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Abstract: Land use and cover (LUC) of southern European mountains is dramatically changing,
mainly due to observed socioeconomic demands and climatic changes. It is therefore important
to understand LUC changes to accurately predict future landscapes and their threats. Simulation
models of LUC change are ideal for this task because they allow the in silico experimentation under
different socioeconomic and climatic scenarios. In the present study, we employed the trans-CLUE-S
model, to predict for 2055 the LUC of a typical southern European sub-mountainous area, which
has experienced widespread abandonment until recently. Four demand scenarios were tested, and
under each demand scenario, we compared three climatic scenarios, ranging from less to more warm
and dry conditions. We found that farmland declined from 3.2% of the landscape in 2015 to 0.4% in
2055 under the business-as-usual demand scenario, whereas forest further increased from 62.6% to
79%. For any demand scenario, differences in LUC between maps predicted under different climatic
scenarios constituted less than 10% of the landscape. In the less than 10% that differed, mainly
farmland and forest shifted to higher elevation under a warmer and drier climate, whereas grassland
and scrubland to lower. Such insights by modelling analyses like the present study’s can improve the
planning and implementation of management and restoration policies which will attempt to conserve
ecosystem services and mitigate the negative effects of socioeconomic and climatic changes in the
mountainous regions of southern Europe.

Keywords: cropland; pastureland; shrubland; woody encroachment; rewilding; transhumance;
livestock; land use and land cover change; LUCC simulation; projections

1. Introduction

Low-intensity farming and traditional management practices have shaped Europe’s
Mediterranean mountains for centuries [1]. Nevertheless, the abandonment of these
marginalised areas has been pervasive after World War II, with significant consequences on
the rural landscapes [2]. Be they positive or negative, the consequences of land abandon-
ment on culture, biodiversity and ecosystem functioning depend on the characteristics of an
area [3]. On the one hand, for example, land abandonment can constitute a threat due to the
closing of the landscape, with the domination of scrub and forest species replacing endemic
and rare species of the previously open habitats [4]. On the other hand, the scrub and forest
species can have a positive impact to an area with history of overexploitation [5]. A main
driver of abandonment is the economic marginalisation of these areas due to unfavourable
socioeconomic and institutional conditions, such as a country’s uneven distribution of
income between cities and countryside, and of subsidies favouring the intensive farming in
the lowlands versus the extensive farming in the uplands [6].
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Additionally, the climate of the mountainous areas, together with their remoteness
and topography, renders them the first to be abandoned from the countryside under such
unfavourable socioeconomic conditions, because these characteristics further limit agricul-
tural profitability and competitiveness in the local, national and international markets [2,3].
The elevational ruggedness of the mountainous landscape leads to climatic conditions of
greater agricultural challenges due to the higher spatial, daily and seasonal variability in
temperature and precipitation in comparison to the lowlands [7]. Moreover, climate change
at the Mediterranean mountains is predicted to be more dramatic than in other European
mountains by year 2055, due to a greater increase in temperature, and a greater decrease
in precipitation annually but also during spring with the start of the vegetative period [8].
These dramatic changes are expected to affect the land’s suitability for typical crops [9],
forest species [10], habitats [11], and irrigation [12].

Thus, there is a need to accurately predict the future land use and cover (LUC) of
mountainous areas of the Mediterranean in relation to climate change and its interaction
with the local topographic and socioeconomic conditions [13]. This can facilitate the
development of measures for the mitigation and adaptation against forthcoming threats.
Adaptation is an important factor shaping the future severity of climatic and socioeconomic
impacts on agriculture and biodiversity [14]. A key question is whether LUC change
will be more affected by changes in the socioeconomic or the climatic conditions of the
mountainous areas. The consequent prioritisation of socioeconomic or climate-related
policies for ensuring food production and biodiversity conservation will hence require
the processing of [9]: (1) biophysical and socioeconomic factors, and their relation to LUC
change; (2) future LUC for evaluating its characteristics, and the possibilities for adaptation
both in space and in time; and (3) the uncertainty related to future socioeconomic, climatic
and LUC trajectories.

Spatial modelling of LUC change can disentangle the effects and uncertainties of these
factors via the in silico experimentation of different climatic scenarios under assumed
socioeconomic demands for various types of LUC [15,16], as we attempt in the present
study. The modelling of LUC has proved a reliable tool for investigating such scenario
projections of LUC change for the future [17]. In particular, modelling with scenario
projections for the investigation of future LUC is important because it enables the more
transparent comparison of methodologies from different researchers and for different
areas [18]. Additionally, it provides information for the more efficient application of
mitigation and management measures. For example, measures can be more targeted and
cost-effective by knowing where in the landscape forest expansion is more related to land
abandonment than to climate change, together with their correspondingly different species
composition and time scale of expansion [19].

In the present study, we investigated the effects of climate change on the prediction
of LUC in year 2055 for a Greek sub-mountainous area representative of Mediterranean
areas with history of abandonment [20]. We assumed different scenarios of demand in
transitions of LUC types. For each demand scenario, we compared the LUC predictions
under three climatic scenarios, from more to less optimistic one, to find: (1) how much the
demanded LUC transitions and composition differed between climatic scenarios; (2) how
much the predicted maps differed in the allocation of demanded LUC; and (3) what were
the environmental characteristics of the allocation differences between climatic scenarios.
Climate was expected to have a strong effect on the predictions of future LUC, given the
anticipated dramatic changes in the mountainous climate of the Mediterranean for the
middle of the 21st century [8]. We further discuss our results in the context of future
socioeconomic demands and climatic changes in the region.

2. Materials and Methods
2.1. Study Area and Historical Conditions

The study area was composed by five circular sites of 6 km in diameter each, with a
total cover of 141.4 km2, located in the Pindus mountainous region of Greece (Figure 1).
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We chose this study area as a system typical of the Mediterranean mountains, because
the region historically had extensive farmlands and grasslands exploited traditionally by
transhumance and low-intensity farming until the 1940s, but land abandonment later on
led to dramatic changes in the landscape [20,21]. We decided to work with circular sites
because they have the lowest ratio of perimeter-to-area [22,23], and they would hence be
less sensitive to edge effects in vegetation sampling we did for a different study. We chose
five such sites for maximising the heterogeneity of the samples in relation to environmental
conditions and vegetation diversity, as well as to abandonment.

Figure 1. The five circles constituting the study area’s sites. The inset’s black-filled rectangle shows
them in the region. White lines indicate boundaries of local municipal districts, and white symbols
are for settlements.

The region’s woody taxa categorise it to the “thermophilous deciduous oaks” veg-
etation formation [24]. In a previous study, we mapped the area’s LUC for years 1945,
1970, 1996 and 2015 [20]. The mapping focused on five LUC types which are broad steps of
progressive vegetation succession: farmland, grassland, open-scrub, closed-scrub and for-
est. Settlements and bodies of water were excluded, leading to a mapped 138.4 km2 cover,
which is smaller than the circles’ total cover. Visual interpretation of orthoimages was used
to identify LUC, before proceeding to vectorisation, and rasterisation at 25 m resolution.
The biophysical and socioeconomic conditions of the study area were downscaled to the
same resolution.

