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Abstract: Land uses and terrain characteristics would likely influence the types and spatial arrange-
ments of forest patches, and generally, forest fragmentation. Whereas prior research has focused
mainly on direct land use-induced forest fragmentation, this study models the relationship between
the spatial distribution of core forest patches, land uses, and terrain variables. Relying on Landsat
images from the Atewa Range Forest Reserve (ARFR) in Ghana, we use machine learning geospatial
techniques and statistical methods to process satellite images and model the relationship between
core forest patches and associated variables. The study finds that a unit reduction in elevation
would significantly likely reduce by 0.995 times the possibility of forest patches being core forests,
implying that on lower slopes, core forests are less likely to occur. Additionally, we find that a unit
increase in slope gradient significantly increases the odds of a forest patch being among the core
forest category by 1.35 times. Moreover, our results show that the odds of forest patches being core
forests significantly increase by 1.60 and 2.14 times if patches are found beyond 1 km from logging
sites and access roads, respectively. This implies that intact forest patches would likely be found
on higher slopes, higher elevations, and areas far away from land uses. Based on the results, we
suggest that the protection of forest patches should target higher elevations and slopes and most
importantly areas far from land uses whereas forest restoration programs should target areas close
to land uses and on lower elevations and lower slopes. With this study demonstrating a significant
relationship between core forests, land uses and terrain variables, we present important information
to land managers for land monitoring and conservation in the ARFR and other tropical forest regions
of the world.

Keywords: forest patches; random forest; environmental modeling; logistic regression

1. Introduction

Anthropogenic land uses contribute significantly to global environmental change [1–4].
Over the past few decades, land uses have contributed to the increasing forest cover
degradation, a phenomenon that is likely to contribute more to climate change in the next
years ahead [5,6]. Governmental and non-governmental organizations are contributing to
combating forest degradation [7–10]. However, there is still some more work to be done to
reduce the rate of forest degradation, especially in tropical regions where the exploitation
of forest resources is a greater part of people’s livelihoods [11–13]. Nonetheless, the
degradation of the forests in the quest to satisfy livelihood needs would likely adversely
impact livelihoods in the future.

Core forest, an area of forest occurring outside the edge effect area and is not degraded
by fragmentation [14,15], would likely perform socio-ecological functions (Note: the edge
effect area is a distance of 100 m from non-forest to the forest interior where human
activities, wildfires, micro-climate effects, and the effects of fragmentation would likely
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degrade forest cover [16,17]). Maintaining intact and large contiguous core forest patches
would be necessary for preserving the integrity of forest ecosystems, providing non-timber
forest products for communities, and reducing the impacts of global climate change through
carbon sequestration [18,19]. Thus, the protection of a larger part of the core forest from
land uses would be necessary, and to do so, there is a need to study the association
between a variety of land uses and core forest patches. This would improve land managers’
understanding of the various land uses that would likely contribute to the degradation of
core forest patches and consequently develop policies and management measures for the
protection of the core forests. Moreover, this would ensure that policies and management
initiatives that protect the forests are created in such a way that both ecological integrity
and sustainable land use are ensured.

Our study area is the Atewa Range Forest Reserve (ARFR). Focusing our study on the
ARFR, an area that falls within the tropical forest region, offers room to compare our study
findings with findings from other tropical forest regions of the world. Similar to other
tropical forest environments where land uses are increasing, the ARFR is experiencing a
recent increase in the rate at which forest cover is being cleared for various land uses [20–22].
The situation of forest degradation in the forest would likely increase with the proposition
of the site for large-scale bauxite mining [23]. For instance, previous studies have noted
that encroachment by farmers and recent mining exploration are on the rise and have
contributed to disturbances in the forest ecosystem of the reserve [22,24,25]. The various
land uses and forest cover patches would likely be influenced by terrain characteristics
(e.g., slope and elevation). For instance, intact forest cover patches would likely be found
on higher elevations due to a lack of access by humans. The ARFR as a protected landscape
and a globally significant biodiversity area (GSBA) is expected to have a minimal amount
of human influence, and the landscape is given the best possible protection while ensuring
that non-threatening anthropogenic activities (e.g., harvesting non-timber forest products)
are undertaken sustainably.

