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Abstract: With rapid urban population growth and industrial agglomeration, the urban land supply
is becoming gradually tight. Improving land use quality (LUQ) is becoming increasingly critical. This
study was carried out in the Luohe built-up zones between 2013 and 2021. The aim is to explore the
growth characteristics of LUQ and determine the association between the inner urban location and
the growth rate from the perspective of spatial heterogeneity. Therefore, based on a socio-economic-
environmental framework, we selected an integration/GDP/population/artificial-surface Rate, and a
remote-sensing-based ecological index to construct a LUQ assessment framework that is more stable
and applicable for developing urban areas. Additionally, then, multiscale geographical weighted
regression is adopted, which can better help us explore the scale of the location factors. The results
show that: (1) The LUQ overall growth is gradually slowing. High-quality areas clustered in the
urban center and subsystem elements spread outward along the national and provincial highways
to drive boundary expansion; (2) In the W/E/SE direction, land use tends more towards physical
sprawl than usual development and expansion; (3) Location factors were distinguished as global,
semi-global, and local. The global factors constitute the homogenized locational space. Semi-global
and local factors constitute a heterogeneous locational space. The latter is critical to guide LUQ
growth. LUQ assessment can promote intensive land use. Exploring location factors can further
guide the LUQ spatial growth and provide data in support of urban planning.

Keywords: quality assessment; driving mechanism; society-economy-environment; weighted regression;
location theory

1. Introduction

The world, including China, has undergone rapid urbanization [1,2]. Urban bound-
aries are expanding dramatically, posing major challenges [3]. Promoting compact urban de-
velopment and urban densification/re-utilization is often used against urban sprawl [4–6].
However, dense construction can also lead to adverse consequences, such as the compact
city paradox [5,6]. Land use quality (LUQ) assessment can help people find the balance be-
tween the two, and can be of great significance to the planning, development and utilization
of land resources more scientifically and rationally [7]. Currently, objective differences exist
in the LUQ spatial distribution within cities. In some areas, densely built environments lead
to the degradation of green space [6]. At the same time, there is also some idle construction
land [8]. The LUQ of the same city can be very different in alternative locations. Therefore,
it is necessary to study LUQ jointly with the spatial location in which it is located. The
objective is to achieve LUQ assessment and to determine the association between locational
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factors and growth. Controlling the key factors affecting growth is beneficial in promoting
LUQ development and urban sustainability [9].

1.1. Land Use Quality Assessment

In China, LUQ is based on rational use as the goal, and according to the specific
purpose, the quality appraisal of the attributes/efficiency/outputs of the land use is used
to determine the value of the land [10]. The systematic cognition of elements, connotations,
and dimensions is the basis of the assessment, which is mainly reflected in different
frameworks: single and multi-objective frameworks [11].

The different land uses needed in different social stages give rise to different assess-
ment frameworks. For example, when the urban is abstracted to a linear model, LUQ
is defined as a single-index, such as economic [12] or physical [13] output. When the
assessment gradually shifts from economics or taxation to rational use and sustainable
development, people pay more attention to ecology, resources and social services. Addi-
tionally, along with urban multisystem research, such as physical and organic complex
systems, urban areas exhibit the properties of naturally complex systems, and many mathe-
matical models developed for studying naturally complex systems are applicable to urban
areas [7,14–16]. The emergence of the synthetic framework reflects this shift in research
concepts. It mainly includes socio-economic-environmental subsystems (Soc-Eco-Env) from
the sustainable development field [17,18]. In urban areas, these three basic subsystems
interact with each other [7,17,19]. Scholars also have combined, subdivided, or added
extra [7,20,21] subsystems depending on the study area and objectives. In terms of study
scale, not many studies have been conducted on the inner urban location, there are more
studies about provinces [12,22], urban agglomerations [7,11], and cities [23,24], etc.