The biophysical and socioeconomic conditions of the study area concern the 1945–2015
period (Figure S1 in Supplementary Materials). The elevation ranges from 248 to 1203 m,
and the slope ranges from 0–48◦. The region’s climate is the “Csa” hot-summer Mediter-
ranean type according to the Köppen–Geiger scheme of classification [25]. The region has
a history of low-intensity farming until the 1940s, but abandonment of farmlands and
grasslands has commonly led to vegetation succession and afforestation [20,21]. During
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the 1996–2015 period, which was used for the projection of the demand scenarios, the
population density median decreased from 17.3 to 12.1 inhabitants km−2, and the livestock
density median decreased from 135.9 to 51.9 small grazing livestock units km−2. Data for
the geological substrates were taken from a previously documented map [26]. Data for
the population and livestock sizes were from national censuses, and retrieved from their
official online sources [27,28]. More details about the LUC mapping, and the conditions of
the study area, can be found in the relevant work published previously [20].

2.2. Projections of Climatic and Socioeconomic Conditions to the Future

The target horizon in the future for our predictions was year 2055. Projections of
socioeconomic and climatic conditions were made for suitability predictors which varied in
time from our dataset of predictors (Figure S1): the 19 bioclimatic variables, population and
livestock densities, and settlement proximity. No projections were made for the fixed in
time predictors: elevation, slope, northness, eastness, and presence of four types of bedrock.

2.2.1. Climate

For climate in the future (Figure S2), the scenarios we employed were from the fol-
lowing Shared Socioeconomic Pathways (SSPs) in the 6th phase of the global collaboration
among climate-modelling institutions known as CMIP6 framework [29]: (1) sustainability,
in the direction of a more sustainable path, stressing more equitable development that ad-
heres to perceived environmental constraints (SSP126, herein called SSP-SUST); (2) regional
rivalry, in the direction of a nation-centred path, worrying about competitiveness, security,
and regional issues. (SSP370, herein called SSP-RIVAL); and (3) fossil-fuelled development,
in the direction of quick technical advancement and the development of human capital
(SSP585, herein called SSP-FUEL). Average monthly values of total precipitation, as well as
of mean, maximum and minimum temperature were retrieved from the CHELSAfuture
V2.1 dataset of 1 km resolution for the historical period of 1981–2010, and for the future
projection period of 2041–2070 which has the target year 2055 in the middle [30]. For
each of the three climatic scenarios of the future period, we averaged the monthly time
series from the five models provided freely by the Swiss Federal Institute for Forest, Snow
and Landscape Research, for each of the four meteorological variables [30]. Thus, for
each combination of cell, meteorological variable and month, we had two values, which
were that month’s average for the 1981–2010 and for the 2041–2070 periods. We applied
correction and downscaling of the future period’s monthly averages with the R package
“meteoland” [31]. The correction of the meteorological variables was based on the compari-
son between the monthly time series from the CHELSAfuture for the 1981–2010 period,
and the reference CHELSAcruts monthly series for year 1996 [32], which was in the middle
of the 1981–2010 period, and which was already used in our historical dataset. We used
the CHELSAcruts dataset because despite being cruder due to its delta-change method
by B-spline interpolation of anomalies, it extends back to year 1901, and hence covers
our earliest year of 1945. The corrected monthly time series for the four meteorological
variables were downscaled to 25 m resolution. Finally, we calculated for year 2055 the
19 bioclimatic variables of Worldclim from the downscaled monthly time series with the R
package “dismo” [33].

2.2.2. Population

For population, we tried seven different projection models (Figure S3), and we finally
selected the one with the best performance (Figure S4), according to the following validation
procedure. The models were calibrated with historical census data from years 1911–1967,
and then predicted the following 44 consecutive years until year 2011. Year 2011 was the
latest year of census data and was used for validating the predictions by the models of the
same year. We selected this 44-year prediction window because the best-performing model
according to the validation would be employed to predict the population in each district
44 years after the latest census year of 2011, i.e., in year 2055. To enable the calculations, we
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linearly interpolated any missing values in the historical time series. The first model was a
naive one, i.e., it predicted the same value as the last calibration year for the projection years.
The next three models were the automatic ARIMA, Exponential Smoothing, and Neural
Networks with the default settings of the R package “forecast” [34]. The last three models
were Logistic, possessing the two parameters of growth rate r (units of population change
per year) and of carrying capacity K (units of population size). The Logistic models differed
in the estimation of r, since K was identically estimated as the maximum population size
observed in the 1911–1967 time series of each municipal district. In all three Logistic models,
the parameter r was equal to the (end–start)/end value of population size at the start and
end of a time interval, respectively, divided by the interval’s duration in years.

For the first Logistic model (lm-based), we first had to fit a linear model to the
1911–1967 time series of population size, and r was calculated from the 1911 and 1967 pre-
dictions of population size by the linear model. For the second Logistic model (start–end),
we directly used the raw 1911 and 1967 population sizes for r. For the last Logistic model
(weighted), we divided the 1911–1967 period to five sub-intervals of approximately equal
duration, calculated r for each sub-interval, and the final r was the weighted average of the
r values of the five sub-intervals. The weighting was exponential, such that each previous
sub-interval had its weight halved in the calculation of the average.

Model performance was quantified with the metric “mean Absolute Scaled Error”,
due to its better properties and behaviour [35]. This metric is the ratio of two errors. The
numerator holds the absolute error of a projection, e.g., the absolute difference between
the 2011 projection and the census value of 2011 in our validation case. The denominator
holds the average absolute error of naively predicting the same value in the calibration
time series, and for the duration of the prediction window. In the case of our validation
with the 44-year window, the calculations used the 1911–1967 calibration period, starting
from predicting the same value in 1955 as in 1911, until predicting from 1923 the same
value for 1967, and subsequently taking the average absolute error of the naive predictions
versus the corresponding actual values from 1955 to 1967. A mean Absolute Scaled Error
above one indicates an absolute error which is larger than the average error of naively
predicting the same value after 44 years inside the calibration period, averaged over all
possible 44-year predictions in the 1911–1967 calibration period.

The weighted Logistic model exhibited the best performance and was hence employed
to predict the 2055 population size in each municipal district (Figure S5). For the projection
from 2011 to the future, we calibrated with data from all available historical data from the
1911–2011 period (weighted average r from nine sub-intervals).

2.2.3. Livestock and Settlement Proximity

For livestock, we followed the same procedure as with population size, but the census
data were from the 1961–2021 period (Figure S6). The models were hence calibrated with
census data from years 1961–1987, and then predicted the following 34 consecutive years
until year 2021. The validations and comparisons showed that the weighted Logistic
model was not worse than others, and was hence selected to have the same model as for
population size (Figure S7). Parameterising again the weighted Logistic model from all
available historical data, we predicted the number of small livestock units at the municipal
districts in year 2055 (Figure S8).

