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Abstract: Climate and topography are influential variables in the autumn senescence of grassland
ecosystems. For instance, extreme weather can lead to earlier or later senescence than normal, while
higher altitudes often favor early grass senescence. However, to date, there is no comprehensive
understanding of key remote-sensing-derived environmental variables that influence the occurrence
of autumn grassland senescence, particularly in tropical and subtropical regions. Meanwhile, knowl-
edge of the relationship between autumn grass senescence and environmental variables is required
to aid the formulation of optimal rangeland management practices. Therefore, this study aimed to
examine the spatial autocorrelations between remotely sensed autumn grass senescence vis-a-vis
climatic and topographic variables in the subtropical grasslands. Sentinel 2′s Normalized Difference
NIR/Rededge Normalized Difference Red-Edge (NDRE) and the Chlorophyll Red-Edge (Chlred-
edge) indices were used as best proxies to explain the occurrence of autumn grassland senescence,
while monthly (i.e., March to June) estimates of the remotely sensed autumn grass senescence were
examined against their corresponding climatic and topographic factors using the Partial Least Square
Regression (PLSR), the Multiple Linear Regression (MLR), the Classification and Regression Trees
(CART), and the Random Forest Regression (RFR) models. The RFR model displayed a superior
performance on both proxies (i.e., RMSEs of 0.017, 0.012, 0.056, and 0.013, as well as R2s of 0.69,
0.71, 0.56, and 0.71 for the NDRE, with RMSEs and R2s 0.023, 0.018, 0.014 and 0.056, as well as 0.59,
0.60, 0.69, and 0.72 for the Chlred-edge in March, April, May, and June, respectively). Next, the
mean monthly values of the remotely sensed autumn grass senescence were separately tested for
significance against the average monthly climatic (i.e., minimum (Tmin) and maximum (Tmax) air
temperatures, rainfall, soil moisture, and solar radiation) and topographic (i.e., slope, aspect, and
elevation) factors to define the environmental drivers of autumn grassland senescence. Overall, the
results indicated that Tmax (p = 0.000 and 0.005 for the NDRE and the Chlred-edge, respectively),
Tmin (p = 0.021 and 0.041 for the NDRE and the Chlred-edge, respectively), and the soil moisture
(p = 0.031 and 0.040 for the NDRE and the Chlred-edge, respectively) were the most influential
autumn grass senescence drivers. Overall, these results have shown the role of remote sensing
techniques in assessing autumn grassland senescence along climatic and topographic gradients as
well as in determining key environmental drivers of this senescence in the study area

Keywords: autumn senescence; grass; climate; remotely sensed; topographic factors

1. Introduction

Climate and topography are key drivers of plant phenology in terrestrial environ-
ments [1–7]. Their variability often influences the occurrence, rate, and duration of key
phenological stages such as the autumn grassland ecosystem senescence. For instance, [6]
noted a variation in the start of grass senescence in the low-lying Inner Mongolian grass-
lands than the higher Qinghai-Tibetian Plateau. However, the extent and significance of
the overlaps between autumn grass senescence and environmental factors such as climate
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and topography have not been established, especially from a remote sensing point of
view. Meanwhile, understanding the relationship between autumn grass senescence and
environmental variables is vital, given that senescence markedly decreases photosynthetic
activities and plant productivity [8], which, in turn, affects forage quality, production, and
availability. Lwando Royimani et al. [9] also noted that senescence can either extend or
reduce the floral species growing season with serious implications on forage productivity.
In addition, studies [9–11] have noted the socioeconomic and ecological impact of grassland
senescence including their regulatory role in the climate–biosphere interactions and poten-
tial contribution to land degradation [6]. Given the importance of rangelands and livestock
farming for subsistence and commercial purposes, particularly in the developing world [2],
knowledge on the implications of senescence on forage productivity in response to climatic
and topographic gradients is increasingly becoming a need. This information is required
to monitor the impact of autumn senescence on forage productivity [12], hence guiding
planning and decision-making on, among others, grazing patterns and stock densities.

