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Abstract: Land cover change is prevalent in the eastern Kentucky Appalachian region, mainly due
to increased surface mining activities. This study explored the potential change in land cover and
its relationship with stream discharge and sediment yield in a watershed of the Cumberland River
near Harlan, Kentucky, between 2001 and 2016, using the Soil and Water Assessment Tool (SWAT).
Two land cover scenarios for the years 2001 and 2016 were used separately to simulate the surface
runoff and sediment yield at the outlet of the Cumberland River near Harlan. Land cover datasets
from the National Land Cover Database (NLCD) were used to reclassify the land cover type into the
following classes: water, developed, forest, barren, shrubland, and pasture/grassland. Evaluation
of the relationship between the land cover change on discharge and sediment was performed by
comparing the average annual basin values of streamflow and sediment from each of the land cover
scenarios. The SWAT model output was evaluated based on several statistical parameters, including
the Nash–Sutcliffe efficiency coefficient (NSE), RMSE-observations standard deviation ratio (RSR),
percent bias (PBIAS), and the coefficient of determination (R2). Moreover, P-factor and R-factor
indices were used to measure prediction uncertainty. The model showed an acceptable range of
agreement for both calibration and validation between observed and simulated values. The temporal
land cover change showed a decrease in forest area by 2.42% and an increase in developed, barren,
shrubland, and grassland by 0.11%, 0.34%, 0.53%, and 1.44%, respectively. The discharge increased
from 92.34 mm/year to 104.7 mm/year, and sediment increased from 0.83 t/ha to 1.63 t/ha from 2001
to 2016, respectively. Based on results from the model, this study concluded that the conversion of
forest land into other land types could contribute to increased surface runoff and sediment transport
detached from the soil along with runoff water. The research provides a robust approach to evaluating
the effect of temporal land cover change on Appalachian streams and rivers. Such information can be
useful for designing land management practices to conserve water and control soil erosion in the
Appalachian region of eastern Kentucky.

Keywords: eastern Kentucky; land cover; sediment; surface runoff; SWAT; watershed

1. Introduction

The term “watershed” refers to an area of land that channels precipitation to water
reservoirs such as creeks, streams, bays, and the ocean [1]. The term “land cover” indicates
the physical land type, such as forest, water, cropland, wetland, etc., whereas land use
represents how people are using the land [2]. Human activities cause changes in land cover
patterns, resulting in alteration of the hydrological components of the watershed, such as
runoff, infiltration, evapotranspiration, and hence, a change in annual mean discharge [3–5].
Non-Point Source (NPS) pollution, which is primarily the runoff of contaminants from
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mining operations due to excess rainfall, is a major concern in the Appalachian Region that
pollutes streams, lakes, and creeks. Pollutants such as chemicals (nitrates, phosphates),
trace elements, heavy metals, and pathogens may be transported both in solution and in the
attached form with sediment, defined as suspended soil particles. These major pollutants
affect surface water quality as well as damage the aesthetic values of waterbodies.

Temporal land cover change is one of the most important factors that affect surface
water characteristics [6]. Land cover change can lead to changes in flow patterns due to
spatial variations in runoff formation due to climate–land use interaction and can alter other
related hydrologic processes such as evapotranspiration, runoff, sediment, and nutrient
transport to water [7–10]. It is important to assess the effect of land cover changes for
environmental assessment, land management, and its impacts on human well-being in the
human–environment interaction [11,12].

Some types of land cover change are intensive, such as surface mining, which extracts
minerals (e.g., coal) from the seams near the Earth’s surface [13]. The primary types of
mining include underground, contour, and mountaintop removal or surface coal mining in
the Appalachia Region. Mountain top removal mining is the most common form of surface
coal mining in the region. The use of modern techniques, such as heavy equipment, during
mining, can produce dramatic ecological and hydrological alterations in land cover [14].
Surface coal mining, which directly strips away the vegetation of the mined areas, involves
a sequence of operations, including clearing vegetation, removing topsoil, drilling, and
blasting hard surface strata over the coal layer, then subsequently extracting and transport-
ing coal [15]. The specific impacts of mountaintop removal mining generally observed in
Central Appalachia are loss of natural forests, hydrological pattern changes, valley fill, acid
drainage, and water quality degradation. Mining activities result in a change of topography
and drainage pattern, further causing soil erosion and land degradation [16,17]. Central
Appalachia has the highest earth movement rate in the United States, with each surface
mine generating large quantities of spoil that are typically translocated to stream valleys
close to mining areas [18]. Generally, mined areas are reclaimed after the completion of the
mining operation, which is the combined process by which adverse environmental effects
of surface mining are minimized. Reclaimed mine lands are more prone to soil erosion,
leading to subsequent biomass loss even after reclamation [19,20]. Reclamation efforts
are expected to control erosion and sedimentation, stabilize slopes, and repair wildlife
habitat [21]. However, mine reclamation leaves the land barren or converts the originally
forested area into grassland and shrublands. Therefore, even after reclamation, the geo-
logical changes and associated environmental impacts may continue if mine lands are not
appropriately backfilled [22].