1.2. Urban Location Theory

Location theory [25–28] concerns how humans select locations for spatial activities. A
typical criticism is that location theory is an economic model based on a spatial homogeneity
assumption [29,30]. This is far from reality. The assumption of spatial homogeneity means
that the city elements do not change with spatial location. Transit-oriented development
theory states that urban growth is not homogeneous in all directions [31]. Although, over
the next century, location theory evolved as a gradual relaxation of presuppositions [32].
Some theories add new dimensions to space by focusing on open space, employment, scale
returns, market competition, and other factors [29,33,34]. However, these descriptions
are relatively macroscopic and can hardly be used on an inner-urban scale. Studies have
concentrated on the large scale of a few progressive cities, and need to pay more attention
to changes in developing urban areas.

Natural conditions are the leading cause of urban formation [35,36]. Heterogeneity
is gradually reinforced by road construction and local land aggregation [37]. The land
driving forces for use vary significantly from country to country/region to region. Due to
China’s different institutional backgrounds and development stages, urban areas are driven
by more macro influences, such as government planning [38]. In planning theory, the pole-axis
system has profoundly impacted China’s urban planning [39]. This theory emphasizes the
heterogeneous influence of infrastructure, such as transportation and service facilities on the
location [40]. Additionally, the sector model [41] also emphasizes land use and roads. The
concentric circle model [42] emphasizes land use and the urban center location. Moreover, the
multiple nuclei theory [28,43] emphasizes organization types, roads/stations, social service
facilities, etc. According to the above discussion, the location factors are finally decomposed
into three main parts: natural conditions, policy planning, and construction foundation.

Based on the land quality assessment, screening of location factors to analyze how
they influence quality change. LUQ change intensity (LCI) is determined by calculat-
ing the annual rate of LUQ growth/decline, and it can help us better focus on quality
change. Using multiscale geographical weighted regression (MGWR), the bandwidth
results were analyzed to observe the impact pattern of location factors on LUQ, classified
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into homogeneous and heterogeneous patterns. Homogeneous and heterogeneous location
factors commonly influence LUQ growth, with the latter considered as a key factor of more
significant concern [44].

2. Study Area and Materials
2.1. Flowchart

The roadmap is shown in Figure 1. The article includes three main parts: (1) Data
set introduction and preliminary processing; (2) LUQ assessment and spatial analysis;
(3) MGWR-based analysis of LCI locational driving mechanisms.
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2.2. Study Area

Luohe (113◦27′–114◦16′ E, 33◦24′–33◦59′ N) is in the south-central part of Henan
Province in central China and is generally flat. The Shali River cuts through it. There are
three railways, two expressways, and one high-speed railway. The national/provincial
highways intertwine here. Luohe is a regional transportation hub. In 2020, the population
was 2.37 million (national ranking: 213/339). Similarly, the per capita gross domestic
product (GDP) is slightly lower than the national mean (66.5 < 72.4, in thousand Yuan), but
the growth rate is fast, with an average annual growth rate of about 9.1% in 2016–2020. It is
a good representation of China’s developing cities. The study years were 2013/2017/2021,
and the study area was the built-up zones in the urban growth boundaries of Luohe
(Figure 2).

The morphology of built-up zones is vital to judging the properties of the land sys-
tem [45]. Reducing the data points outside the built-up zones can significantly improve the
accuracy of the results. Luohe has not provided yet the built-up zones, so this study has
used boundaries (Figure 2) obtained by clustering.
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2.3. Data Collection and Framework
2.3.1. Data Collection and Processing

Satellite images were derived from Landsat-8 Surface Reflectance (SR) collection
(https://earthexplorer.usgs.gov/, accessed on 1 June 2022). The annual nighttime lights
(NTL) are from the NPP-VIIRS satellite (https://eogdata.mines.edu/nighttime_light/,
accessed on 17 May 2022). Surface temperatures were produced using a split-window
algorithm based on the thermal infrared (TIR) band [46,47].

DEM (Forest And Buildings removed Copernicus DEM) was used to describe the
topography [48]. The roads were obtained from OSM (https://www.openstreetmap.org/,
accessed on 1 June 2022) and have been manually corrected against Google Maps. Data on
the location of development axes and regional cores were taken from planning documents.
The 100 m population data were obtained from Worldpop (https://hub.worldpop.org/,
accessed on 1 June 2022).