Previous land use and land cover studies in tropical forest regions (e.g., Asia, Africa,
and Latin America) have focused mostly on measuring and predicting direct land cover
change and fragmentation [21,26–29]. However, similar to predicting direct land cover
change, Oduro Appiah and Agyemang-Duah [30] used geospatial approaches and statistical
modeling to measure the relationship between land uses and forest patch sizes in the Tano-
Offin Forest Reserve in Ghana. In the ARFR, Kusimi [22] used GIS and remote sensing
approaches to measure land use and cover change, noting how land use impacts forest
cover. These studies in the tropical regions contribute to understanding the dynamics of
land uses and most importantly, emphasize the relevance of applying geospatial approaches
in measuring landscape characteristics. However, measuring the relationship between core
forest patches, land uses, and other associated factors was beyond the scope of the previous
studies. Thus, this study builds on previous studies by filling this knowledge gap.

Based on the knowledge gap identified, the objective of this study is to propose a
model that expresses the relationship between core forest patches (dependent variable),
land uses, and terrain characteristics (independent variables). The study uses GIS and
remote sensing techniques (random forest machine learning classification) and methods
from landscape ecology to process satellite images and construct the patches of forest cover
and other land uses. With the aid of a logistic regression model, we propose a model that
shows the association between core forest patches, land uses, and terrain characteristics
(e.g., slope and aspect). Our study is relevant because it provides a spatial model for
landscape managers and policymakers to develop land management strategies needed
for protecting core forest patches from being impacted by the footprints of anthropogenic
activities. Most importantly, with the outcome of this study, land managers can develop
measures to ensure that anthropogenic activities are undertaken sustainably.
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2. Materials and Methods
2.1. Description of the Study Area

The ARFR is located within 05◦58′ to 06◦20′ N and 0◦31′ to 0◦41′ W, and it is sur-
rounded mostly by agrarian communities (see Figure 1). According to Lindsell et al. [31],
the ARFR is approximately 263 km2 (26,300 ha). Most importantly, the ARFR is part of the
tropical rain forest, a stretch of land found across three continents, including South America,
Africa, and Asia. Being within the tropical rainforest region is an indication that the ARFR
receives frequent and high amounts of rainfall, and such environmental condition plays a
relevant role in the growth of plants. The ARFR contains about 656 vascular plant species,
including 323 species of tree, 83 types of shrub species, 155 climber and liane species,
68 species of herbaceous plants, 22 types of epiphytes, and 5 grassland species. It houses
about 200 birds and 700 species of butterfly fauna [32]. Due to its ecological importance,
the ARFR has been classified as an Important Bird Area (IBA) and a GSBA [20].

Figure 1. Study area location. (A) shows the area covered by the Atewa Range Forest Reserve,
(B) shows the study area in the context of Ghana, and (C) shows Ghana in the context of Africa.

Whereas the protected status has been able to reduce forest degradation to some
extent, the rate of degradation has been faster over the past few decades. For instance,
Meijer et al. [20] have noted that the closed-canopy forest cover reduced from 88% in 1990
to 60% in 2010. Similarly, the closed-canopy forest cover formed about 91% of the total
reserve area but decreased to about 81% in 2010. Most of the closed-canopy forest cover
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degradation occurred after 2000, and this has mostly given rise to open-canopy forest
cover. Whereas the ecosystem has been under continuous threat from human activities
(such as agriculture) over the past few decades, potential threats from large-scale mining
and quarrying activities within the forest reserve boundaries are issues of concern in the
years after 2000 [20]. Nonetheless, the Forest Protection Act (Amendment from Forest
Protection Decree of 1974), 2002 (Act 624) highlights the prohibited human activities to
protect the integrity of forests, including the ARFR. This law was intended to prevent
people from farming (pastures, cultivating [food and cash] crops), lumbering (cutting trees
for timber), obstructing the channel of any water bodies, building, hunting, and setting
fire to forests (Parliament of the Republic of Ghana [33] cited in Oduro Appiah et al. [34].
Regardless of the law taking effect in 2002, the degradation of the forest, as noted earlier,
has intensified within the same decade the law was passed.

2.2. Data Collection

We made use of one of the most recent Landsat images downloaded from the United
States Geological Survey (USGS) archive. As indicated by the USGS, the image is from
Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) 8, and USGS acquired
the image on 2 January 2020, from path 193 and row 056. The Landsat image bands used
in this study were band 2—blue, band 3—green, band 4—red, band 5—near-infrared,
band 6—shortwave infrared 1, band 7—shortwave infrared 2, and band 8—panchromatic.
Whereas bands 2–7 were 30 m by 30 m in spatial resolution, band 8 was 15 m by 15 m in
spatial resolution. The image is part of the tier 1 surface reflectance image and thus, it has
already been geo-rectified and radiometrically corrected. We processed the Landsat image
to acquire information about the forest cover patches in the ARFR.