For settlement proximity, we used the same values for 2055 as in the latest historical
year 2015, since proximity change was minor during the 1945–2015 period (Figure S1A).

2.3. LUC Change Model

The model of LUC change was validated against reference historical data, and then
was called to predict the 2055 future LUC under different climatic scenarios to analyse the
comparisons of climatic scenarios in mainly three different ways (Figure 2).
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Figure 2. Basic workflow of our approach to predict and analyse future LUC in the study area. The
same workflow was followed during the validation of the LUC change model against the reference
map of the latest historical year 2015. From lighter to darker fill, the boxes represent different
types of input or output: basic input for the LUC change model (white fill); LUC change modelling
(light-shaded fill); maps predicted by the model (dark-shaded fill); and analyses of predicted maps
(darker-shaded fill with bright letters).

A popular model of LUC change for the scale of our interest is the “Conversion of
Land Use and its Effects at Small regional extent” (CLUE-S) [36]. The CLUE-S model is
appropriate for finer spatial resolutions as of the present study’s (map cells of .1 km), and
for local to regional scales [37]. The model basically needs two types of input: (1) categorical
maps of observed LUC at historical time points, with each cell covered by a single LUC type
at each time point; and (2) biophysical and socioeconomic conditions for the respective cells
and time points. The model’s preparation consists of three steps [38]: calibration (via model
parameterisation); prediction (via simulation); and validation (via quantitative assessment).
It is recommended that the model is calibrated from all the time points except the last
one, and then it is called to predict the map of the last time point, for finally validating
the predicted map against the observed reference map of the last time point [38]. After
an adequate number of calibration–prediction–validation attempts, the model is called to
predict LUC at future time points under a specific climatic scenario and other biophysical
and socioeconomic conditions. In the present study, we employed a more detailed variant
of the CLUE-S model, i.e., the trans-CLUE-S model, which demonstrated higher predictive
performance than CLUE-S [39]. The calibration of the trans-CLUE-S model, similar to its
parental CLUE-S model, focuses on the two core components of the non-spatial demand of
LUC transitions, and of the spatial allocation of that demand.

Regarding the non-spatial component of demand, trans-CLUE-S requires as input
the number of cells in each LUC transition from a map at time step t = 1 (map 1) to the
new map 2 to predict at a time step t = 2 [37]. A transition matrix can be built with cross-
tabulation of the frequencies of LUC types between two consecutive maps of an earlier time
interval, e.g., between the map 0 of a previous time step t = 0, and the map 1. An entry of
the transition matrix holds the number of cells which transitioned from the LUC type in the
row (map 0) to the LUC type in the column (map 1). If we divide each matrix entry by the
sum of its row’s entries (the total number of cells covered in map 0 by the row’s LUC type),
we get transition probabilities of a Markov matrix. For a LUC type in a row of the Markov
matrix, we can estimate the demanded transitions in map 2 from map 1, by multiplying
the row’s probabilities by the known number of cells covered by the LUC type in map 1.
In case the duration of the interval between map 1 and map 2 is different from the map
0–map 1 interval, it is possible to estimate the probabilities for the desired duration [40,41].
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Regarding the spatial component of demand allocation, a statistical model is built for
the suitability of each cell to each LUC type based on the environmental conditions at each
cell of map 2. The statistical model is then used for allocating the demand of each LUC
type transition to the most suitable cells in the map 2 under the presumed environmental
conditions at t = 2.

2.3.1. Demand Scenarios

The three climatic scenarios were compared under the same demand scenario. Note
that demand refers to the pre-specified demand in LUC and related LUC transitions in the
future map to be predicted. We employed the following four demand scenarios:

1. No demand. We compared the climatic scenarios under no demand restrictions. With-
out demand, the LUC transitions and total cover in the future could vary between
climatic scenarios. Essentially, the no demand scenario returned a mere suitabil-
ity map of the study area, since each cell was assigned to the LUC type with the
highest suitability.

2. Business-as-usual. We projected the 1996–2015 period’s LUC transition matrix to
the 2015–2055 period via a quadratic, regression-based estimation of the transition
probabilities [40]. Before trusting the projection to the future, though, we did a
validation test of the estimation method on the previous historical period of 1970–1996,
to estimate and validate against the known 1996–2015 period (Figure S9). The absolute
difference in the transitioned relative cover between reference and estimated map
percentages was not greater than around 4% of the map, with the greatest differences
being the overestimation of farmland persistence, as well as the underestimation of
farmland becoming grassland and of forest persisting (Figure S10). This result was
not surprising because in a previous work we found that farmland abandonment and
subsequent succession accelerated from the 1970–1996 to the 1996–2015 period in our
study area [20]. Thus, the projected 1996–2015 transitions to the future 2015–2055 were
expected to carry the signs of this acceleration of farmland abandonment (Figure S11).

3. As-usual, but with intensive farming preserved. To make milder the effect of accel-
erating farmland abandonment in the business-as-usual scenario, we kept the same
demand scenario but preserved some of the 2015 farmland. The reason was that
in our previous work in the study area, we found that the remaining farmland in
2015 was of intensive agriculture, being in the lowlands, in flatter ground, and with
irrigation systems developed [20]. Thus, we selected from the 2015 LUC map the
presumably intensive farming areas which could persist until 2055. We filtered this
farmland on the basis of the elevation and slope distributions of the 2015 farmland
(Figure S12). This was facilitated by the shape of the distributions, allowing us to
keep any farmland which was on elevation no more than 420 m, and on slope not
steeper than 10◦. This 2055 farmland comprised 2.6% of the 2055 map, instead of
the 0.4% of the business-as-usual scenario, and was located mainly on sites 3 and 5
(Figure S13). The relative cover of the other LUC types was predicted slightly less
under this scenario for 2055 (Figure S14A).

4. Extensive farming as in the 1970s. According to this optimistic scenario for demand,
rural policies from 2015 onwards become very beneficial for the mountainous areas
of the Mediterranean, supporting the extensification of agriculture, the return of
the population and its occupation in local businesses, the increase of livestock, and
the clearance of woodland and scrubland for once again becoming farmland and
grassland [42]. Such characteristics of extensive agriculture were still prevalent in
year 1970 in our study area [20,21]. Thus, we assumed that the relative cover of the
land types in 2055 would be equal to their relative cover in 1970. For the land type
transitions in the 2015–2055 period, we assumed that they would follow the reverse
pathway from the 1970–2015. Thus, we only had to use the transposed transition
matrix of the 1970–2015 time period as the 2015–2055 transition matrix of this demand
scenario (Figure S14B).
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2.3.2. Suitability Model

We related LUC suitability to biophysical and socioeconomic predictors with a Random
Forest multiclass classification model. Our classification model returned the probability
of each LUC type on each map cell given the predictor conditions in that cell. From the
available predictor variables (Figure S1), we selected variables with lower inter-correlation
(Spearman correlation coefficient ≤ 0.5), but also higher potential for interpretation of
results (Figure S15). Specifically, we used the elevation, slope, northness, eastness, presence
of silicate and flysch parent rock, annual mean temperature, temperature seasonality, annual
precipitation, precipitation seasonality, population and livestock density, and distance to
the nearest settlement.