• Built-up zones and EM clustering

The identification of built-up zones draws on previous research in which the radial
density of construction had a mutation threshold [49]. Expectation-maximum (EM) clus-
tering is a type of curvilinear clustering that operates on a fixed feature vector and uses
multiple iterations to make the likelihood value converge to an optimal solution [50]. Clus-
tering was based on the NTL/normalized difference built-up index (NDBI)/ land surface
temperature (LST) datasets. Urban growth boundaries have been classified into three
clusters. In China, based on the traditional urban–rural dichotomy, there are also mixed
urban–rural areas in developing urban areas, which is the “third area”. In addition, the
three-classification method can eliminate the blooming effects of NTL brightness.

• Land cover and random forest

Random forest is a machine-learning algorithm developed and refined by Leo Breiman
and Adele Cutler in 2001. The method is widely used in land use classification studies in
various cities in China [51] and worldwide [52]. The ArcGIS Pro platform calculated the
normalized difference vegetation index (NDVI)/NDBI/modified normalized difference
water index (MNDWI) as index features. Then, redundancy was removed from spectral
bands by principal component analysis (PCA) to obtain three principal component bands.
These were the spectral features. GLCM mean and GLCM variance were extracted as
texture features based on the panchromatic band (B8) using the grey-level co-generation

https://earthexplorer.usgs.gov/
https://eogdata.mines.edu/nighttime_light/
https://www.openstreetmap.org/
https://hub.worldpop.org/
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matrix (GLCM). The above three features are fed into the random forest classifier to obtain
the land use/land cover (LULC): 1 Farmland; 3 Water; 5 Green space; 7 Construction. The
three kappa were 95.09%, 93.18%, and 96.36%.

2.3.2. LUQ Assessment Framework and Location Factor Selection

In the LUQ assessment framework, the social system provides the necessary infrastruc-
ture; the economic system provides the financial support to keep the entropy of the system
low; the environmental system provides both the material basis and the ecological services
for long-term development and progress [53,54]. Society selects the integration index. The
spatialized GDP (S-GDP) [55] and population (POP) were chosen to represent the economy.
The environment system uses the artificial surface rate (ASR) and remote-sensing-based
ecological index (RSEI) to evaluate the grey-green matrix [11] (Table 1).

Table 1. LUQ Assessment framework and indicators.

Target Layer Framework Layer Assessment Indicators

LUQ

Society Integration

Economy Spatialized GDP (S-GDP)
Population (POP)

Environment
Artificial Surface Rate (ASR)

Remote-Sensing-based Ecological Index (RSEI)

As mentioned above, urban location will be reflected by: natural conditions, construc-
tion foundation, and policy planning. Location contains many factors. However, many
of these factors have the same meaning, which can cause multicollinearity. Two criteria
are proposed: (1) The factor should be representative of a facet of location characteris-
tics; (2) The factor should be minimally redundant, but the type should be as detailed
as possible [41,56]. We used the LUQ as the Y variable and the location factors as the
X variable. The X variables that are not correlated with Y are firstly excluded based on
Pearson (p-value ≤ 0.1). Then, the variance inflation factor (VIF) analysis was required
(VIF < 10). The final 13 drivers, X1 to X13 (Table 2), were selected.

Table 2. 13 Factors that passed the Pearson and VIF.

Type Name Description Pearson Explanation

Natural Conditions
DEM Macro-topography −0.07 *** Digital Elevation Model;
Relief Micro-topography −0.04 ** DEM variation values within a specific range;
River Water, Landscape 0.24 *** Shali River, overlaps with an urban axis;

Construction
Foundation

Expressways Intercity Transportation −0.09 ***
Includes the Beijing–Hong Kong and Macao

Expressway, and the Nanjing–Luoyang
Expressway;

Railways Transportation Materials 0.09 *** Mainly includes Beijing–Guangzhou Railway,
and Luohe–Fuyang Railway;

High-Speed Railway
(HSR) Transportation People 0.16 *** Beijing–Guangzhou High-Speed Railway;

National and Provincial
Highways (NPH) Inner-City Transportation 0.05 ** Roads are built and managed by the

nation/province.
LUQ2013 Historical Influence 0.60 *** Urban growth foundation of the previous stage;

Land use/Land cover
(LULC2013) Land Properties −0.45 *** Categorical data: Farmland (1); Water (3);

Green space (5); Construction (7);