Useful assessment of the links between the occurrence of autumn grassland senescence
and environmental variables at a landscape-scale requires repeated observations acquired
at extensive spatial extents. However, the commonly used methods for assessing plant
senescence, such as visual scoring, which monitors changes in leaf color and fall [11], do
not effectively satisfy these requirements. Furthermore, these methods are generally not
objective and suffer from the time lag effect [13]. Contrarily, remote sensing techniques offer
repeated synoptic viewing of the Earth’s surface [14–16], which may benefit the assessment
of the spatial autocorrelations between grass senescence and environmental factors during
the autumn season. Although many studies have examined plant senescence dynamics
based on remote sensing techniques [13,17,18], few have focused on the interactions be-
tween autumn senescence and environmental parameters. For instance, [6] assessed the
impact of temperature, insolation, and precipitation during the dormancy stage on China’s
temperate biomes using the Normalized Difference Vegetation Index (NDVI) derived over
a 30-year period (1981–2011) from the Global Inventory Modeling and Mapping Studies
(GIMMS). Their findings showed that temperature is a decisive factor to the end of the
growing season. However, the study was generalized across biomes; hence, it did not
offer an opportunity for a greater understanding of the autumn-senescence-environmental
factors relationship in grassland environments, particularly in the subtropical regions.

In addressing this knowledge gap, the current study examines the spatial autocorrela-
tions between remotely sensed autumn grass senescence and environmental parameters
(i.e., climatic and topographic factors) in the subtropical sour-veld grasslands of the Mid-
lands region, KwaZulu-Natal, South Africa, where autumn senescence is a key factor of
forage productivity [9]. Such information is critical to ascertain the understanding of the
dynamics around the occurrence of autumn grass senescence and to accurately determine
grass wilting for improved planning and decision-making on grazing patterns and overall
rangeland management. Specifically, a better understanding of the influence of environ-
mental factors on autumn grass senescence will help improve the projection of the onset
and duration of autumn grassland senescence, hence reliably determining the period of
low- and poor-quality forage for grazing while minimizing the subsequent impact on
livestock and wildlife. To achieve this aim, this study adopted two Sentinel-2-derived
vegetation indices (i.e., the Normalized Difference NIR/Rededge Normalized Difference
Red-Edge (NDRE) and the Chlorophyll Red-Edge (Chlred-edge)) that have been identified
as the best proxies for explaining the occurrence of autumn grassland senescence within
the study area [10]. Remotely sensed monthly (i.e., March to June) estimates of the au-
tumn grass senescence were assessed for sensitivity against their corresponding climatic
(i.e., minimum (Tmin) and maximum (Tmax) air temperatures, soil moisture, solar radiation,
and rainfall) and topographic (i.e., slope, aspect, and elevation) factors using the Partial
Least Squares Regression (PLSR), the Multiple Linear Regression (MLR), the Classification
and Regression Trees (CART), and the Random Forest Regression (RFR) models. Next,
monthly averages of the remotely sensed autumn grass senescence were tested against



Land 2023, 12, 183 3 of 14

monthly mean values of the climatic and topographic variables using Pearson’s product-
moment correlation approach to understand possible environmental drivers of the autumn
grass senescence. We hypothesized that the occurrence of autumn grass senescence in this
area can be explained by the dynamics in the micro-climatic and topographic gradients.

2. Materials and Methods
2.1. The Study Site

The study area is situated in Vulindlela, KwaZulu-Natal, South Africa (Figure 1). The
total size of the area is 112 km2 and is characterized by rigid terrain with an elevation
ranging between 1273 and 1412 m above sea level (m.a.s.l). The soils are generally loam
with random rocky surfaces. Average annual rainfall is around 900 mm [19,20] with
mean annual minimum and maximum air temperatures of 6 ◦C and 22 ◦C in winter and
summer, respectively. Vegetation is mesic subtropical grass, dominated by the Ngongoni
(Aristida junciformis) of the sour-veld, a mixture of non-native grass species and a random
distribution of wattle and pine [10]. Sour-veld grasses are reported to lose their quality
through senescence, thus significantly affecting their grazing importance [9]. In addition,
grasses in the study area are subjected to regular and uncontrolled livestock grazing
patterns, which may have serious implications on the forage. Moreover, irregular fire
occurrences are common, especially during the winter season when the grasses are dry due
to senescence, in turn affecting forage availability.
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2.2. Field Data Collection