The Appalachian region of the eastern part of Kentucky (in the US), covering 31 counties
with a combined land area of 34,628 km2, is known for coal [23]. A study of land cover
change in Kentucky reported that forest areas were transformed into barren land and grass-
lands cumulatively in mined areas due to mining and reclamation activities [24]. These
authors also reported that mining and reclamation are major drivers of overall land cover
change in eastern Kentucky. Another study in Kentucky showed that land cover change
has a greater impact on soil loss and retention, contributing to an increase in total nitrogen
and phosphorus export between 1992 and 2011 [25].

According to the Kentucky Division of Water [26], NPS pollution is a major contributor
to contamination in Kentucky’s waterways. Among the non-point source, primary pollu-
tants are mining (31%), agriculture (29%), land disposal (20%), and urban runoff (10%) [27].
Surface-coal mine areas disturb natural infiltration and surface flow of headwater streams,
causing land degradation and impacting hydrologic characteristics [28–30]. Physical degra-
dation happens when excess debris is placed in valleys, resulting in the burial or loss of
stream channels. Water quality and aquatic habitats are impaired when dissolved elements,
major ions, and heavy metals are released from mine debris and transported into stream
waters [31].
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The Soil and Water Assessment Tool (SWAT) is one of the most widely adopted water-
shed models worldwide used to predict surface runoff and sediment yields over a long
period in complex catchments with different soils and land use [32]. The SWAT model
has been widely used to simulate changes in hydrology and water quality (nutrients and
sediment) in watersheds under different climatic conditions, land use practices, and land
cover changes [33–37]. Taking the hydrological behavior of the watershed into considera-
tion, the application of the SWAT model integrated with GIS and remote sensing can be
used to estimate surface runoff and sediment yield. Various studies have been conducted
worldwide to understand the relationship between land cover change and hydrological
processes in watersheds at different spatial and temporal scales by using the SWAT model.
For example, Zhang et al. [35] used the SWAT model to simulate runoff and sediment
yield responses to land use change in China and found that forestland decreased sediment
yield and reduced runoff. However, they reported increased runoff and sediment yield in
cropland and urban land. Similarly, Pokhrel [33] analyzed the impact of land use changes
on river discharge and sediment yield from 2000 to 2010 at the Khokana gauging station
of Kathmandu valley, Nepal. Findings showed an increase in built-up areas, resulting in
an increase in the surface runoff and sediment yield. Aboelnour et al. [38] studied land
use change impact on streamflow and baseflow in the Little Eagle Creek watershed in
Indianapolis, USA. The study found a 39% increase in urbanization, which significantly
influenced base flow and streamflow. Spruill et al. [39] used the SWAT model to simulate
daily streamflow in a small central Kentucky watershed over a two-year period. Likewise,
Yonaba et al. [10] used SWAT to show that dynamic land use conditions affect surface
runoff and hydrological processes in the Sahelian landscape.

Several mining operations are prevalent in eastern Kentucky, causing land cover
changes that result in a decrease in forested land and an increase in its impact on watersheds.
It is necessary to document the land cover of the watershed region and its relationship with
the surface runoff and sediment. Although SWAT is the most popular model worldwide
for simulating runoff and sediment yield, its application is very limited in Kentucky (SWAT
Literature Database https://www.card.iastate.edu/swat_articles/add.aspx (accessed on
14 January 2020)) [40,41]. To fill this research gap, our study applied the SWAT model to
explore the watershed characteristics, hydrology, and sediment in the Appalachian region
of eastern Kentucky. There is a need to study the hydrologic attributes in response to the
land cover change in Kentucky. The research undertaken on a watershed of the Cumberland
River near Harlan, Kentucky, with an area of 969 km2, had the following objectives: (1) to
assess the land cover change between the years 2001 and 2016; (2) to estimate discharge
changes due to temporal change in land cover; and (3) to estimate sediment loads as a
response to changes in land cover.