Apart from the Landsat image, we also made use of high-resolution satellite images
from Google Earth Pro. These high-resolution images had spatial resolution ranging
between 1 m and 1.5 m, and on Google Earth Pro, the image has been dated 13 January 2020.
Most of the spatial data for land uses (e.g., access roads, mine sites, human settlement) were
acquired from high-resolution images. Apart from the satellite images, we used digital
elevation model (DEM) data. The DEM data were acquired from the USGS using the Global
Multi-resolution Terrain Elevation Data (GMTED) 2010 search engine. We selected the DEM
with 7.5 arc seconds spatial resolution to reduce the USGS processing errors (root mean
square errors [RMSE] 26–30 m) and their impacts on our analysis. Elevation, slope, and
aspect were derived from the USGS DEM.

2.3. Satellite Image and Digital Elevation Model Processing

Bands 2–7 of the Landsat image were composited for land cover classification. How-
ever, the composited image was pan-sharpened with the panchromatic band (band 8) to
create a 15 m resolution image for further processing. The pan-sharpened image was classi-
fied using the Random Forest (RF) machine learning classification algorithm [35]. We used
the RF algorithm because of the following reasons. First, Rodriguez-Galiano et al. [36] have
noted that the main advantages of RF include but are not limited to their non-parametric
nature, high classification accuracy, and ability to determine variable importance. Second,
the RF as a non-parametric algorithm has been used many times in remote sensing studies
because it handles high data dimensionality and multicollinearity successfully [37]. In this
study, with the aid of ensembles of decision trees [36,37], classes of land use and land cover
were determined based on majority votes from all trees. The image was classified into
forest cover (evergreen, deciduous, and semi-deciduous trees), agricultural land (cropland,
herbs, and bushes), developed land (built-up area, mining, and logging sites), and water
(ephemeral and permanent rivers, lakes, ponds, etc.) (see Figure 2 Panel A).
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Figure 2. Classified Landsat image showing land categories and forest/non-forest patches. (A) shows
the land classes, (B) shows the forest/non-forest patches, (C) shows the visual impression of the
morphological analysis output indicating the categories of forest fragmentation and (D) shows
locations of some of the land use footprints in the Atewa Range Forest Reserve.

In this study, we randomly selected 125, 108, 95, and 69 training samples from the
Landsat image, respectively for forest cover, agricultural, developed land, and water to
train the RF classifier. The final land classes, noted above, were assessed for accuracy
using 550 ground-truth data sampled from the ARFR using a global positioning system
(GPSMap 78s). With reference to the ground truth data, the accuracy of the classified image
has been detailed in Appendix A.

The classified Landsat image was further categorized into forest and non-forest as a
requirement for landscape morphological analysis [18] (see Figure 2, Panel B). The land-
scape fragmentation tool (LFT), an ArcGIS extension, was used to perform the landscape
morphological analysis to classify the landscape into patch forests, edge forests, perforated
forests, and core forests to be able to select the core forests for further analysis (see Table 1
for detailed descriptions; also, see Figure 2, Panel C). During landscape morphological
analysis, land cover maps in binary raster format are classified into spatial patterns at per-
pixel level [18]. “An algorithm to classify forest patterns is defined by a sequence of logical
operations such as union, intersection, complementation, and translation using geometric
objects called ‘structuring elements’ (SE) of pre-defined shape and size” ([18], p. 172). Thus,
it is important to note that the LFT algorithm for forest pattern analysis uses the originally
classified forest and non-forest patches to construct new forest patches using a variety of
operations, including but not limited to combining and intersecting some of the patches,
to produce a model of forest landscape attributes. Previous studies have used the LFT to
perform morphological analysis to determine landscape integrity in both urban wetlands
and rural landscapes [38,39]. With the LFT, we identified 856 patch (degraded) forests,
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530 edge forests, 35 perforated forests, and 516 core forest patches. The minimum and
maximum core forest patches were 0.058 ha and 21,823 ha, respectively.

Table 1. Categories of forests and their descriptions.

Categories Description

Patch forests Patch forests are small fragments of forest that do not contain any core
forest pixel, and these are degraded by ‘edge effect’ a

Edge forests Edge forests are fragmented forests found in the edge effect area, and
they are found along the edges of non-patch tracks.