A purposive sampling approach was used to establish 110 plots measuring about
10 m by 10 m and their center coordinates recorded. The plots were designed to provide a
representation of the topography of the study site, particularly with regard to the elevation,
aspect, and slope. For instance, some plots were created in low, middle, and high altitudinal
areas while considering the effect of south-, east-, west-, and north-facing slopes. Equally,
we considered the effect of the slope gradient whereby some plots were designed on steeper
while others on gentle slopes. Soil moisture content readings were collected monthly
within the plots using the ML3 ThetaProbe Soil Moisture Sensor between the 20 March and
30 June 2021. The ML3 ThetaProbe Soil Moisture Sensor measures soil moisture from
the Earth’s surface to the depth of 7 cm and the measurements are often expressed in
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percentage per volumetric water content (%/VWC) [21]. In this study, five measurements
were randomly taken within each plot and averaged to obtain a value for the plot, and the
points ultimately added up to 110 monthly values. Subsequently, we created four monthly
point maps of the soil moisture with the corresponding coordinate points for the months of
March, April, May, and June.

2.3. Remotely Sensed Autumn Grass Senescence

Two vegetation indices (i.e., the NDRE and the Chlred-edge), identified as the best
proxies in explaining the occurrence of autumn grassland senescence in this area, were
adopted [10]. These indices were derived from monthly Sentinel 2 images acquired using
the Copernicus Open Access Hub data repository between the 29 March and 25 June 2021.
Formulas for these indices are given in Equations (1) and (2). For detailed explanation on
the establishment and validation of the named indices, readers are directed to [10]. The
considered indices were derived on a monthly basis representing March, April, May, and
June 2021. In total, eight vegetation index maps were generated, with four monthly indices
generated using the NDRE and the Chlred-edge.

NRE = NIR − rededge/NIR + rededge (1)

where NIR is the Near-Infrared band and rededge is the red-edge (band).

Chlred-edge = (R0.705 − R0.740)/(R0.783 − R0.740) (2)

where R0.705 and R0.783 correspond to the boundary wavebands while R0.740 denotes the
center waveband of the red-edge section.

2.4. Climatic and Topographic Variables

Daily rainfall and minimum (Tmin) and maximum (Tmax) air temperature data for the
study area were acquired from the South African Weather Service (SAWS). The daily rainfall
and temperature values were aggregated to obtain monthly records. However, these data
were provided as point data for the city of Pietermaritzburg, hence being inadequate for
analysis. Therefore, additional monthly Tmin and Tmax and rainfall data were downloaded
from the KwaZulu-Natal Sugarcane Research Institute (KZN-SRI) website. Whereas the
KZN-SRI has many weather stations distributed throughout the province of KwaZulu-
Natal, we only used data from 22 stations that are surrounding the study site. The 22
weather stations are in a radius of 10 to 70 km from the central point of the study area
across the eastern, northern, southern, and western directions. Next, we interpolated the
combined KZN-SRI and SAWS data using the Inverse Difference Weighted (IDW) technique
in ArcGIS 10.7 to generate a comprehensive Tmin and Tmax as well as rainfall data for the
study site. Detailed descriptions of the topographic and climatic factors used are given in
Table 1.

Table 1. Topographic plus climatic variables used in this study.