2. Materials and Methods
2.1. Study Site

The outlet of the Cumberland River near Harlan, Kentucky, is located at the point
where the monitoring station (USGS 05130101) is installed. The site lies at Latitude
36◦50′48′′. and Longitude 83◦21′21′′. The elevation of this watershed varies from 348 m
to 1259 m. The watershed has a drainage area of 969 km2. The observed daily dis-
charge and sediment data record for this site is maintained by the USGS National Water
Information System.

Figure 1 shows the geographic location of the study area, a watershed of the Cum-
berland River near Harlan, which lies in Harlan County but also shares a part of Letcher
County. Harlan County is in southeastern Kentucky, sharing the border with Bell County,
Kentucky; Leslie County, Kentucky; Letcher County, Kentucky; Perry County, Kentucky;
Lee County, Virginia; and Wise County, Virginia. The county has a total area of 1212 km2,
out of which 1207 km2 is land, and the remaining is water. The highest elevation point of
Kentucky, Black Mountain (1263 m), is located in Harlan County. The total population of
Harlan County was 29,278 in 2020, out of which 31.1% of residents live in poverty [42]. The

https://www.card.iastate.edu/swat_articles/add.aspx


Land 2023, 12, 147 4 of 20

weather data were obtained from Prism Climate Group (https://prism.oregonstate.edu/
(accessed on 20 April 2020)). The variation in annual precipitation, maximum temperature,
and minimum temperature of Harlan County between the years 1990 and 2019 are shown
below in Figure 2. This study site was selected due to the availability of observed discharge
and sediment data at the outlet point.
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2.2. SWAT Model

This study used the SWAT model to simulate surface runoff and sediment for the
watershed in our study. SWAT is a continuous-time, semi-distributed, and process-based
river basin model, which was developed to predict the effect of alternative land manage-
ment practices on water, sediment, and chemicals from ungauged rural basins in large
complex watersheds [43,44].SWAT model has been widely used and proven to be effective
in studying the impacts of climate and land use on water quantity and quality [45,46].

The model is supported by online documentation [47] and geographic information
systems (GIS) interface tools. The model is process-based, computationally efficient, and
capable of continuous simulation over a longer period. This model requires input in-
formation about weather, such as daily precipitation, maximum/minimum temperature,
solar radiation, wind speed, relative humidity, soil, topography, and land cover. For mod-
eling purposes, a watershed is divided into a number of sub-watersheds or sub-basins.
Sub-watersheds are further divided into hydrologic response units (HRUs). Each HRU
consists of homogeneous land cover, management, topographic characteristics, and soil
type. Runoff is predicted separately for each HRU by using daily or sub-daily rainfall
amounts that are then routed to obtain the total runoff for the watershed, which increases
accuracy and creates a better physical description of the water balance [41,47]. SWAT uses
the Modified Universal Soil Loss Equation (MUSLE) to predict sediment yield from the
landscape [48].

2.3. SWAT Input Data

The data required for this study were collected from various sources, as shown in
Table 1. ArcMap version 10.7 (Esri geospatial software) was used to prepare DEM and soil
maps. The SSURGO soil classes and slope classes for the study area are shown in Figure 3
and in the Appendix A.

https://prism.oregonstate.edu/normals/
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Table 1. Input data for SWAT model.

Data Measurable Unit Spatial Unit Year Source

Digital Elevation Model
(DEM) Pixel level 30 m × 30 m

resolution 2020 https://kygeoportal.ky.gov/
(accessed on 12 April 2020).