Perforated forests perforated forests are fragmented forests that occur in the edge effect and
along small clearings in the non-patch tracks.

Core forests Core forests occur outside the edge effect area. These are intact forests
and are not degraded by fragmentation

a A distance of 100 m from non-forest to the forest interior where human activities, wildfires, micro-climate effects,
and the effects of fragmentation would likely degrade forest cover [16,17]. Note: the definitions of the categories
of forest fragmentation are based on definitions from the Center for Land Use Education and Research [19] and
Vogt et al. [18].

The spatial extents of land use footprints (mining activities, access roads, human
settlements, and logging sites) were digitized from the Google Earth Pro high-resolution
aerial photo (see, e.g., Figure 2, Panel D). The land uses were digitized at scales ranging
between 1:5000 and 1:15,000. Additionally, from the DEM, we calculated the elevation
(measured in meters), slope (measured in degrees), and aspect (direction of the slope
measured in degrees) of the landscape where patches of forest are found. The calculations
of the slope and aspect were done in ArcGIS 10. In ArcGIS, we calculated the distances
between the patches of forest cover identified by the LFT. We indicated the patches of forest
cover (patch forests, perforated forests, edge forests, and core forests) that are within and
beyond 1 km from land uses based on Haddad et al. [40] who showed that most of the
remaining forest fragments in the world are within 1 km of major land uses (agriculture,
logging, human settlement, etc.). Such a criterion has been used in previous studies that
measure how patches of different sizes are arranged in connection with land uses [30].
Thus, this criterion is consistent with a previous study. Here, in the current study, we
hypothesize that intact patches (core forest) are more likely to be found beyond 1 km of
land use. Thus, from this hypothesis, we categorized core forests to be either within or
beyond 1 km from the land uses. Whereas within and beyond 1 km thresholds were used to
categorize the spatial location of land uses in relation to core forests, it is important to note
that both the land uses and core forest patches are found in different locations as shown
in Figure 2.

2.4. Variables and Analytical Framework

Since the phenomenon of interest is the core forest, after the landscape morphological
analysis, we selected and labeled patches as core forest = 1 and non-core forest patches = 0.
Thus, the probability of patches being core forest is 1 or otherwise, 0 is selected as the
dependent variable. Distance to mining sites, distance to logging sites, distance to agricul-
tural land, distance to access roads, distance to human settlements, and terrain variables
(elevation, slope, and aspect) were the independent variables used in the analysis. Distance
to agricultural land, distance to logging sites, distance to mine sites, distance to access
roads, and distance to human settlements were treated as categorical variables, with the
indication of which forest patches are beyond 1 km from these land uses or otherwise. For
the terrain variables, aspect was treated as a categorical variable, but elevation and slope
were considered continuous variables. Based on the Gujarati and Porter [41] framework
for building a model, we developed a spatially explicit logistic regression model to ex-
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plain the occurrence of core forest patches relative to land uses and terrain characteristics
(see Equation (1)).

CFP = ( P1
1−P1

) = β0 + β1EL + β2SL + β3AS + β4MS + β5AL + β6AR + β7LS + β8HS + e (1)

where P1 is the probability that core forest patches (CFP) are occurring in the forest land-
scape [CFP is 1, otherwise 0]; β0, β1, . . . , β8 are the model’s coefficient [Note: β0 is a
constant]; EL is elevation [in meters]; SL is slope [in degrees]; AS represents aspect; MS is
the designated symbol for a distance beyond 1 km to mine sites [Yes = 1, No = 0]; AL repre-
sents a distance beyond 1 km from agricultural land uses [Yes = 1, No = 0]; AR represents a
distance beyond 1 km from access roads [Yes = 1, No = 0]; LS represents a distance beyond
1 km from logging sites [Yes = 1, No = 0]; and HS represents a distance beyond 1 km from
human settlements [Yes = 1, No = 0]; and e is an error term. Land use and terrain variables
have been used in previous studies to model the forest patch sizes and the occurrence of
vegetation cover [30,42]. Thus, our variable selection in this study is grounded in successful
empirical studies from other tropical forest regions. We performed Pearson’s Correlation
analysis to show the strength of relationships between the dependent variable and the
independent variables.