Policy Planning

Road Development Axis
(RDA)

Structure planning-
Main axis 0.16 *** Changjiang Road–Renmin Road axis;

General Development
Axis (GDA)

Structure planning-
Secondary axes 0.10 *** Linking administrative, residential, landscape

and industrial functional areas;
Industry Cores (IC) Planning Location −0.06 *** The gravity center of the industrial area;

Residential Functional
Cores (RFC) Planning Location 0.24 *** The gravity center of the residential area;

Note: **/*** denote statistically significant at the 5%, 1% level.
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Topography was an important factor in modern considerations of the cost of urban
development. Additionally, Shali River has historically given additional vitality to this city
through the livestock trade relying on water trucking. As development progressed, the
artificial network gradually replaced the waterway network. It is important to emphasize
that as an L-system, urban is characterized by the output of the previous period as the
next period’s input. Many factors not only work as a result of the current stage of urban
development, but also rejoin the system as drivers of the next stage to establish the cycle.
Therefore, LULC and LUQ in 2013 were added for the next growth stage. Regarding
policy planning, we focused on spatial structure planning (Table 2). Finally, we have
chosen 13 factors and MGWR is employed to assess spatial heterogeneity in the association
between each factor and LCI.

3. Methods
3.1. Assessment Methods

Within the built-up zones, we calculated the RSEI based on Landsat-8; ASR based on
LULC; spatial syntax-integration based on roads; spatialized GDP (S-GDP) based on NTL;
and combined with population. The weights calculated by criteria importance through
intercriteria correlation (CRITIC).

3.1.1. Artificial Surface Rate and RSEI

The ASR is obtained from the land use classification above. Compared to traditional
indicators, such as green space per capita and forest per capita, the RSEI [57] combines the
most intuitive multiple indicators, greenness (NDVI), humidity (WET), dryness (NDBSI),
and heat (LST), of the ecological environment. It is a more robust and comprehensive
indicator of ecological quality. PCA processed these four indicators, and the first principal
component was collected for normalization to obtain the final RSEI:

RSEI = PC1(NDVI, WET, NDBSI, LST), (1)

3.1.2. Integration

Space syntax builds a framework based on the graphical topology. This theory can
analyze spatial structures and social systems, as proposed by Bill Hiller [58]. Integration
(Ii) is a concept specific to spatial syntax and is the reciprocal sum of the shortest paths
from one space to another space. It consists of the number of path networks (N) and the
topological depth (TD) of this path:

Ii =
N
[
log2

(
N+2

3 − 1
)
+ 1
]

(N− 1)|TD− 1| , (2)

Areas with a high integration are often central locations in urban areas with high
pedestrian and vehicular traffic. In this paper, among the many space syntax topology
models, we chose the segment model, a refined representation of the axial model, weighting
the cost of road ‘corners’ and incorporating angular properties into the model. This is
not available in other road network analyses and is more in line with the “continuous
movement mechanism” of pedestrian and vehicular traffic [59].

3.1.3. Spatialized GDP

The correction coefficient for total night light (TNL) citywide is based on the GDP data
of the secondary and tertiary industry (denoted as GDP23) from the statistical document.
Here, we tried linear and power function calculations. DNi is the light intensity value of
the i pixel. In this formula: sGDP23 is the spatialized GDP23, a is the weighting factor for
that year, obtained from GDP23/TNL. When a linear function is applied, X is the NTL data
for the year. When a power function is applied, X is the Ln (NTL+1) data. Pixels without
lights are considered to have no secondary or tertiary GDP, so b = 0. The primary industry
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GDP (GDP1) is usually generated within farmland. The per-pixel GDP1 was overlaid with
sGDP23 to obtain sGDP’. The sGDP’ zonal statistics were compared with the actual GDP of
each county to calculate the error.

TNL =
n

∑
i=1

DNi (DNi ≥ 0), (3)

sGDP23 = a ∗ X + b, (4)

The linear correction method is more accurate by comparing mean absolute error
(MAE, linear function (%): 19.73; power function (%): 19.87). A further linear correction
was made based on the GDP data for each county to obtain the final S-GDP.