Soil (Physical properties) Shapefile 2020
USDA (SSURGO)

www.nrcs.usda.gov (accessed on
12 April 2020)

Land cover Pixel level 30 m × 30 m
resolution 2001 and 2016

Multi-Resolution Land Cover
Characteristics (MRLC)

Consortium,
https://www.mrlc.gov/ (accessed

on 12 April 2020)

Meteorological (rainfall,
solar radiation,

temperature, humidity,
wind velocity)

Table, txt Daily data 1987–2016

Prism Climate Group
https://prism.oregonstate.edu/

(accessed on 20 April 2020),
Global weather Data for SWAT

https://globalweather.tamu.edu/

Discharge Monthly (m3/s) 1990–2005 https://waterdata.usgs.gov/nwis
(accessed on 15 April 2020)

Sediment Monthly (ton/ha) 1990–2005
https://waterdata.usgs.gov/nwis

(accessed on 15 April 2020),
LOADEST
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Land cover data for both years 2001 and 2016 (Figure 4a,b) were extracted for the
study area and reclassified into six land cover types: water, urban, barren, forest, shrubland,
and pasture/grassland. Additionally, to check the quality and validity of input land cover
data in SWAT, an accuracy assessment was performed using the Image Analyst Tool in
ArcGIS Pro. The accuracy assessment points (500 points) were generated randomly, and
the ground truth classes for these points were identified by using a reference land cover
map for respective years, i.e., years 2001 and 2016. The confusion matrix method was used
to assess the accuracies of land cover classes. We derived the Kappa value of 0.84, which is
84% accuracy of our reclassified land cover data.

https://kygeoportal.ky.gov/
www.nrcs.usda.gov
https://www.mrlc.gov/
https://prism.oregonstate.edu/
https://waterdata.usgs.gov/nwis
https://waterdata.usgs.gov/nwis
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The daily precipitation, maximum temperature, and minimum temperature informa-
tion were obtained from Prism Climate Group (PRISM) (https://prism.oregonstate.edu/
(accessed on 20 April 2020)) for seven different stations to set up the model. Wind speed,
solar radiation, and relative humidity were simulated using the weather generator in SWAT.
Discharge and sediment data at the outlet of Cumberland River near Harlan were obtained
from USGS National Water Information System (NWIS) (https://waterdata.usgs.gov/nwis
(accessed on 15 April 2020)). The sediment data were available from NWIS only from 1979
to 1981, which was used to simulate the calibration and validation period using a load esti-
mator (LOADEST). LOADEST is a program for estimating constituent loads in streams and
rivers [49]. We used LOADEST to extrapolate scarce nutrient/sediment data corresponding
to stream flow. Generally, we have relatively few nutrient/sediment concentration data
that do not cover the whole simulation period. Several peer-review papers and reports
have used LOADEST for extrapolating nutrient/sediment data to the simulation period.
Nine predefined models vary with the number of explanatory variables available in the
LOADEST framework. The selection of the best model is based on the lowest value for
Akaike Information Criterion (AIC), the highest value of the Schwarz Posterior Probability
Criterion (SPPC), Load Bias Percent (Bp) less than 25%, higher Nash–Sutcliffe Efficiency
(NSE), and higher coefficient of determination (R2) values. We have selected model 6,
which satisfies the above criteria.

2.4. SWAT Model Setup

ArcSWAT 2012, a GIS interface, was used to delineate the watershed at the outlet
point of the Cumberland River near Harlan, Kentucky. Figure 5 shows a flow chart of
surface runoff and sediment yield simulation using the SWAT model. This study used a
10% threshold set for land cover, soil type, and slope, which resulted in 15 sub-basins and
168 HRUs. The model was run for three years (1987–1989) of the warm-up period on a
monthly basis.

https://prism.oregonstate.edu/
https://waterdata.usgs.gov/nwis


Land 2023, 12, 147 8 of 20

Land 2022, 11, x FOR PEER REVIEW 8 of 21 
 

 
Figure 5. Workflow for SWAT model. 

2.5. Sensitivity Analysis 
This study used SWAT-CUP Premium (SWAT-CUPP), a computer program devel-

oped for calibration of the SWAT model (https://www.2w2e.com/home/SwatCupPre-
mium (accessed on 23 October 2020)). SWAT-CUPP is an improved version of SWAT-
CUP, which allows behavioral and multi-objective calibration. The program also allows 
validation, sensitivity analysis, and uncertainty analysis [50]. Users can select several 
choices of objective functions (11 functions, including Nash–Sutcliffe Efficiency coefficient 
[NSE], the coefficient of determination [R²], and percent bias (PBIAS)). In this study, we 
selected NSE as our objective function for reflecting the overall fit of a hydrograph [51–
53]. 

Sensitivity analysis is an essential part of a model setup. It helps in determining the 
most significant and sensitive parameters altering the water quantity and quality yields. 
Sensitivity analysis is the process of determining the rate of change in model output with 
respect to change in model inputs. It is necessary to decide on key parameters required 
for calibration. This study used global sensitivity analysis to rank the model parameters 
and to account for the interaction between various parameters. 