Variable Units of Measurement Source

Topographic factors
Aspect Degrees North (◦N) ASTER DEM

Elevation Miters (m) ASTER DEM
Slope Degrees (◦) ASTER DEM

Climatic factor
Tmin Degrees Celsius (◦C) SAWS, KZN-SRI
Tmax Degrees Celsius (◦C) SAWS, KZN-SRI

Rainfall Millimeters (mm) SAWS, KZN-SRI
Radiation Watts Hours per square meter (Wh/m2) ASTER DEM

Note: ASTER = Advanced Spaceborne Thermal Emission and Reflection Radiometer, DEM = Digital Elevation Model.
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Aspect, slope, elevation, and radiation were derived from a 30 m Digital Elevation
Model (DEM) in ArcGIS. Specifically, aspect and slope were, respectively, calculated using
the aspect and slope functions under the surface tools in Spatial Analysis Tools, ArcGIS 10.7
(Environmental Systems Research Institute (ESRI), Johannesburg, South Africa). Similarly,
radiation was derived using the Area Solar Radiation extension found under surface tools
of the Spatial Analysis Tools, ArcGIS 10.7 (Environmental Systems Research Institute (ESRI),
Johannesburg, South Africa). Studies show that the application of modeled solar radiation
from the DEM is a widely accepted practice in ecological remote sensing [2,22–24].

2.5. Data Processing and Statistical Analysis

To ensure compatibility and consistency in all the monthly maps generated
(i.e., Sections 2.3 and 2.4), we applied the nearest-neighbor resampling approach in ArcGIS
10.7 based on the same resolution. We then overlaid all the monthly vegetation indices
plus topographic and climatic maps with their respective monthly point maps to extract
the corresponding monthly climatic, topographic, and remotely sensed autumn grass
senescence information. Although the total number of the corresponding sampling points
was 110, during data preparation, we discovered that 10 of those were outliers and were,
hence, discarded in the analysis. Ultimately, we generated four spreadsheets with the
monthly climatic and topographic information jointly with corresponding monthly soil
moisture contents and remotely sensed autumn grass senescence values. The four monthly
spreadsheets were further split into eight spreadsheets based on the vegetation index
(i.e., the NDRE or the Chlred-edge) as the predictor variable. The data were separately split
into 80 and 20 for calibration and validation, respectively, and imported into
R version 4.1.3 ([25] R Core Team) for further analysis (R Core Team, Vienna, Austria).
Four popular regression algorithms (i.e., the PLSR, MLR, RFR, and CART) were employed
in each monthly NDRE and Chlred-edge spreadsheet to test the association between the
remotely sensed autumn grass senescence and the climatic factors and topography. A
10-fold-cross validation approach was used at each stage of analysis to evaluate the model
performances based on the obtainable Root-Mean-Square Error (RMSE), the coefficient of
determination (R2), and the Mean Absolute Error (MAE).

2.6. Model Optimization and Identification of Key Environmental Determinants of Autumn
Grassland Senescence

According to the performance of the four popular algorithms employed in Section 2.5,
one superior model was identified using the RMSE, R2, and MAE. The model was identified
by averaging all the RMSEs, MAEs, and R2s obtained throughout the four months of
investigation. The model that yielded the lowest MAE and RMSE jointly with the highest
R2 was determined to be the best and was, hence, selected for the final prediction of
remotely sensed autumn grass senescence with climatic factors and topography. As the
superior algorithm, the RFR was adopted and eight final models were built to individually
relate the monthly remotely sensed autumn grass senescence values (i.e., NDRE and the
Chlred-edge) with their respective monthly climatic and topographic factors. These final
models were optimized by tuning their ntree, mtry, and nodesize values. ntrees ranged
between 300 and 1200, mtrys was between 2 and 16, while nodesizes was set to 1 throughout
the analysis. The final prediction results were judged based on the RMSEs and their R2s.
Next, we averaged all the monthly predictor (i.e., NDRE and the Chlred-edge) and response
(i.e., climatic and topographic) variables. The outcome was a set of two spreadsheets, first
with the NDRE and second with the Chlred-edge as predictors, along with their monthly
averages of topographic and climatic factors. Pearson’s product-moment correlation tests
were conducted in each set of the spreadsheet to determine the sensitivity of each climatic
and topographic factor to the remotely sensed autumn grass senescence. The significance
of each topographic or climatic variable in influencing the occurrence of autumn grassland
senescence was judged by the p-value (p ≤ 0.05).
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3. Results
3.1. Descriptive Statistics