3.1.4. Curve Fitting of Population

Population datasets are only available up to 2020, and population migration is rel-
atively stable in time series. To ensure data consistency, we constructed a space-time
cube to predict the population in 2021. A Curve-fitting model; B Random Forest model;
C The exponential smoothing model was chosen. The curve-fitting model is better as it
has a lower root mean square error (RMSE) (Table 3). This model chose one of the lin-
ear/parabolas/exponentials/Gompertz curve models for one pixel based on the variation
of the data over time. We retained the 2020 data to obtain the validation RMSE. Additionally,
forecast RMSE indicates the difference between the actual and forecast values for all years.

Table 3. Comparison of the accuracy of three methods.

Type Forecast RMSE Validation RMSE

RMSE of curve-fitting model (People/per pixel) 0.89 0.33
RMSE of random forest model (people/per pixel) 0.62 0.76

RMSE of exponential smoothing model
(people/per pixel) 1.04 0.78

3.1.5. CRITIC Model

The CRITIC model [60] weighted the five indicators above. This weight determination
method avoids subjectivity. The final weights Wj are obtained after the following formula:

Wj =
Cj

∑
p
j=1 Cj

, (5)

The CRITIC method is based on multi-criteria decision-making (MCDM). It could
ensure the weights by combining the indicator variability Sj (i.e., the degree of dispersion
of this indicator), the indicator conflict Rj (i.e., the irrelevance between different indicators),
and the information-carrying capacity Cj (obtained by multiplying Sj and Rj). These
indicator features were calculated within one data group (p group) of the j indicator.
It is highly advanced in dealing with covariance and collinearity between the different
indicators of urban studies.

3.1.6. LUQ Change Intensity

LCI is the rate of LUQ change per year. The extended built-up zone is used as the
study boundary:

SS−GII =
|∆I|
I0
× 1

∆T
=
|It − I0|

I0
× 1

∆T
, (6)

I0 is the LUQ value of each area before the built-up zone expansion. It is the value of
each area after the expansion. ∆I is the change in LUQ value between two time points. ∆T
is the time interval.
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3.2. MGWR Model and Factors Selection

The Y variable, LUQ, was obtained. Exploring the relationship between the Y and
X variables requires the multiscale geographically weighted regression (MGWR) model.
The MGWR determines specific bandwidth by allowing variables to have different levels
of spatial smoothing. Compared with ordinary least squares (OLS) and geographically
weighted regression (GWR), it can better calculate the heterogeneity of variables [61].

yi =
k

∑
j=1

βbwj(ui, vi)xij + εi, (7)

For each sampling point i, MGWR constructs the coordinates (ui, vi). yi is the value of
the dependent variable at point i; bwj represents the bandwidth used for the regression
coefficient of the j variable. β is the regression coefficient, and εi is the random disturbance
term. This paper uses the quadratic kernel function and the AICc criterion.

4. Results and Analysis
4.1. Weights and LUQ Assessment
4.1.1. Subsystem Indicator Weights

CRITIC calculates the weights as follows (Table 4). The LUQ is obtained by weighting
and overlaying the five factors of the three subsystems.

Table 4. The weights in 2013/2017/2021.

Urban
Subsystem Indicators

Weights

2013 (%) 2017 (%) 2021 (%)

SOC Integration 23.61 22.81 22.59

ECO
S-GDP 21.64 19.63 18.12

POP 10.62 9.57 9.84

ENV
ASR 34.53 35.28 35.16
RSEI 9.60 12.71 14.29

4.1.2. Boundary Expansion and LUQ Assessment

The results of the built-up zone boundaries and LUQ are shown below (Figure 3 (b1)–(b3)).
The built-up zone gradually grows, and small patches die out or merge into the primary
landscape. The expansion shows an evident traffic-oriented character, with the region
showing a star-shaped pattern along the national and provincial highways (NPH). This
might be termed an axial band-like extension pattern [40]. The leading cause of this pattern
is increased external traffic. This is a repetition of the aggregation–diffusion–reaggregation
cycle. The high values were concentrated in the center and gradually spread along the NPH.
The priority expansion of urban space along one or several directions causes a change in
the urban morphology [62].

