based zoning) were conducted to validate the effectiveness and merits of the proposed
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partitioned CA model using FoM accuracy metric and several vector-based landscape
indexes. The primary conclusions can be summarized as follows:

For spatial stratified heterogeneity assessment: In order to demonstrate the effec-
tiveness and superiority of the DSC algorithm, we assessed this spatial heterogeneity by
applying the q-statistic to the distribution of land-use change factors of the DSC zones.

Under different division strategies in this study, Mk-means-based zoning indicates a q
value of 0.327 and administrative-based zoning indicates a q value of 0.241. DSC-based
zoning has the largest q value of 0.748. This means that DSC-based zoning helps to divide
the whole urban space into more homogeneous sub-region areas.

For accuracy assessment: The proposed DSC-based area partitioning approach can
obtain satisfying results as the average FoM values for the partitions exceed 0.22. Despite
the fact that the DSC method may result in an excessive subdivision of the study area into
several small areas, the tiny size of these areas does not compromise the model’s ability
to achieve the highest simulation accuracy. The administrative-based and MK-means-
based zoning models demonstrated acceptable simulation performance. The MK-means
algorithm faces challenges in accurately identifying the clusters of non-convex shapes and
varying densities, resulting in partitioning results that visually resemble the administrative
divisions. While both the DSC and DBSC methods tend to lead to an over-segmentation
of urban space, the DBSC method, as opposed to DSC, utilizes a binary relation strategy
for attribute clustering. This leads to an excessive over-segmentation of urban space,
generating a considerable number of clusters and consequently causing systematic bias in
simulation outcomes.

For landscape assessment: The fragmentation (i.e., PD index), aggregation (i.e., LPI
index), shape complexity (i.e., LSI), and land heterogeneity (i.e., SHDI) of simulated urban
landscape were conducted for the study region to evaluate the performance of different
models. The results of the DSC-based area partitioning approach tend to be more frag-
mented compared with other models. The administrative-based zoning scheme results in
the highest degree of urban landscape aggregation and lowest shape complexity, indicating
its good performance in simulating regular urban landscapes. Meanwhile, the landscape
metrics derived from the simulation results obtained using the MK-means approach are
situated at a moderate level. Notably, the SHDI obtained from DSC clustering is closer
to the actual land-use situation. This suggests that the DSC-based model can effectively
portray landscape heterogeneity, particularly in capturing the non-uniform distribution of
various patch types within the landscape.

In general, the simulation performance of spatially heterogeneous area partitioning
by different methods is DSC-based > Mk-means-based > administrative-based zoning.
DSC-based zoning indicates the largest q value, highlighting its effectiveness in capturing
the spatial heterogeneity in the distribution of land-use change factors. MK-means-based
and administrative-based zoning have advantages in capturing regular urban landscapes
of urban growth. However, when considering the degree of spatial stratified heterogeneity,
they fall short in comparison with DSC with lower q-values.

There remain certain limitations that require further attention and resolution. First,
the DSC algorithm was utilized for partitioning, and the outcome indicated that the com-
bination of DSC clustering and RF-based rule mining was appropriate. Future research
concerning partitioned vector CA models should focus on their capacity to recognize and
effectively model land-use patterns, dynamics, and sensitivity to spatial heterogeneity. For
example, how to measure the landscape heterogeneity from different aspects to improve
the performance of partitioned transition rules. Second, the state-of-the-art convolutional
neural network (CNN)-VCA model has achieved remarkable simulation performance at
the land parcel level, representing a substantial advancement within the domain of VCA
models [40]. Future research can apply the combination of DSC and CNN-VCA to the
urban growth modeling to further validate its advantages and potential benefits. Finally,
it is crucial to note that our study focused on testing the applicability within a specific
city. Currently, our recommendation is for researchers to utilize the GeoDetector tool



Land 2023, 12, 1893 20 of 22

(http://www.geodetector.cn/, accessed on 3 October 2023) to measure the degree of spatial
stratified heterogeneity (SH) by different division strategies. This approach has already
gained recognition among scholars from diverse fields as a quantitative foundation for
partitioning decisions. Future research could expand the proposed model to other cities to
further validate the findings of this study.
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