Table 2 provides the descriptive statistics of the remotely sensed autumn grass senes-
cence plus climatic and topographic factors used in this study. Overall, the estimates
of autumn grassland senescence based on the NDRE increased with a decrease in the
Chlred-edge across the four-month period. In addition, there were no significant variations
between the NDRE and the Chlred-edge values of autumn grass senescence from March
to June. However, in March, the values of the NDVI705-based autumn grass senescence
were higher than those of the CHL-RED-EDGE-derived autumn grassland senescence. In
addition, monthly means of all the topographic factors (i.e., aspect, elevation, and slope)
did not show differences across the four-month period, while monthly means of the climatic
variables (i.e., Tmin and Tmax, soil moisture, rainfall, and solar radiation) showed notable
variations. Specifically, the means of the solar radiation, Tmin and Tmax, demonstrated con-
sistent declines throughout the four months, whereas the observable decreases in rainfall
and soil moisture from March to May were followed by an increase in June (Table 2).

Table 2. Descriptive statistics of the data gathered and retrieved for analysis.

Month Variable Min Max Mean Stdv

March

NDRE 0.248 0.532 0.396 0.057
Chlred-edge 0.239 0.519 0.357 0.058

Aspect 7.723 340.649 144.777 87.127
Elevation 1273 1412 1340 30.359

Slope 0.512 19.411 5.702 3.860
Tmax 25.5 25.85 25.65 0.131
Tmin 13.68 14.66 14.13 0.398

Radiation 22,878 232,161 150,843 65,496.12
Rainfall 69.44 87.65 79.39 7.095

Soil moisture 12.5 34.9 22.43 3.764

April

NDRE 0.182 0.477 0.346 0.051
Chlred-edge 0.266 0.562 0.390 0.056

Aspect 7.723 340.649 144.777 87.127
Elevation 1273 1412 1340 30.359

Slope 0.512 19.411 5.702 3.860
Tmax 24.51 25.08 24.78 0.217
Tmin 11.25 12.21 11.71 0.387

Radiation 20,736 256,029 138,918 75,657.96
Rainfall 58.5 64.74 62.04 2.137

Soil moisture 10.1 30.1 16.36 4.505

May

NDRE 0.108 0.291 0.223 0.034
Chlred-edge 0.266 0.562 0.390 0.049

Aspect 7.723 340.649 144.777 87.127
Elevation 1273 1412 1340 30.359

Slope 0.512 19.411 5.702 3.860
Tmax 22.2 22.85 22.51 0.262
Tmin 8.481 9.672 9.057 0.488

Radiation 19,653 304,608 137,763 87,583.85
Rainfall 13.86 15.25 14.64 0.401

Soil moisture 0.685 21.030 11.269 4.289

June

NDRE −0.004 0.203 0.113 0.050
Chlred-edge 0.522 1.076 0.666 0.111

Aspect 7.723 340.649 144.777 87.127
Elevation 1273 1412 1340 30.359

Slope 0.512 19.411 5.702 3.860
Tmax 20.43 21.14 20.77 0.283
Tmin 6.876 7.919 7.379 0.418

Radiation 22,430 303,014 131,301 89,098.69
Rainfall 30.46 37.7 34.34 2.862

Soil moisture 10.8 26.7 18.97 3.898
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3.2. Remotely Sensed Autumn Grass Senescence with Climatic and Topographic Variables

Based on the results from the preliminary analysis (Table 3), the prediction outputs
of the four popular regression models (i.e., the PLSR, MLR, CART, and the RFR) adopted
in the study were generally significant. Specifically, the RFR outperformed all the other
algorithms when using both the NDRE and the Chlred-edge as predictors throughout
the four months considered in this investigation. This was demonstrated by the low
RMSE and MAE with high R2. These results (Table 3) further indicated that the CART
was the second most important algorithm in the four months of analysis. On the other
hand, the performance of the PSLR was generally inferior throughout the various stages of
the analysis.

Table 3. Performance of the adopted algorithms based on the R2, MEA, and the RMSE.