The mean values of LUQ in 2013/2017/2021 are 0.51, 0.54, 0.54 respectively, showing
a yearly increase but tending to slow down. Based on Figure 3(b1)–(b3), we used the trend
analysis tool (ArcGIS 10.8) to draw the trend of each year’s assessment value (Figure 4). In
the longitude, the quality shows a trend of high in the middle and low around, forming an
inverted U curve. Meanwhile, the LUQ in the west is consistently higher than in the east.
The trend is similar in latitude, and urban growth is consistently higher in the south than
in the north. LUQ has a clear and stable tendency of central aggregation in space.
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4.1.3. Spatial Characteristics of LCI

LCI results are as follows (Figure 5(a1)–(a3), Table 5). Compared to the first stage,
positive urban growth and degradation became less active between 2017 and 2021. Overall,
between 2013 and 2021, the urban core showed degradation ranging from 0 to 6 percent,
with new growth poles moving away from the core. From 2013 to 2021, the LCIMEAN = 0.03.
From 2013 to 2017, the LCIMEAN = 0.04, higher than the annual mean over these eight years.
From 2017 to 2021, the LCIMEAN = 0.02, and growth slowed down. STD was the largest in
2013–2017, with the most unbalanced regional development. Then, STD was reduced in
2017–2021. We found the lowest average STD in 2013–2021 (Table 5). LUQ more equally in
space over extended periods.
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Table 5. LCI statistics’ results.

Statistical Indicators 2013–2017 2017–2021 2013–2021

LCISUM 80.01 50.41 76.08
LCIMEAN 0.04 0.02 0.03

STD 0.07 0.05 0.04

Further zonal statistics are performed on the LCI (Figure 5(b1)–(b3)). In directional
analysis, the focus is on three indicators, the sum (SUM), mean (Mean), and standard
deviation (STD)of pixel values. The SUM focuses on showing the impact of boundary
expansion on LUQ, i.e., the increase in “quantity”. The Mean can be understood as an
increase in the level of growth, i.e., the increase in “quality”. The STD further describes
whether this growth occurs evenly over each pixel, in other words, the fairness of the
LUQ growth.

We can further observe the urban growth trend to distinguish between expansion and
sprawl. For SUM, the LUQ in 2013–2021 is more oriented towards horizontal development,
i.e., focusing on the increase in the W/E directions. In sharp contrast, for mean, the N/NE
advance together, but later, there is a gradual shift towards the W/SE. It showed an overall
vertical-like growth.

Healthy urban development should not only be due to its expansion [63], but the
increase in mean should also be more significant than the increase in SUM. When SUM is
larger than the mean, such as the E direction, this direction needs to be concerned. Land use
in this direction is shifting or will shift to physical sprawl. When the mean is much greater
than SUM, consider whether there are factors that limit the expansion of the boundary.

4.2. Location Factors and Weighted Regression Results
4.2.1. Location Factors

Based on Table 2, the 13 location factors are spatialized (Figure 6). The river factor in
the natural conditions, all transportation factors in the construction foundation, and all
policy planning factors were all converted to distance factors.

4.2.2. Calculation Results and Analysis of MGWR

The R2 Adjusted of MGWR was 0.63, which is higher than the OLS of 0.39. The AICc
was 4016.23, lower than the OLS of 4749.68, which implies a better fit. The results of MGWR
calculations are presented below (Table 6).

Table 6. MGWR calculated coefficients and scales for each location factor.

Variable Mean STD Min Median Max Bandwidth

Intercept −1.07 0.00 −1.08 −1.07 −1.07 2022
DEM −0.07 0.04 −0.11 −0.08 0.00 1680
Relief −0.10 0.04 −0.16 −0.12 0.00 925
River −0.89 0.18 −1.22 −0.80 −0.69 856

Expressway 0.74 0.00 0.74 0.74 0.75 2022
Railways −0.55 0.01 −0.56 −0.55 −0.54 2022

High-Speed Railway (HSR) 1.24 1.19 −3.89 1.08 4.37 44
National/Provincial Highways (NPH) −0.21 0.00 −0.21 −0.21 −0.20 2022

Road Development Axis (RDA) 0.14 0.07 −0.02 0.15 0.26 582
General Development Axis (GDA) 0.21 0.05 0.03 0.21 0.32 673