We used the receiver operating characteristics (ROC) curve statistic to determine
the robustness of the model. The ROC statistic shows the likelihood of either having
a true positive (i.e., predicting correctly) or a false positive (i.e., predicting falsely) [43].
In dichotomous statistical modeling (e.g., binary logistic regression), the ROC statistic
provides a very useful way of determining the predictive power of the selected model. The
predicted likelihoods are a continuous indicator to be compared to the observed binary
response variable [43]. This ROC statistical approach imposes a threshold of greater than
0.5 with a perfect score of 1 showing a perfect classification [44]. Moreover, we test the
robustness of the model using the omnibus test of model coefficient (OTMC). This test
determines whether a final model (model with explanatory variables included) is improved
as compared to the base model (model without explanatory variables). For the OTMC, the
final model is significant at a p-value of 0.05 or less.

3. Results
3.1. Summary of Categorical Variables and the Land Use-Distance Threshold

Our correlation analysis results show that there is a statistically significant relationship
between core forests and our independent variables such as elevation, slope, aspect, hu-
man settlement, logging sites, mine sites, agricultural sites, and access roads (see Table A2).
The outcome of the analysis reveals that most of the patches are on the east-facing, southeast-
facing, and northwest-facing slopes of the landscape (see Appendix A Table A3). The out-
come of the study reveals that most of the forest patches on the landscape are found beyond
the 1 km land use-distance threshold. For instance, 1099 out of 1937 forest patches are
found beyond 1 km from agricultural land uses, that is, the footprints that come from the
main economic activity of the communities around the ARFR landscape (see Appendix A
Table A4; also, refer to Figure 2 Panel A for the distribution of agricultural footprints
in the ARFR).

3.2. Core Forest Patches and Their Relationship with Land Use and Terrain Variables

From the analysis, we show that a unit reduction in elevation would significantly likely
reduce the possibility of forest patches being core forests on the landscape by 0.995 times
(approximately 0.5%). On the other hand, a unit increase in slope gradient significantly
increases the odds of a forest patch being among the core forest category by 1.35 times
(approximately 35%) (Table 2). Even though most of the forest patches are found on the
east-facing slope of the landscape, the logistic regression model shows it is 1.70 times
significantly more likely for the forests to be core forest patches on the northeast-facing side
of the slope as compared to the east-facing side. That is, the odds of the forest patches being
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the core forest increase by approximately 70% on the northeast-facing slope as compared to
the east-facing slope (Table 2).

Table 2. Land use and terrain variables associated with the occurrence of core forest patches.

Variables B S.E. Wald Df p-Value AOR
95% C.I. for AOR
Lower Upper

Elevation −0.005 0.001 38.533 1 0.000 ** 0.995 0.994 0.997
Slope 0.299 0.037 64.343 1 0.000 ** 1.349 1.254 1.451
Aspect (East) 116.663 7 0.000 **
Aspect (North) −0.231 0.404 0.328 1 0.567 0.793 0.360 1.751
Aspect (Northeast) 0.527 0.203 6.751 1 0.009 ** 1.694 1.138 2.521
Aspect (Northwest) -1.214 0.188 41.513 1 0.000 ** 0.297 0.205 0.430
Aspect (South) −0.150 0.251 0.358 1 0.549 0.861 0.526 1.407
Aspect (Southeast) −0.379 0.163 5.408 1 0.020 ** 0.684 0.497 0.942
Aspect (Southwest) −0.472 0.231 4.183 1 0.041 ** 0.624 0.397 0.981
Aspect (West) −1.951 0.237 67.605 1 0.000 ** 0.142 0.089 0.226
Beyond 1 km from human settlements (No) 1 (ref)
Beyond 1 km from human settlement (Yes) 0.251 0.155 2.613 1 0.106 1.285 0.948 1.742
Beyond 1 km from agricultural land (No) 1 (ref)
Beyond 1 km from agricultural land (Yes) 0.155 0.113 1.882 1 0.170 1.167 0.936 1.456
Beyond 1 km from logging sites (No) 1 (ref)
Beyond 1 km from logging sites (Yes) 0.470 0.162 8.407 1 0.004 ** 1.600 1.164 2.198
Beyond 1 km from mine sites (No) 1 (ref)
Beyond 1 km from mine site (Yes) 0.331 0.133 6.182 1 0.013 ** 1.392 1.073 1.807
Beyond 1 km from AR (No) 1 (ref)
Beyond 1 km from AR (Yes) 0.761 0.162 22.113 1 0.000 ** 2.141 1.559 2.941
Constant −1.158 0.265 19.082 1 0.000 ** 0.314

Note: ** indicates a statistically significant relationship between a specific independent variable and the occurrence
of core forest patches. SE is the standard error, df is the degree(s) of freedom, AOR is the adjusted odds ratio(s),
and CI is confidence intervals.