Month Predictor
Variable Algorithm RMSE R2 MAE

March

NDRE

PLS 0.046 0.39 0.037
CART 0.042 0.47 0.033
MLR 0.041 0.46 0.032
RFR 0.039 0.50 0.031

Chlred-edge

PLS 0.053 0.38 0.042
CART 0.045 0.45 0.037
MLR 0.046 0.46 0.036
RFR 0.044 0.50 0.035

April

NDRE

PLS 0.038 0.35 0.031
CART 0.034 0.63 0.028
MLR 0.038 0.50 0.030
RFR 0.035 0.62 0.026

Chlred-edge

PLS 0.042 0.34 0.034
CART 0.041 0.42 0.031
MLR 0.043 0.42 0.034
RFR 0.041 0.55 0.032

May

NDRE

PLS 0.024 0.52 0.020
CART 0.024 0.50 0.018
MLR 0.026 0.49 0.021
RFR 0.022 0.53 0.017

Chlred-edge

PLS 0.043 0.30 0.033
CART 0.036 0.46 0.029
MLR 0.043 0.36 0.036
RFR 0.036 0.56 0.028

June

NDRE

PLS 0.041 0.36 0.033
CART 0.046 0.42 0.035
MLR 0.041 0.47 0.034
RFR 0.033 0.68 0.026

Chlred-edge

PLS 0.091 0.35 0.077
CART 0.082 0.53 0.060
MLR 0.101 0.33 0.078
RFR 0.081 0.60 0.058

Moreover, the averaged prediction outputs of the adopted algorithms across the four-
month period of the investigation maintained the findings presented in Table 3 that the RFR
was the most useful model in associating the remotely sensed autumn grass senescence
with climatic and topographic factors (Figure 2). A closer look at Figure 2a–c indicates that
the RFR is the only algorithm that had a low RMSE and MAE with a high R2 followed by
CART. On the contrary, the PLSR displayed inferior performance based on two of the three
model evaluation matrices (i.e., the R2 and the MAE).
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The final RFR models showed an improved explanation of the association between
the remotely sensed autumn grass senescence and topographic and climatic factors when
using both predictors across the four months considered (Table 4). For instance, when
using the NDRE and the climatic and topographic factors in March, the model yielded an
RMSE of 0.017 and an R2 of 0.69 while obtaining an RMSE and an R2 of 0.023 and 0.59,
respectively, when using the Chlred-edge. Likewise, the NDRE recorded an RMSE of 0.012
and an R2 of 0.71 in April, whereas the Chlred-edge produced an RMSE of 0.018 and R2 of
0.60. Similarly, both the NDRE and the Chlred-edge reported RMSEs and R2s of 0.056 and
0.014, as well as 0.56 and 0.69 in May, respectively. Moreover, the NDRE showed an RMSE
and R2 of 0.013 and 0.71, while the Chlred-edge obtained an RMSE of 0.056 and R2 of 0.72
in June, respectively. Important variables for the final prediction models are presented in
Figure 3. The predictive performance of each variable was assessed based on the obtainable
Out of Bag error rate, which increases with significance.

Table 4. Optimal RFR results for the relationships between remotely sensed grass senescence and
climatic factors and topography.

NDRE Chlred-Edge

Month RMSE R2 RMSE R2

March 0.017 0.69 0.023 0.59
April 0.012 0.71 0.018 0.60
May 0.056 0.56 0.014 0.69
June 0.013 0.71 0.056 0.72
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3.3. Climatic and Topographic Drivers of the Autumn Grassland Senescence

Using the monthly averages of the predictors (i.e., the NDRE and the Chlred-edge)
against the response variables (i.e., topographic and climatic variables), we identified
the key drivers influencing the occurrence of autumn grassland senescence (Table 5). In
general, our findings showed that only the climatic factors were sensitive to the occurrence
of autumn grassland senescence. Specifically, the Tmin and Tmax, jointly with soil moisture,
were identified as the most influential factors in the occurrence of autumn grass senescence,
as shown by their significance levels (p ≤ 0.05). Obtainable R2 values for the three climatic
factors that significantly influence the occurrence of autumn grass senescence were 1.00,
0.98, and 0.81 based on the NDRE and−1.00,−0.96, and−0.78 when using the Chlred-edge,
respectively. Conversely, even though they displayed good R2 values (i.e., between 0.76
and 0.93), the insignificant p-values (p ≥ 0.05) highlighted the poor contribution of these
other climatic variables in explaining the occurrence of autumn grass senescence in the
study area. With regard to the topographic factors, only the slope showed good R2 values
(i.e., −0.80 and 0.75 when using the NDRE and the Chlred-edge, respectively); otherwise,
they were all insignificant when considering the p-values (p ≥ 0.05). Table 5 shows the
contribution of environmental factors on autumn grassland senescence, with significant
variables in bold.