Industrial Cores (IC) −0.37 0.00 −0.38 −0.37 −0.37 2022
Residential Functional Cores (RFC) −0.18 0.05 −0.24 −0.18 −0.12 1645

LUQ2013 −0.80 0.51 −2.84 −0.70 0.04 44
Land Use/Land Cover (LULC2013) 0.04 0.03 −0.01 0.04 0.08 1588
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Scale is the most crucial topic in geographic information science [64]. Bandwidth is
a direct representation of the action scale and can be understood as the scope to which a
factor can exert a uniform influence. The small bandwidth means that different regions
are affected by one factor very differently. The HSR, for example, clearly has different
importance for the development of different regions, and corresponds to a wide variation of
coefficients. In other words, the area over which it can exert a uniform influence is small so
the bandwidth is small. A large bandwidth means that a larger area is affected (positively
or negatively) by the factor in a relatively uniform way.

This paper controls for nature, transport, spatial structure planning, and historical
impact. The intercept indicates the other variables that are not controlled for, such as the
culture/cross-city economic attraction. Its bandwidth is 2022, representing around 100%
of the total area. The built-up zone merged in 2013 and 2021 is approximately 236.53 km2.
Based on Jenks’ natural breaks’ classification of bandwidth, we have divided these location
factors into three categories: 1© DEM, expressway, railways, NPH, IC, RFC and LULC are
global scales (bandwidth = [1588, 2022]); 2© The scales for relief, river, RDA and GDA range
from 582 to 925, which are semi-global factors. The scale ranges from 28.75% to 45.70%;
3© HSR and LUQ2013 are local factors (bandwidth = 44). Once this scale is exceeded, the

coefficient changes dramatically. The semi-global and local factors constitute the concept of
‘location’. Their mean bandwidth values are 520.67, accounting for 25.57%.
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4.2.3. Coefficients’ Analysis

The MGWR results presented in the form of pictures can better show the heterogeneous
effects of different locus factors on LUQ.

• Semi-global factors

The coefficient changes for the four semi-global factors are shown in Figure 7. Relief
represents micro-topographic changes (Table 2), and its influence of it (Mean = −0.1) is
more significant than macro-topography (Mean = −0.07). Relief shows a slightly negative
effect (Mean = −0.10) and the more complex micro-topography can be a barrier to urban
growth. In other words, growth would prefer to occur on flat topography.
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River shows a decisive and overall promotional role, Mean=−0.89. The LUQ decreases
by 0.89 percent for each distance unit away from the river. It is easier to boost LUQ in areas
near rivers. The construction around the river leads to this heterogeneity. This river has a
slightly lower impact on LCI in the west. Moreover, there is a higher attraction to the east.

This paper chooses RAD and GDA as the primary and secondary planning axes for
policy planning. RDA’s distance coefficient factor was Mean = 0.14. The GDA factor was
more significant, and its distance coefficient factor was Mean = 0.21. For each distance
unit away from the axis, the LCI increases by 0.14/0.21, separately. It is easier to improve
LUQ away from the axes. For RDA, the driving force showed negative impacts in the east,
dominated by construction and villages. However, the spatial structure of the urban area
still tends to be divided vertically, and the role played by RDA is relatively weak. For the
GDA, this is slightly less inhibitory to the periphery and more inhibitory to the center.

• Local factors

The HSR can be considered one of the intercity transportation representatives in the
built-up zone (Figure 8). HSR has a distance factor mean coefficient of 1.24. As the only
local factor in transport, different regions react to it differently. The primary use of HSR is
passenger transport, which is relatively more friendly to the environment. Therefore, the
local drive, with the station as the core, has a significant additive effect on the surrounding
areas in the south-west region. Combined with LCI2013–2021 (Figure 5), this station would
be a growth pole in the future.
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LUQ shows the system foundation in 2013 (Figure 8). There is a negative effect globally
(Mean= −0.80), i.e., growth is more likely to be generated in lower-value areas. This is the
marginal utility of growth. Overall, it shows a tendency for the coefficients to be lower in
the south-west region and higher in the east.