The study finds that it is 1.60 (approximately 60%) times significantly more likely for
forest patches to be core forest patches if they are found beyond 1 km from logging sites.
The model coefficient also indicates that as distance increases from the logging sites, there
is a significant possibility that core forest patches would occur (Table 2). Similarly, we show
that mine sites are associated with the occurrence of core forest patches. The study finds
that it is 1.40 (approximately 40%) times significantly more likely for forest patches to be
core forest patches if they are beyond 1 km from the mine sites. Thus, the model coefficient
further indicates that there is a positive relationship between distances from mine sites and
the occurrence of core forest patches (Table 2).

Moreover, the study finds that access roads are significantly associated with the
occurrence of core forest patches. Specifically, the outcome of our analysis shows it is
2.14 times significantly more likely for forest patches to be core forest patches if they
are beyond 1 km from access roads. Thus, this shows that the odds of core forest patches
occurring increase by 114% if patches are beyond 1 km from the access roads. The coefficient
of the model indicates that as the distance between access roads and forest patches increases,
there is a significant possibility that core forest patches would occur (Table 2).

3.3. Model Robustness

Our analysis shows two different levels of model robustness with different measures.
First, the study finds the area under the curve (Figure 3) ROC statistic of 0.775. Second, the
outcome of the OTMC indicates a significant difference (improvement) between the base
model (i.e., the model with no explanatory variables) and the final model (i.e., the model
with all explanatory variables) (see Table 3).
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Figure 3. Area under the curve showing the occurrence of core forest patches as a classified binary ariable.

Table 3. Omnibus Tests of Model Coefficients.

Chi-Square Df Sig.

Step 252.534 14 0.000 **
Block 252.534 14 0.000 **
Model 252.534 14 0.000 **

Note: ** for the Omnibus Tests of Model Coefficients, the final model is significant when the p-value is 0.05 or less.

4. Discussion

We present a model showing the relationship between the occurrence of core forest
patches and land use and terrain variables. A significant association between the occurrence
of core forest patches and elevation, slope, aspect, logging sites, mine sites, and access roads
has been identified through the modeling process. With this association being established,
the ROC value of 0.775 achieved in this analysis suggests that a modest, acceptable, and
robust model has been produced. Similar ROC values (e.g., 0.715 and 0.790) have been
reported in a previous study that used terrain and distance-land use variables in analyzing
forest cover conversion patterns [45,46]. Furthermore, from our analysis, the outcome
of the OTMC suggests that the final model results we have presented are a significant
improvement upon the base model, the model without any explanatory variables.

Whereas our study compares results with that of previous studies from other tropical
forest regions, studies that directly compare to ours are rare, and thus we make comparisons
with studies that mostly focused on general land use and forest cover change. Our study
outcome suggests that on higher elevations and higher slopes, intact forests are more likely
to occur. This study outcome is likely due to the lack of easy accessibility at the higher
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slope and elevations by humans, and thus human activities would less likely take place on
higher slopes and elevations. Also, the results of the study suggest that the high slopes and
altitudes should likely be an area of focus in terms of crafting land management strategies
and policies to protect the existing intact forest patches. With this being mentioned, this
study outcome also creates an opportunity for the establishment of land policies that
would likely improve sustainable land management in low-lying areas and low slopes on
forest landscapes. Our results corroborate a related study in Chunati Wildlife Sanctuary,
Bangladesh, in which Islam et al. [42] noted that an increase in elevation and slope increases
the probability that a vegetation patch will occur. However, Islam et al. [46], did not indicate
whether or not these vegetation patches are the core type. Concerning the direction of
slope, Yang et al. [47] have shown that north- and south-facing slopes influence differences
in vegetation structure (biomass, cover, and height) in southwest China. In other tropical
regions of the world (e.g., Indonesia and India), such terrain variables play roles in the
occurrence of vegetation patches [48,49]. Thus, this demonstrates that terrain variables
influence the nature of vegetation cover in other locations similar to what we have found
in our study. However, the differences, for instance, in how the direction of slope variable
influences vegetation structure may also be determined by latitudinal differences and the
amount of solar radiation received in the various environments [50,51]. These differences
present unique environmental challenges in different landscapes and thus these challenges
would require unique land management strategies.