Global sensitivity analysis uses a multiple regression system that regresses the Latin 
hypercube-generated parameters against objective function values to determine the sen-
sitive parameters. Statistical measurements, including t-statistics and p-values at 0.05 level 
of significance, are used to identify the sensitive parameters. The parameters with larger 
t-statistics and smaller p-value were considered significantly sensitive parameters. The 
most frequently used parameters reported in multiple prior studies were used for sensi-
tivity analysis, calibrating, and validating the SWAT model for discharge and sediment 
[33,54]. The calibrated parameters, their definition, and the initial range of values are pre-
sented in Table 2. Eighteen different parameters were used with one iteration (600 simu-
lations each) to perform global sensitivity analysis for discharge. Once satisfactory cali-
bration performance was obtained for discharge, sensitivity analysis was carried out for 
the sediment parameters with a similar approach as discharge. The initial ranges for the 
selected parameters were used from the absolute value range provided by SWAT-CUPP, 
recommended in the SWAT-CUP user manual [55,56]. 

  

Figure 5. Workflow for SWAT model.

2.5. Sensitivity Analysis

This study used SWAT-CUP Premium (SWAT-CUPP), a computer program developed
for calibration of the SWAT model (https://www.2w2e.com/home/SwatCupPremium
(accessed on 23 October 2020)). SWAT-CUPP is an improved version of SWAT-CUP, which
allows behavioral and multi-objective calibration. The program also allows validation,
sensitivity analysis, and uncertainty analysis [50]. Users can select several choices of
objective functions (11 functions, including Nash–Sutcliffe Efficiency coefficient [NSE], the
coefficient of determination [R2], and percent bias (PBIAS)). In this study, we selected NSE
as our objective function for reflecting the overall fit of a hydrograph [51–53].

Sensitivity analysis is an essential part of a model setup. It helps in determining the
most significant and sensitive parameters altering the water quantity and quality yields.
Sensitivity analysis is the process of determining the rate of change in model output with
respect to change in model inputs. It is necessary to decide on key parameters required for
calibration. This study used global sensitivity analysis to rank the model parameters and
to account for the interaction between various parameters.

Global sensitivity analysis uses a multiple regression system that regresses the Latin
hypercube-generated parameters against objective function values to determine the sensi-
tive parameters. Statistical measurements, including t-statistics and p-values at 0.05 level
of significance, are used to identify the sensitive parameters. The parameters with larger t-
statistics and smaller p-value were considered significantly sensitive parameters. The most
frequently used parameters reported in multiple prior studies were used for sensitivity
analysis, calibrating, and validating the SWAT model for discharge and sediment [33,54].
The calibrated parameters, their definition, and the initial range of values are presented in
Table 2. Eighteen different parameters were used with one iteration (600 simulations each)
to perform global sensitivity analysis for discharge. Once satisfactory calibration perfor-
mance was obtained for discharge, sensitivity analysis was carried out for the sediment
parameters with a similar approach as discharge. The initial ranges for the selected param-
eters were used from the absolute value range provided by SWAT-CUPP, recommended in
the SWAT-CUP user manual [55,56].

https://www.2w2e.com/home/SwatCupPremium
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Table 2. Parameters used to calibrate discharge and sediment yield (v = replace, r = relative).

Parameters Definition Unit Default Range of
Values

Values Set in
SWAT-CUPP

Parameters for Discharge

r__CN2.mgt SCS runoff
curve number for moisture condition II - 35 to 98 −0.4 to 0.5

r__SOL_K().sol Saturated hydraulic conductivity mm/hr 0 to 2000 −0.5 to 0.5
r__SOL_AWC().sol Available water capacity of the soil layer mm H2O/mm soil 0 to 1 −0.5 to 0.5

r__SOL_BD().sol Moist bulk density Mg/m3 or g/cm3 0.9 to 2.5 −0.5 to 0.5

v__CH_K2.rte Effective hydraulic conductivity in main
channel alluvium mm/hr −0.01 to 500 −0.01 to 500

r__HRU_SLP.hru Average slope steepness m/m 0 to 0.6 −0.5 to 0.5
v__RCHRG_DP.gw Deep aquifer percolation fraction - 0 to 1 0 to 1