5. Discussion
5.1. Considerations of LUQ Framework

Due to a certain ambiguity in the LUQ definition, the framework has multiple subsets
based on different research objectives. The socio-economic-ecological framework is the
most basic and is widely used in fields such as sustainability and land coupling. On this
basis, the four-index [7] framework is extended, and even the five-index framework is
extended [65]. The environment is the most fundamental physical support for all activities
of the subsystems. ‘Environment’ is often seen as equivalent to nature or ecology. However,
the environment is broader and contains a much larger range of substrates, such as grey
and green spaces.

Society provides the infrastructure as a bridge between artificiality and nature; society
helps to facilitate the spatial flow of materials, energy and information, bridging the urban–rural
duality or triadic structure. Usually, society is evaluated using statistics such as local
facility density or resource consumption [66,67]. However, obtaining comprehensive and
accurate spatial data for developing urban areas is often challenging. This shortcoming
becomes more apparent when faced with multi-temporal studies. On the other hand,
this needs to consider the changing statistical criterion and temporal heterogeneity of
statistical indicators, which usually make studies different across different geographical
locations and periods. The road network is often built before the urban system among
the many infrastructures. It has a close positive correlation with education/health and
care/commerce, and is a necessary prerequisite for running an urban area [68]. Meanwhile,
a road network with a solid temporal continuity also avoids doubts about comparability.

5.2. Heterogeneity and the Meaning of Scales

In this paper, the differentiation of LUQ is shown in its spatial-temporal non-smoothness.
The location impact on LUQ is seen as a combination of homogeneous and heterogeneous
location factors. That is, we discuss not only the heterogeneity of location-based LUQ, but
also the heterogeneity of the location variables. In previous studies [69], the importance of
the drivers is determined by their impact coefficients. We introduce the drivers’ bandwidth,
extending their filtering dimension. The central idea is that global factors that exert a
homogeneous influence on LUQ growth can be considered constant, regardless of their
coefficient size. In contrast, semi-global and local factors with a high spatial heterogeneity
should be considered as “variables” of greater interest.

In addition to extending the dimension, another advantage of linking heterogeneity
to the drivers is that it provides data to support planning at the inner-urban scale. The
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locational bandwidth is close to the street scale in an average sense [70]. In this study,
excluding the global factors, the mean bandwidth of the semi-global and local factors is
520.67. It works out to an average of 46.86 km2, while the average size of the sub-districts
is about 31 km2.

Temporal heterogeneity also needs attention. The formation of urban morphology
depends on long time cycles, and different environments influence even the same city at
different stages of urbanization, such as with the spillover effect of the planned scope of
the urban agglomeration in which it is located and the surrounding urban change, which
can then be summed up as a time constraint on urban development [71].

6. Conclusions

This paper takes Luohe city as an example, from 2013 to 2021, using the data on
ASR, RSEI, integration, spatialized GDP and population within the built-up zones. After
weighing the factors through the CRITIC model, a stable framework was constructed to
assess LUQ. Afterwards, based on location theory, 13 location factors were selected to
explore how they impact the LUQ growth through the MGWR.

LUQ assessment raster display based on subsystem synthesis: (1) The expansion of the
built-up zone boundary is an axial band-like extension pattern. LUQ high values clustered
in the urban center, and spread outward along the NPH. Elements within the Soc-Eco-Env
subsystems are transported outwards along the NPH, advancing the urban star-shaped
expansion; (2) LUQ continues to grow, but the growth rate is gradually slowing. Based
on the LCI, between 2013 and 2021, the central region saw a slight decline in LUQ, with
growth concentrated in the surrounding areas. LCI’s zoning statistics show the need to
focus on the land quality of the WW/E/SE because land use is more inclined to physical
sprawl here.

According to MGWR’s measurements: (3) Location factors can be distinguished into
global, semi-global, and local factors. The impact of global factors on LUQ is spatially
smooth, and they are components of the homogeneous locational space; (4) Similarly, for
the growth of LUQ, the semi-global and local factors are components of the heterogeneous
locational space. The heterogeneous location factors are ranked in order of influence:
HSR > River > LUQ2013 > GDA > RDA > Relief.

In the choice of driving factors, public demand for greenness and the ensuing political
pressure can create an engine for green development [72,73]. These indicators can be further
quantified and added to improve the goodness of fit.
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