The study results note that logging in the forest reserve is significantly associated with
the occurrence of core forests. Specifically, our results suggest that areas close to logging
sites would likely not have more of the core forests as compared to areas far from the
logging sites, and thus, intact forests would likely be located far from the logging sites.
The outcome of our study is related to the results of a previous study in the Brazilian
Amazon which found that logging activities give rise to non-contiguous forests in nearby
areas culminating in the formation of many smaller fragments of forest cover [52]. Similarly,
in a related study that covers Africa, Asia, and Latin America, Putz et al. [53] noted that
the percentage of intact forests declines within logging blocks as the intensity of harvest
increases. The rate at which non-core forests develop would increase at an increasing rate
as more logging activities continue to penetrate core forest areas [52]. Thus, with logging
activities threatening most tropical forest regions, relevant land management measures
would be necessary, especially in locations where logging activities have become a greater
component of people’s livelihoods.

Similar to the logging activities, mining activities in the forest reserve have grown in
recent times, and our study results show a significant association between mine sites and
the occurrence of core forest patches. The study results suggest that core forests would
more likely occur in areas far away from the mine sites. This outcome was expected
because of the rate at which mining activities have increased in recent times in the forest
reserve. Recent studies have noted that mining activities in tropical regions (e.g., India,
Ghana, Colombia, Venezuela, Guyana, Suriname) contribute to a significant decline in
forest cover [22,54–57], and these are likely to affect the core forest patches. However, the
use of sites in the forest landscape for mining would likely open up areas near the sites for
other activities (e.g., the creation of mining infrastructure), and these are likely to result
in further fragmentation and thus, the occurrence of fragmented forests near the mining
sites. With our results, land managers could create land policies that would ensure core
forest patches are protected by controlling the spatial spread of mine sites to many parts of
the protected landscape. Thus, the results imply that land rehabilitation plans and policies
should target the areas near the mine sites while increasing protection regimes in the areas
farther away from these mine sites.

The results of our analysis suggest that the occurrence of core forest patches has a
significant association with the presence of access roads in the forest reserve. Specifically,
the study outcome suggests that core forest patches would likely be found in areas farther
away from the access roads as compared to the areas closer to the roads. The areas close to
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the road would likely be accessed by humans, and thus, forests in those areas would likely
be degraded because these areas would be opened to different levels of human influences.
Hence, intact or core forest patches are less likely to be found close to the roads. Direct
measurements of the impacts of access roads have shown that road construction has led to
deforestation [16]. As noted by Laurance et al. [16], the degradation of forests contributed by
roads in tropical forests is growing rapidly and is in two forms. First, through the clearance
of forest for construction and second, through opening up of forest areas for humans to
access hitherto inaccessible areas and thus, increasing the likelihood of clearing accessible
forest areas for other human activities. Moreover, previous study results corroborate our
results in that analysis from major tropical forest areas in Africa, Asia, and Latin America
has found that intact forests are mostly found in areas far from access roads [53]. In a related
study, Teixeira et al. [58] in an analysis of the Plateau of Ibiúna, southeast Brazil noted that
forest regeneration significantly occurs in areas farther from roads. Thus, intact forests
would likely form in these areas far from the road. The relationship between various
land uses and the occurrence of core forest patches as indicated in the results calls for
management measures and policies that protect forest patches that are farther away from
land uses. Additionally, for managing the already fragmented forests, this study outcome
shows that forest patches close to the land uses are mostly non-core forests and thus,
management initiatives (e.g., tree planting) meant for regrowing and creating intact forest
patches should target the areas close to land uses.

The results of our analysis show that forest patches are more likely to be core forests
if they are found beyond 1 km from human settlement and agricultural land. However,
the association between these human activity footprints and core forests is not statistically
significant, implying the occurrence of core forest patches within or beyond 1 km from
the two land uses is by random chance. Upon reviewing the spatial locations of human
settlements, it was noticed that forests in general are not found in areas where human
settlements are located, and it is likely that is the reason the association is not statistically
significant. On the other hand, agricultural footprints are not associated with core forest
patches likely because as found in a previous study [59] agricultural lands are more likely
to transition to forest cover in the future, and thus, the agricultural land locations would
likely not be a problem and that would likely be the reason why they are not associated
with whether or not core forest would occur. However, it is important to note that there will
be a need to test more hypotheses to establish a robust conclusion about human settlements
and agricultural land footprints and their association with core forest patches.