We used a Random Forest model because it does not have many parameters to cali-
brate, it is not liable to criteria concerning the distribution of values of the variables, and
it can fit upon non-linear relations, unlike a linear model [43]. Additionally, in a spatial
context as ours, a Random Forest does not require semivariograms which are difficult to
model with their related assumptions [44]. Nevertheless, it is not advisable to apply plain
machine learning models, such as a Random Forest, to spatio-temporal data similar to ours
(map data from different years), because plain models ignore the common spatio-temporal
autocorrelations. Without paremeterising such models properly, there is a high chance of
overfitting, and overestimating the model’s predictive performance [45]. To avoid such
issues, we tested the parameterisation of the Random Forest model via different cross-
validation methods with the R package “CAST” [46]. Specifically, we initially compared
the performance of random, leave-location-out, leave-time-out and leave-location-time-out
cross-validation schemes on the data from 1945, 1970 and 1996 (Figure S16). Locations
were grouped according to the five sites, and time according to the three years. The
cross-validation performance of the random partitioning was higher than the rest of the
schemes (Figure S16). Nevertheless, when called to predict data unknown to the training,
from the 2015 map, the performance of random cross-validation was similar to the other
cross-validation partitioning schemes (Figure S17), demonstrating that we would have
overestimated model performance if we had not taken into consideration spatiotemporal
autocorrelations. Thus, comparing the cross-validation performance of the full models
under the four schemes, i.e., when data from also 2015 were used in the training, again
random cross-validation had superior performance (Figure S18). Given the previous vali-
dation exercise (Figure S17), we nevertheless know now that performance when predicting
new map data, such as for the suitability of 2055 map, would be similar to the non-random
cross-validation schemes, i.e., values around 0.63 for the measure of the Area Under the
ROC Curve (AUC). We chose as performance measure the Area under the Receiver Op-
erating Characteristic (ROC), which is the curve that relates the True Positive Rate and
False Positive Rate of a binary classifier across different discrimination thresholds, because
it takes into account the trade-off between sensitivity and specificity at the best-chosen
threshold, and it is comparable between different models and scenarios. A larger AUC to a
maximum of 1 denotes better performance, with the minimum of 0.5 denoting performance
not better than a randomly guessing model.

Thus, the Random Forest model was parameterised and fitted on a balanced subset of
the whole dataset, i.e., a training dataset of n randomly selected observations. Specifically,
for any combination of LUC type, site, and year, the minimum number of observations
was 92. Hence, we randomly selected 92 observations from each combination, leading to a
training set with n = 92 × 5 × 5 × 4 = 9200 observations. With the R package “caret” [47],
hyperparameters were fine-tuned by the leave-location-time-out cross-validation scheme.
We tried the different combinations of split rule (“gini” or “extratrees”) and number of
randomly selected predictors at each split (two; half or all of the variables), choosing the
combination which maximised performance in terms of the AUC. The hyperparameter
for the minimum number of observations in the terminal nodes of individual trees was
fixed and equal to one. Finally, the trees count was fixed at 1000, since it is not necessary to
fine-tune it [48].



Land 2023, 12, 253 9 of 23

A relationship between LUC type occurrence and a predictor was investigated with
the predictor’s average of individual marginal effects [49]. An individual effect for a
predictor’s value was the Random Forest-predicted value of the response when the other
predictors could take one of their n value combinations in the training data. Thus, for the
range of a predictor’s values, a partial dependence plot presented the LOESS of the average
among the n individual effect curves. We furthermore inspected a sample of the n curves,
to confirm the plausibility of the average curve (Figure S19). Only the predictors with the
most representative average curves were chosen for display. We produced the data for the
plots with the R package “pdp” [50].

2.3.3. Allocation of Demand

As said previously, we used a variant of the CLUE-S model [36], the trans-CLUE-S [39].
Their main difference is that trans-CLUE-S requires demand at the level of LUC type
transitions from the previous to the next map (all entries from a transition matrix), whereas
its parental CLUE-S requires demand at the level of LUC type total cover in the next map
(only the column sums of the transition matrix). Additionally, both models require the
suitability matrix as input, where each matrix entry contains the probability (suitability) of
the cell at the row for the LUC type at the column. The basic CLUE-S allocation algorithm
assigns to each cell the LUC type with the highest suitability. If the number of cells assigned
to a LUC type deviates from the LUC type’s demanded total cover, then the algorithm
iteratively alters the suitability of all cells for that type, scaling this alteration proportionally
to the deviation. The iterative alteration of suitability stops when demand is satisfied to a
desired deviation distance for all LUC types. The trans-CLUE-S essentially runs a CLUE-S
allocation, but within each LUC type separately, instead of the entire landscape. That is,
the simulation concentrates on the cells which were of a focal LUC type in the previous
map. The demand for a focal LUC type in the next map is taken from the LUC type’s row
in the transition matrix. It then knows how many cells will persist (the row’s entry at the
main diagonal), and how many cells will turn to other LUC types (off-diagonal entries). As
in CLUE-S, it alters iteratively the suitability of the deviated LUC types until demand is
satisfied to a desired deviation for the focal LUC type. The same routine is executed for
the cells of the other LUC types in the previous map. Another work is dedicated to the
description and testing of the trans-CLUE-S model [39].

To fully meet the specified demand, we appended to the trans-CLUE-S allocation
routine the sub-routine of the college admissions problem, which has been shown to
facilitate and speed up the convergence of the allocation [39]. Additionally, we did not
incorporate any CLUE-S model constraints in the five transition rules, or in the elasticity
settings. Regarding the five transition rules, we did not prevent any cell’s LUC type
from changing: (1) completely throughout space and time; (2) if it has not persisted for
a minimum number of time steps; (3) if it has changed for a maximum number of steps;
(4) outside the LUC type’s defined spatial neighbourhood; and (5) in specific localities
throughout time. For elasticity, no LUC type was more elastic to change than others.

We validated the trans-CLUE-S model’s predictions against the observed map of 2015,
after calibrating it with data from years 1945, 1970 and 1996, using as demand the following
four cases: (1) the actual, observed transition matrix of the 1996–2015 period; (2) no demand;
(3) business-as-usual from the 1970–1996 to the 1996–2015 period; and (4) business-as-usual
but with intensive farming persisting. The first case was expected to deliver the best
predictions, since the actual demand was used, without any demand estimation error
involved. The model’s performance in the following three cases, then, would be lower in
relation to error originating mainly from the demand component. The three last cases had
equivalent settings as described about the demand scenarios for predicting LUC in 2055,
but they were calibrated without the use of data from year 2015. The same applies also
for the suitability model, which was parameterized with data from years 1945, 1970 and
1996. The validation procedure showed that the predictions under the estimated demand
scenarios had a decrease of around 7% in performance, in comparison to the predictions
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with the actual demand (Figure S20). Specifically, predicting the year 2015 with the observed
demand resulted in an AUC = 0.73 and to identical LUC to the observed 2015 map in 73%
of the predicted map, whereas under the estimated demand scenarios the AUC = 0.7 and
the match was 63–65% of the predicted map. Under no demand, the mere suitability map
predicted for 2015 had an AUC = 0.62 and a 35% match. This worst performance, which was
found under the no-demand scenario, demonstrated the usefulness of the trans-CLUE-S
model’s allocation of demand for delivering LUC predictions of 80% increased accuracy
from a mere suitability map which omits any demand information.