The sensitivity of the topographic and climatic factors in influencing the occurrence
of autumn grass senescence in the study area was further emphasized by the value of the
t-statistics, with higher values signifying the importance and vice versa.
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Table 5. Correlations between remotely sensed grass senescence and climatic factors and topography.
Influential variables are shown in bold.

Variable
NDRE Chlred-Edge

t-Statistics p-Value R2 t-Statistics p-Value R2

Topographic factors
Aspect −0.597 0.611 −0.39 0.492 0.672 0.33

Elevation 0.163 0.886 0.11 −0.276 0.809 −0.19
Slope −1.865 0.203 −0.80 1.588 0.253 0.75

Climatic factors
Tmax 55.095 0.000 1.00 −14.388 0.005 −1.00
Tmin 6.832 0.021 0.98 −4.806 0.041 −0.96

Radiation 3.502 0.073 0.93 −2.852 0.104 −0.90
Rainfall 1.881 0.201 0.80 −1.661 0.239 −0.76

Soil moisture 6.579 0.031 0.81 −4.461 0.040 −0.78

Figure 4 shows the response of the remotely sensed autumn grass senescence (i.e.,
NDRE and Chlred-edge) to the most influential variables (i.e., Tmin, Tmax, and the soil
moisture). Figure 4a–c illustrate the remotely sensed autumn grass senescence based on
the NDRE, while Figure 4d–f display the remotely sensed autumn grass senescence based
on the Chlred-edge. Overall, the effect of time lag was evident between the occurrence
of autumn grassland senescence and the change in sensitive variables. The NDRE-based
autumn grass senescence indicated a continuous decline with a decrease in both the Tmin
and Tmax during the autumn season. On the other hand, a synonymous decline in the
NDRE-based autumn grass senescence with soil moisture was followed by a sudden
increase in soil moisture in June. Figure 4d–f indicate an inverse relationship between
the Chlred-edge-based autumn grass senescence and the influential variables. Generally,
the consistent drop in Tmin, Tmax, and the soil moisture values was concurrent with the
increasing Chlred-edge-based autumn grass senescence estimates.
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4. Discussion

The present study has shown the value of the multi-temporal remotely acquired
Sentinel 2 satellite data in elucidating the occurrence of autumn senescence along climatic
and topographic gradients in the subtropical sour-veld grassland ecosystems. This has been
a limitation in understanding the dynamics around the occurrence of autumn senescence
as well as the subsequent impact on foraging resource productivity and feed availability in
these regions. Our findings indicated that the occurrence of autumn grassland senescence
in the present study site is controlled by climatic drivers, particularly the soil moisture, Tmin,
and Tmax rather than topographic factors (p ≤ 0.05 in Table 5). Although not pronounced
in the current findings, the sensitivity of air temperature variables (i.e., Tmax and Tmin) in
influencing the occurrence of autumn grassland senescence in the area could be attributed
to the reported extremities of these variables [26]. For instance, the observed consistent
decline in air temperatures (Table 2) is believed to have promoted irregular frost events,
as they are known to be a common phenomenon in the area during this period [27]
and, hence, grass senescence. These results concur with studies indicating that extreme-
temperature conditions affect the natural processes of photosynthetic enzymes and thereby
accelerate or delay chlorophyll deterioration [4,6,28], whereas water shortages are known
to influence plant carboxylation reaction, hence fast-tracking chlorophyll degradation and
plant senescence [1,5,12,29].