5. Conclusions

This study modeled the relationship between the occurrence of core forest patches and
dominant anthropogenic activities and terrain variables. We show that core forest patches
are significantly associated with land use and terrain variables. With a robust model, we
conclude that core forest patches are found far away from land uses. Similarly, on higher
slopes and elevations, core forest patches are more likely to occur relative to lower slopes
and elevations. Moreover, our findings, based on the direction of slope, indicate that land
managers have unique tasks of monitoring the different directions of slopes and ensuring
that there is sustainable management of forest patches in protected landscapes. Thus, land
management and land policies for maintaining core forests should target areas close to
land uses as well as low slopes and elevations. Conversely, core forest preservation policies
could target areas far away from land uses and areas on higher slopes and elevations.

With the current state-of-the-art geospatial satellite data processing having limita-
tions, the classification of forest patches is less likely to be perfect given that there may
be forest patch sizes that are less than the spatial resolution of the Landsat image used
in this study. Thus, such a limitation would likely underestimate the number of patches
and consequently the underestimation of the patches for the landscape morphological
processing. Additionally, the selection of within 1 km and beyond 1 km distance threshold
to classify the occurrence of core forest would likely be a limitation in this study. The lim-
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itations would slightly systematically bias the results. Hence, we recommend the use of
high-resolution satellite images for classifying the forest patches as well as using multiple
distance thresholds to classify the occurrence of forest patches in future studies.
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Appendix A

Table A1. Results of the accuracy assessment of classified Landsat image from the Atewa Range
Forest Reserve.

Ground Truth Samples

Pr
ed

ic
te

d
la

nd
cl

as
s Category of Land Forest

Cover
Agricultural

Land
Developed

Land Water Total
Truths

User Accuracy
(%)

Commission
Error (%)

Forest cover 180 5 1 0 186 96.77 3.23
Agricultural land 5 128 1 1 135 94.81 5.19
Developed land 2 3 122 1 128 95.31 4.69

Water 1 0 0 100 101 99.01 0.99
Total 188 136 124 102 550

Producer accuracy (%) 95.74 94.12 98.39 98.04
Omission error (%) 4.26 5.88 1.61 1.96

Overall accuracy (%) 96.36

Table A2. Results of Pearson’s correlation analysis.

1 2 3 4 5 6 7 8 9

1. Core Forest 1 *
2. Elevation (meters) 0.061 ** 1
3. Slope 0.186 ** 0.382 ** 1
4. Aspect −0.193 ** −0.181 ** 0.095 ** 1
5. Human settlement 0.127 ** 0.465 ** 0.358 ** −0.019 1
6. Logging site 0.069 ** 0.337 ** 0.098 ** −0.132 ** −0.036 1
7. Mine site 0.124 ** 0.452 ** 0.280 ** −0.040 0.328 ** 0.171 ** 1
8. Agricultural land −0.064 ** −0.180 ** −0.101 ** 0.115 ** −0.066 ** −0.163 ** −0.074 ** 1
9. Acess roads 0.149 ** 0.563 ** 0.364 ** 0.039 0.600 ** 0.103 ** 0.450 ** −0.032 1

* p < 0.05, ** p <0.01.

Table A3. Patches of forest cover and the direction of slope variable.

Occurrence of
Patches

Aspect (Direction of Slope)
East North Northeast Northwest South Southeast Southwest West Total

CF
No 346 18 94 246 91 257 114 255 1421
Yes 181 13 72 65 29 93 36 27 516

Note: CF represents core forest.

https://earthexplorer.usgs.gov/
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Table A4. Patches of forest cover and the distance-land use variables.

Occurrence of Patches
Beyond 1 km from Human Settlement

TotalNo Yes

Core Forest
No 571 850 1421
Yes 136 380 516

Beyond 1 km from agricultural land
TotalNo Yes

Core Forest
No 619 802 1421
Yes 219 297 516

Beyond 1 km from logging sites
TotalNo Yes

Core Forest
No 325 1096 1421
Yes 85 431 516

Beyond 1 km from mine sites
TotalNo Yes

Core Forest
No 619 802 1421
Yes 154 362 516

Beyond 1 km from access roads
TotalNo Yes

Core Forest
No 754 667 1421
Yes 187 329 516
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