2.4. Comparisons between Climatic Scenarios

We compared the predictions between two climatic scenarios under the same demand
scenario in two ways. First, by calculating the percentage of the cells in the two com-
pared maps which had different LUC allocated. Second, by comparing the biophysical
and socioeconomic characteristics of LUC occurrence at these different parts of the two
compared maps.

For the difference in allocation between climatic scenarios, we merely calculated the
proportion of cells with different LUC. As a reference to this comparison, we additionally
calculated the theoretical least and greatest differences that would be possible for the
given demand scenario of LUC transitions. We adopted a simple approach that quantifies
these lower and upper bounds of differences due to spatial allocation with J LUC types,
given all possible transitions of LUC type i to j between two demand scenarios, Aij and
Bij [51]. Since we only compared climatic scenarios under the same demand scenario
A, the least possible difference L is 100% minus the greatest possible agreement which
was 100%: L = 100 − ∑J

i=1 ∑J
j=1 min(Aij, Aij) = 100 − ∑J

i=1 ∑J
j=1 Aij = 100 − 100 = 0.

The greatest possible difference G was 100% minus the least possible agreement: G =

100 − ∑J
i=1 ∑J

j=1 max(0, 2Aij − ∑J
j=1 Aij).

For the difference in LUC-type occurrence between climatic scenarios, we focused
on the parts of the two compared maps that differed in LUC between the two extreme
scenarios SSP-SUST and SSP-FUEL. For each LUC type, we then compared the distributions
of suitability predictors in those cells covered by that LUC type in the two compared maps.
Specifically, we compared the distributions of the predictors which were fixed in time and
were found to be important in the classification of a cell’s LUC type: elevation, slope, north-
ness, population density, livestock density and settlement proximity. Due to outliers in the
distributions, we statistically compared the median of the two distributions of a predictor
from the two different climatic scenarios with the Wilcoxon signed-rank test. Additionally,
we ran a Multiple Factor Analysis (MFA), to explore possible relationships between all
LUC types, predictors and demand scenarios with the R package “FactoMineR” [52]. In
the MFA, LUC types were assumed to be the individuals, and the same predictor from the
different demand scenarios formed a set of variables. The quantitative value characterising
an individual LUC type of a demand scenario was the Wilcoxon test’s estimated difference
in the median of a predictor’s distribution under the climatic scenario SSP-FUEL minus its
median under the SSP-SUST. Hence, a positive difference implied that the cells covered by
that LUC type had higher values in the least optimistic scenario under a specific demand
scenario. We enquired the biplot showing on the first two dimensions of the MFA both the
position of the LUC types and the predictor centroids among the demand scenarios (the
MFA produced four vectors per predictor, one for each demand scenario). The predictor
vectors were rescaled for plotting purposes, i.e., they had a different unit of measurement
than the LUC types on the MFA space; hence, only their direction mattered for the interpre-
tation of the MFA. Specifically, the more a LUC type was positioned to the direction of a
predictor, the higher the predictor’s median was under the least optimistic SSP-FUEL in
comparison to SSP-SUST.
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3. Results
3.1. Demand Scenarios

The scenario of no demand for the 2015–2055 LUC transitions was the only scenario in
which the 2055 relative cover of the LUC types could freely vary between climatic scenarios
because there were no requirements for specific relative cover or land type transitions in
the 2015–2055 period. Under no demand, thus, relative cover varied but less than 2% of the
map for any LUC type between climatic scenarios (Figure 3A–C). Specifically, the greatest
difference between climatic scenarios was for farmland, which was predicted suitable in
10.8% of the map under the most optimistic scenario SSP-SUST (Figure 3A), while farmland
suitability was 12.7% and 12.5% under the less optimistic scenarios SSP-RIVAL and SSP-
FUEL (Figure 3B,C). In general, the predicted LUC type relative covers of SSP-RIVAL and
SSP-FUEL were more similar than between any of them and the SSP-SUST. The major
transition towards the 2055 relative cover was of forest becoming scrubland (15.9% on
average among climatic scenarios), grassland (11.6%) and farmland (3.1%), in order of
decreasing percentage of the map, leaving forest in the 31% of the map (Figure. 3A–C). A
similar grassland cover of 3.5% transitioned to farmland as well.

Figure 3. The LUC type cover and transitions over the 2015–2055 prediction period. The bars show the
cover of each LUC type. The flows show the LUC transitions during the: (A) most optimistic climatic
scenario with no pre-specified demand in 2015–2055 LUC transitions; (B) intermediate climatic
scenario with no demand; (C) least-optimistic climatic scenario with no demand; (D) business-as-
usual pre-specified demand from 1996–2015 to 2015–2055; (E) business-as-usual pre-specified demand
but with the 2015 intensive farming preserved; and (F) pre-specified inverse transitioning to 1970
which had characteristics of extensive farming.
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In the business-as-usual scenario for demand, the farmland’s dramatic decrease from
the 1996–2015 interval continued until 2055, resulting in a farmland relative cover of 0.4%
in 2055 from 3.2% in 2015 (Figure 3D). Forest kept increasing as the LUC type with the
largest share, estimated to cover 79% of the map by 2055, covering 62.6% in 2015. Farmland
lost most of its cover to grassland (1.4%), whereas forest gained mainly from closed-scrub
(8.6%), grassland (5.3%) and open-scrub (5%), in order of decreasing percentage of the
map. Most of the LUC types transitioned to the direction of progressive succession, and
the largest transition towards retrogressive succession was forest becoming closed-scrub in
1.4% of the map.

The other two demand scenarios were respectively similar to the two described
previously. On the one hand, the scenario of preserving the intensive farmland of 2015
was the same as the business-as-usual, with the exception that 2.6% of the map persisted
as farmland, instead of the only 0.2% persisting under business-as-usual (Figure 3E). On
the other hand, the scenario of inverse transition to the 1970s relative cover of LUC types
was similar to the no-demand scenario in which LUC types were allocated only according
to environmental suitability. In specific, no LUC type transition differed more than 5% of
the map between these two demand scenarios, with half of them less than 1% (Figure 3F).
Thus, the relative cover of the LUC types in 1970 was similar to what was predicted for
2055 only on the basis of environmental suitability, with the exception of the greater cover
of farmland at the expense of forest.