Conversely, although solar radiation and rainfall are known to be key climatic factors
influencing plant phenology [2], their impact was not significant (Table 5). However,
these results should be discussed with caution, as the observed poor relationship between
the remotely sensed autumn grass senescence and rainfall and solar radiation may not
be universally constant, i.e., could be site-specific as a result of topographic and micro-
climatic conditions. Specifically, the recorded poor correlation between autumn grassland
senescence and rainfall in this study may possibly be a consequence of the high variability in
rainfall during the same period [26], which could destruct the uniformity in the phenology
of the grass. Similarly, the poor relationship notable between the autumn grass senescence
and solar radiation could be justified by the relatively uniform topography of the study
area, which was observed during field data collection. Meanwhile, our assumption is
that meaningful characterization of the links between the remotely sensed autumn grass
senescence and the incoming solar radiation and topographic factors such as slope, aspect,
and elevation requires heterogeneity in the landscape, which is possible in pronounced
mountainous and valley areas [2], also indicated that heterogeneity in topography promotes
spatial distinction in vegetation phenology regardless of the similarity in the age of the
floral species. Our results further showed the effect of the time lag between the occurrence
of autumn grass senescence and the change in sensitive climatic factors (Figure 4), thereby
suggesting that the chlorophyll breakdown is not concurrent with, but follows the triggering
effect of, the environmental cue. Evidently, the significance of understanding the response of
autumn grassland senescence to changes in climatic and topographic factors cannot be over-
emphasized, particularly in countries such as South Africa, considering the projected shifts
in seasonal patterns [30], which may further alter the current dynamics in phenological
stages such as the autumn grassland senescence, leading to potential forage deficiencies,
especially during dry seasons. With its ability to either shorten or extend the growing
season of the floral species, and hence productivity [8], the understanding of the links
between autumn grass senescence and environmental factors may help to strengthen our
projections on the possible timing and duration of the autumn grassland senescence, which
will, in turn, improve our assessment of fodder bank capacities for quality forage provision.
Whereas this highlights the essence of future research on this subject matter, the emphasis
of such work should be on multi-year studies conducted on heterogeneous terrains, while
fully embracing the potential impact of frost activities in the analysis.

With regard to the performance of the RFR model, our results reinforce the evidence
presented in previous studies that this model is robust when explaining ecological problems
based on remotely acquired datasets [15,31]. Again, although the findings in Figure 3 may
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give an impression that the topographic factors were among the important variables in
April, May, and June, a correct view is that these variables were only important in displaying
the monthly relationship with the tested variables, which does not necessarily reflect the
autumn grassland senescence in our case. According to our approach in this study, the
autumn grassland senescence was explained based on the averaged performance of the
month-to-month contributions of each variable, and the variables that were consistently
significant were identified as the environmental drivers of autumn grassland senescence.

5. Conclusions

The present study examined the relationship between remotely sensed autumn grass
senescence and the climatic factors and topography in the subtropical sour-veld grasslands
of the Midlands region, KwaZulu-Natal, South Africa. The study employed the Sentinel 2
derivatives using the PLSR, MLR, CART, and RFR models, and the RFR model emerged as
the superior model. Among the best of the model outputs, RMSEs of 0.017, 0.012, 0.056,
and 0.013 as well as R2s of 0.69, 0.71, 0.56, and 0.71 for the NDRE, with RMSEs and R2s
of 0.023, 0.018, 0.014, and 0.056 as well as 0.59, 0.60, 0.69, and 0.72 for the Chlred-edge in
March, April, May, and June, respectively, were obtained. The results further showed that
Tmin, Tmax, and soil moisture were the most influential factors in the occurrence of autumn
grassland senescence at the study site. However, the observable poor relationship between
autumn grass senescence and the other climatic factors and topography is believed to be
indicative of the micro-climatic conditions and the relative homogeneity in the topography.
However, given that the study was carried over a season, it does not reflect the possible
year-to-year climatic changes and, hence, cannot be used to draw finality on the relationship
between the tested variables. Therefore, for a conclusive understanding of the overlaps
between autumn grass senescence and climatic and topographic factors, we suggest further
investigation, particularly focusing on multi-year studies conducted in heterogeneous
landscapes and taking into account the effect of frost occurrences in the analysis.
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