3.2. Allocation of Demand

Slope was the most important environmental factor of the Random Forest model
for classifying a cell’s LUC type based on its environmental conditions, and hence, for
estimating LUC type suitability, which was used for demand allocation by the trans-CLUE-
S model (Figure 4). Aside from variable importance, slope also had the greatest effect on
LUC type suitability, i.e., leading to the greatest variation in the predicted probabilities
of LUC type occurrence. In specific, suitability for farmland was decreasing for slopes
up to 30◦, whereas this effect was weaker and even positive for LUC types further in the
sequence of vegetation succession (Figure 4A). A similar but smaller effect on farmland
suitability had the elevation up to 750 m, with the rest of LUC types increasing their
occurrence slightly (Figure 4B). Livestock had the opposite effect, increasing the suitability
for farmland in densities of up to 300 animals km−2, with this effect being weaker and
even negative for more progressed vegetation types (Figure 4C). Other environmental
factors with considerable effect were settlement proximity, northness, and human density,
which all affected mostly forest and grassland in opposite directions for each variable
(Figure 4D,F,J). Finally, all four bioclimatic variables were included in the top 10 most
important variables, with annual mean temperature related positively with farmland and
forest but negatively with the other LUC types (Figure 4E), and with annual precipitation
and its seasonality, respectively related negatively and positively with farmland occurrence
mainly (Figure 4G,H).

3.3. Difference in Allocation between Climatic Scenarios

With the trans-CLUE-S model’s accuracy estimated to 63–65% in our validation tests
(Figure S20), the pairs of maps predicted under two different climatic scenarios differed
in less than 10% of their total area for any demand scenario (Figure 5). For any demand
scenario, differences in allocation were greater for the comparisons between SSP-SUST
versus SSP-RIVAL or SSP-FUEL, than for the SSP-RIVAL versus SSP-FUEL comparison.
Between demand scenarios, differences were smaller for the demand scenarios of business-
as-usual and of as-usual with persistent intensive farming since 2015 (Figure 5B,D). Taking
into account the theoretical upper boundaries of the differences though (dotted lines in
Figure 5), the differences in the predicted maps were similar across demand scenarios:
close to 11% of the upper boundary in the comparisons between SSP-SUST versus SSP-
RIVAL or SSP-FUEL; and close to 4% of the boundary for the SSP-RIVAL versus SSP-FUEL
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comparisons. The upper boundaries were lower for the two demand scenarios of business-
as-usual and of as-usual with intensive farming because they had greater LUC transitions
and persistence in the 2015–2055 interval (Figure 3D,E) in comparison to the other scenarios
(Figure 3A–C,F). Thus, these two demand scenarios limited the possibility for a wider range
of spatial configurations.

Figure 4. Mean marginal effects of the top 10 predictors ordered in decreasing importance for LUC
type classification by the Random Forest model (panels (A–J)). For comparability, the curves are
centred to the mean prediction for the left-most, minimum value of each predictor. The vertical marks
under the horizontal line show the predictor’s values in the training. If a predictor took different
values in different years, the vertical marks are stacked in four rows, each row for a year, 1945 to 2015
from top to bottom.

Such small differences in the allocation of demand could be roughly identified visually
on the maps from the different climatic scenarios (e.g., see Figure 6 for the business-as-usual
demand scenario). Since slope was the most important factor for allocating demand to
any predicted map by the trans-CLUE-S model (Figure 4), we can focus on map parts with
steeper slopes (Figure 1). For example, the most northern part of site 1, which was covered
by large and contiguous patches of closed-scrub and open-scrub in 2015 (Figure 6A), was
predicted to be covered mainly by forest and small remnants of open-scrub and closed-
scrub in 2055 by any climatic scenario (Figure 6B–D). Nevertheless, a closer look reveals
that the less optimistic a climatic scenario was, the more the area that the forest covered at
the expense of open-scrub and closed-scrub. Similar encroachment of closed-scrub by forest
under less optimistic climatic scenarios can be seen in the steeper slopes of the mountain
side west of site 5 (Figure 6B–D).
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Figure 5. Percent of the map cells that had different LUC in two predicted maps of 2055 under
two climatic scenarios, and for any of the following four scenarios of demand in 2015–2055 LUC
transitions: (A) no pre-specified demand; (B) business-as-usual pre-specified demand; (C) as-usual,
but with the 2015 intensive farming preserved; and (D) inverse transitioning to 1970, which had
characteristics of extensive farming. The three climatic scenarios were the SSP-SUST, SSP-RIVAL and
SSP-FUEL, from the more to the less optimistic one. The horizontal dashed and dotted lines indicate
the respective lower and upper bounds which are the theoretically least and greatest differences
that the two compared maps can have for the occurred 2015–2055 LUC transitions of the specific
demand scenario.

3.4. Difference in LUC Type Occurrence between Climatic Scenarios

Since the largest of the otherwise small differences between maps predicted under
different climatic scenarios were between the most optimistic SSP-SUST and the less
optimistic SSP-RIVAL or SSP-FUEL (Figure 5), we limited our further investigation to
comparisons between the extreme climatic scenarios SSP-SUST and SSP-FUEL. Regarding
slope again, which was the most important factor for allocating demand to any predicted
map by the trans-CLUE-S model (Figure 4), we focused on its values at the map cells which
had different LUC between the maps predicted by SSP-SUST and SSP-FUEL. Confirming
the previous visual observations (Figure 6), the slope in such map cells covered by forest
and closed-scrub exhibited consistent trends across all demand scenarios (Figure 7). In
specific, forest under SSP-FUEL was predicted in cells with significantly steeper slope than
forest under SSP-SUST, whereas closed-scrub was predicted in cells with significantly less
steep slope (p ≤ 10−3; Wilcoxon test). The rest of LUC types exhibited less consistent trends
in the slope of the map cells they were predicted to cover. We carried out similar tests for
other environmental predictors (Figures S21–S25).
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Figure 6. Future LUC predictions for the three climatic scenarios under the business-as-usual demand
scenario. For reference, we provide the map of the year 2015 (A). The three climatic scenarios were
the SSP-SUST (B), SSP-RIVAL (C) and SSP-FUEL (D), from the most to the least optimistic one. The
five study sites of 6 km diameter are numbered as in Figure 1, maintaining the same orientation
vertically towards north.
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Figure 7. Slope of LUC type at the map cells which differed in the prediction of LUC between
the most optimistic (SSP-SUST) and most pessimistic (SSP-FUEL) climatic scenario, under each
of the following four scenarios of demand in 2015–2055 LUC transitions: (A) no pre-specified
demand; (B) as-usual from 1996–2015 to 2015–2055; (C) as-usual, but with the 2015 intensive farming
preserved; and (D) inverse transitioning to 1970 which had characteristics of extensive farming.
Inequality symbols above the boxplots indicate statistically significant difference in the median slope
by Wilcoxon test between scenarios. In specific, four inequality symbols were used for p-value ≤
10−4, three symbols for p ≤ 10−3, two for p ≤ 0.01, one for p ≤ 0.05, and no symbol for p > 0.05 level
of statistical significance.

We finally summarised similar trends under all four demand scenarios with the MFA
for not only slope, but for all six environmental predictors which were fixed in time, and
which were the most important for the suitabillity allocation of demand (Figure 4). The
first two dimensions of the MFA retained 74.3% of the total variance (Figure 8). A closer
distance between a LUC type and an environmental predictor on the factor map meant that
the LUC type was predicted at map cells with higher values of the environmental factor
under the climatically less optimistic SSP-FUEL scenario. The first MFA axis was more
strongly related to the remoteness of the map cells from settlements, and with population
density. In specific, farmland was predicted in more remote areas under SSP-FUEL, whereas
grassland and open-scrub were predicted closer to settlements but in municipal districts
with lower population density under this least optimistic climatic scenario than under the
most optimistic one. The second MFA dimension was more related to slope, elevation,
northness and livestock density. In specific, forest was similarly to slope predicted in higher
elevation and northness, whereas closed-scrub was predicted in lower values of these three
predictors, but in municipal districts with higher livestock density (Figure 8).
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Figure 8. The change in LUC type conditions when moving from the most (SSP-SUST) to the least
(SSP-FUEL) optimistic climatic scenario. In this factor map from the MFA, a more similar direction
between a LUC type and an environmental predictor means that the LUC type was predicted at map
cells with higher values of the environmental factor under the least optimistic climatic scenario. The
MFA regarded only the map cells which differed in the prediction of LUC between the most and
least optimistic climatic scenarios. We employed the six environmental factors which were fixed in
time and the most important in the spatial allocation of demand. The MFA took into account all
four scenarios of demand in the 2015–2055 LUC transitions, grouping the same environmental factor
across the demand scenarios (i.e., six sets of four variables). The factor map’s axes provide the percent
of variance retained by the first two dimensions of the MFA.

4. Discussion

The aim of the present study was the investigation of climatic effects on the future
LUC of a typical mountainous area of the Mediterranean. We found that climate change
played a minor role in the predictions of the LUC demand, and of its spatial allocation
to the 2055 maps. In specific, under no limitation of demand in LUC transitions, no LUC
type transition differed by more than 2% of the map between climatic scenarios. Under
the business-as-usual demand scenario, farmland nearly disappeared, and forest further
expanded. Additionally, pairs of maps predicted under two different climatic scenarios
differed in less than 10% of the maps for any demand scenario. Nevertheless, we found
statistically significant environmental differences in the spatial allocation of the LUC in
the less than 10% that differed, such as the spatial shift of farmland and forest to higher
elevation under such a warmer and drier climate. We discuss our findings in the context
of anticipated changes in climate and LUC at the Mediterranean mountains during the
21st century.

To address the fullest possible range of climatic scenarios, we employed Shared So-
cioeconomic Pathways from sustainability (SSP-SUST) to regional rivalry (SSP-RIVAL) to
fossil-fuelled development (SSP-FUEL) [29]. We employed the bioclimatic variables of
annual mean temperature, temperature seasonality, annual precipitation and precipitation
seasonality (Figure 4). These variables have been investigated in climate projections for
mountainous regions and for the 2055 horizon we studied, especially the annual mean
temperature and annual precipitation [8]. The values of the latter two variables that we
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downscaled from the Chelsa dataset of 1 km resolution to our 25 m raster data are close to
the ones reported for Mediterranean mountains in 2055 under the extreme scenarios [8].
In specific, the latter authors found that under their most and least optimistic scenarios,
the expected warming rates were, respectively +2.3 ◦C and +3.2 ◦C for the 1970s–2050s
period, in comparison to our rates of +1.8 ◦C and +3 ◦C under SSP-SUST and SSP-FUEL,
respectively. For this period, their estimated change in the annual precipitation in Mediter-
ranean mountains under the most and least optimistic scenarios was, respectively −2% and
−5.9% [8], in comparison to the −3.1% and −8.9% from our dataset. These changes in tem-
perature and precipitation, even under the most optimistic scenario, are commonly larger
than the ones reported in lowland regions of mid-latitudes around the globe, especially
regarding temperature [53]. We hence expected that climate could have a strong effect on
the predictions of LUC in our study area.

Nevertheless, pairs of climatic scenarios resulted in a less than 10% of predicted
maps having different LUC, which was around 11% of the greatest possible differences
given their common demand scenario (Figure 5). Similarly, previous simulation models
showed that climate has a smaller effect than LUC on the prediction of the broad habitat
types employed therein, and which are similar to our study’s LUC types [11]. In terms of
indicators (of LUC, biodiversity, and ecosystem services), comparisons between projection
models have also shown similar values between different climatic scenarios but under
the same socioeconomic conditions, similar to our study’s setting of comparing climatic
scenarios under the same demand scenario [54]. Besides future projections, climate has been
shown to historically have a smaller effect than LUC on the forest encroachment process
of forest–pasture ecotones at the treeline of Mediterranean mountains [19]. The technical
reason for the smaller climatic effect in our study appeared to be the lower importance that
the four bioclimatic variables had in the suitability of the cells to the different LUC types
by the Random Forest model (Figure 4). Lower importance resulted in smaller changes
in LUC suitability under different climatic scenarios, since only the values of the four
bioclimatic variables changed between two compared climatic scenarios. In particular,
farmland occurrence was the LUC type with the greatest influence with these variables.
This result can be related to the larger contribution of farmland to the first dimension of
the MFA (Figure 8). Additionally, it can explain why farmland relative cover exhibited the
greatest differences between climatic scenarios under the no demand scenario (Figure 3).
This scenario was important for our comparisons, because it was the only scenario in which
LUC demand was free to vary between climatic scenarios, to uncover any unconstrained
effect of climate on LUC predictions.

Besides the no demand scenario, the other demand scenarios facilitated the more
controlled investigation of climate’s effect on LUC. The specification of demand before the
simulation of future LUC is a characteristic of many LUC models like the one employed
herein [37]. Other models are cross-sectoral, without the beforehand specification of
demand, but with the integration of interactions between socioeconomic factors which are
climate-related, such as wood and irrigation demand [54,55]. Such models have been shown
to return safer predictions of LUC than simpler models like trans-CLUE-S. Nevertheless,
demand for the future LUC in models similar to trans-CLUE-S is estimated by the projection
of the transition matrix from a previous time interval, of relevant time series, or of economic
models [37,56,57]. This feature of pre-specification of demand in such spatial models can
be convenient for studies of small spatial scales as of our study. One reason is that it
reduces the model’s complexity, the data requirements especially from data-poor regions,
and the computational resources. Furthermore, effects of socioeconomic sectors acting
in a broader scale which can impact LUC at the local scale are implicitly included via
the recent trend projection that leads to the estimation of demand. In that way, climate-
related socioeconomic sectors such as wood and irrigation demand are implicitly taken
into account via the demand scenario, instead of explicitly formulating them as part of the
model [37,58].
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Such an example is our demand scenario of business-as-usual which predicted further
farmland abandonment and forest expansion before simulating the spatial allocation of
this change (Figure 3D). Similar abandonment trends have been predicted by models inte-
grating different socioeconomic sectors explicitly into their allocation simulations, without
pre-specified demand, relating abandonment to decreases in the productivity and prof-
itability of the agricultural sector due to climate-related heat and drought increases [54,55].
Interestingly, predictions of abandonment and extensification in southern Europe have
been robust among different types of models, and different factors incorporated in the
models [15,54,55,59]. In our study, the 2015–2055 transition demands, such as in the
business-as-usual scenario, were projections of the 1996–2015 period, during which an
acceleration of farmland abandonment was identified, together with a subsequent increase
in the rates of secondary succession [20]. This acceleration of abandonment was related to a
significantly higher decrease of the population and livestock densities in the municipalities
during that period, in comparison to previous periods. Socioeconomically, the declines
in population and livestock can be interpreted as the echo of the mistargeted policies for
low-intensity farming during the 1970–1996 previous period [21], and as a result of the
financial crisis of the 1996–2015 period [60].

With a plausible demand scenario determined before the simulation, any effects of
climate on the spatial allocation of demand were expected to be more easily highlighted.
Although the maps between different climatic scenarios under the same demand scenario
were identical in more than 90% of their area, there were significant differences in the
occurrence of LUC types in the remaining 10% that approximately differed. As already
mentioned, this lower effect of climate on LUC can be technically related to the lower
importance that the bioclimatic variables had in the Random Forest sub-model of suitability
(Figure 4). A lower relative importance meant that different values of the four bioclimatic
variables, which were the only variables that changed between climatic scenarios, resulted
in smaller suitability changes, and hence to fewer differences in the suitability-based,
spatial allocation of the same demand. In less optimistic scenarios for climate, annual
mean temperature and temperature seasonality overall increased in our data, whereas
annual precipitation and precipitation seasonality decreased (Figure S2). According to the
suitability model, an increase in temperature and its seasonality were related to increased
suitability for farmland and forest, and a decreased suitability for grassland and scrubland
(Figure 4E,I); the decreases in precipitation and its seasonality were related to a respective
decrease and increase in mainly farmland suitability (Figure 4G,H). Given that among
these four bioclimatic variables, mainly annual mean temperature correlated positively and
annual precipitation correlated negatively with elevation (Figure S15), we can relate the
climate-related changes in suitability with elevation-related positions on the predicted maps
for convenience, to more clearly interpret the MFA biplot which constituted a summary of
our results (Figure 8).

The first dimension of the MFA could be related more to farmland, grassland and open
scrub from the LUC types, and mainly with remoteness from the suitability predictors to
the direction of these LUC types. In specific, farmland was predicted to spatially shift away
from settlements under the least optimistic scenario, whereas grassland and open-scrub
came closer. Since farmland suitability could increase with the increase in temperature
and the decrease in precipitation (Figure 4E,G), this could mainly occur in higher elevation
where distances to nearest settlements are greater (Figure S15), because temperature and
precipitation were, respectively, higher and lower in lower elevation already. The spatial
shift could be inferred because, under the same demand scenario, each LUC type must
occupy the same proportion in the area with different LUC between two maps predicted
under different climatic scenarios. Thus, any differences in LUC must be due to spatial
shift and swapping [61].

The second dimension of the MFA could be more related to forest and closed-scrub
from the LUC types, and with the predictors of elevation, slope, northness and livestock
density. Under a warmer and drier climate, forest was predicted to move at higher elevation,
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slope, and to be more northern facing (Figure 8). Technically, these results are related to the
higher probability of forest occurrence under these conditions, according to the suitability
model (Figure 4A–C,F). An exception is elevation, for which forest occurrence was almost
equiprobable across the elevation range, according to the suitability model (Figure 4B).
Nevertheless, the trans-CLUE-S model was forced to spatially allocate more forest in
higher elevation, showcasing that not only suitability, but also the competition between
LUC types in the demand can determine spatial allocation [36]. The relocation of forest
to sites with higher elevation and steeper slopes, as well as with more northern facing
under a warmer and drier climate can be related to two aspects. On the one hand, forest
retraction can be related to the vulnerability of lower elevation, milder slopes and less
northern facing to moisture shortage, which has been shown to lead to decreased rates
of secondary succession [62], and of tree growth [63], with closed-scrub taking the place,
being more adapted to such conditions. On the other hand, the rising temperatures enable
forest expansion in sites which were previously less suitable [64,65]. Nevertheless, it is
advised that such forest transitions have to be interpreted in the context of LUC change
in the Mediterranean mountains, since the anthropogenic abandonment of farmland and
grassland has played a more important role in the shaping of the landscape [66,67]. The
less than 10% difference in the maps between climatic scenarios demonstrated this concept
in our study area.

5. Conclusions

The present study predicted that forest will further expand at the expense of the other
LUC types in the landscape of a sub-mountainous area with characteristics similar to other
Mediterranean areas. According to the demand scenarios estimated for the future, the
primary role in shaping LUC was played by the abandonment of farmland and grassland.
Secondarily, climate change was demonstrated to cause only minor shifts in the landscape,
that is, with the shift of farmland and forest to higher elevation under a warmer and drier
climate, and the shift of grassland and scrubland to lower elevation. These results indicate
a strong potential for mitigation measures, given the influence of land abandonment and
socioeconomic demands primarily, and climatic changes secondarily, with all three leading
to rapid and relocating LUC change, both in the past [20], and in the future as shown herein.

The mitigation measures can be based in two insights provided by the present study.
First, since land abandonment was found to be a stronger driver of LUC change than
climate, mitigation measures would target in shaping LUC-related socioeconomic and
political factors in favour of abandonment mitigation and even reversal, which can be
more feasible than shaping climate-related factors. Second, moving from the broad types
of LUC to the species level, the patterns, rates and predictors of LUC change can inform
Species Distribution Models, for more accurate projections of future biodiversity in these
ecologically and culturally characteristic but endangered landscapes of the Mediterranean.

Future studies can directly apply the present study’s methodology for projections
further to the future, i.e., to the 2071–2100 period for which climate projections are available
in the CHELSAfuture dataset. It is expected that the uncertainty of the LUC projections will
be higher in comparison to the 2055 horizon due to error propagation; hence, an appropriate
method would be required for the estimation of the least and greatest differences possi-
ble [51]. Moreover, the LUC projections could be improved by additional socioeconomic
data, e.g., from field sociological studies at the household level, in comparison to the munic-
ipality level of the present study. In a local context, different socioeconomic drivers could
influence synergistically the projected LUC trajectories, which could be further aggregated
in a broader context [68]. Conversely, socioeconomic drivers from a broader context, such
as wood and irrigation demand, could increase the accuracy of spatial models, impacting
LUC at the local scale of interest [54].
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