v__GWQMN.gw Threshold depth of water in the shallow aquifer
required for return flow to occur mm H2O 0 to 5000 0 to 5000

v__ESCO.hru Soil evaporation compensation factor - 0 to 1 −0.5 to 0.5
r__SLSUBBSN.hru Average slope length. m 10 to 150 −0.5 to 0.5
v__GW_DELAY.gw Groundwater delay days 0 to 500 0 to 500
v__GW_REVAP.gw Groundwater “revap” coefficient. - 0.02 to 0.2 0.02 to 0.2

v__REVAPMN.gw Threshold depth of water in the shallow aquifer for
“revap” to occur (mm). mm 0 to 1000 0 to 1000

v__ALPHA_BF.gw Baseflow alpha factor (days) days 0 to 1 0 to 1
r__OV_N.hru Manning’s “n” value for overland flow - 0.01 to 4 −0.5 to 0.5

v__SURLAG.bsn Surface runoff lag time - 0.05 to 24 0.05 to 24
v__CH_N2.rte Manning’s “n” value for the main channel - −0.01 to 0.3 −0.01 to 0.3

Parameters for sediment

v__PRF.bsn Peak rate adjustment factor for sediment routing in
the main channel 0 to 2 0 to 2

v__SPCON.bsn
Linear parameter for calculating the maximum

amount of sediment that can be re-entrained during
channel sediment routing

- 0.0001 to 0.01 0.0001 to 0.01

v__SPEXP.bsn Exponent parameter for calculating sediment
re-entrained in channel sediment routing - 1 to 1.5 1 to 1.5

v__CH_COV1.rte Channel erodibility factor - −0.001 to 1 −0.05 to 0.6

v__USLE_K.sol USLE equation soil erodibility (K) factor (metric ton m2

hr)/(m3-metric ton cm)
0 to 0.65 0 to 0.65

Table 3 shows parameters, their fitted values, and their ranking according to sensitivity
for discharge. Among the calibrated parameters, v__ALPHA_BF.gw, r__CN2.mgt, and
r__SOL_BD ().sol were the most sensitive, followed by r__SOL_K ().sol, v__RCHRG_DP.gw,
r__HRU_SLP.hru, whereas v__GW_DELAY.gw and r__SLSUBBSN.hru were fewer sensitive
parameters at our watershed.

Table 3. Parameters with their fitted values and ranking according to sensitivity (v = replace, r = relative).

Parameters Fitted Value p-Value t-Stat Ranking

v__ALPHA_BF.gw 0.57 0.0 15.22 1
r__CN2.mgt 0.39 0.0 9.57 2

r__SOL_BD().sol 0.46 0.0 7.33 3
r__SOL_K().sol −0.25 0.0000025 4.74 4

v__RCHRG_DP.gw 0.50 0.0000056 4.58 5
r__HRU_SLP.hru −0.35 0.000086 3.95 6

r__SOL_AWC().sol −0.40 0.0001 −3.91 7
v__ESCO.hru 0.30 0.00022 3.70 8
v__CH_N2.rte 0.009 0.0018 −3.13 9
v__CH_K2.rte 129.49 0.0039 −2.89 10

v__GWQMN.gw 1695.83 0.005 −2.81 11
r__OV_N.hru −0.21 0.52 0.62 12

v__REVAPMN.gw 684.16 0.64 −0.46 13
v__SURLAG.bsn 3.66 0.75 −0.31 14

v__GW_REVAP.gw 0.03 0.81 −0.22 15
r__EPCO.hru 0.49 0.83 0.20 16

r__SLSUBBSN.hru 0.16 0.89 −0.13 17
v__GW_DELAY.gw 79.58 0.91 0.11 18



Land 2023, 12, 147 10 of 20

2.6. Model Calibration, Uncertainty Analysis, and Validation

The calibration, uncertainty analysis, and validation of discharge and sediment were
completed on a monthly scale at the gauge stations in the watershed under study. Calibra-
tion is closely linked to model output uncertainty, which refers to the propagation of all
model input uncertainties mapped in the parameter distribution to model outputs [45,46].
SWAT-CUPP uses two indices, P-factor and R-factor, as measures to examine the fit be-
tween simulation results expressed as 95PPU, and observation expressed as a single signal,
respectively. P-factor is the percentage of observed data enveloped by our modeling result.
The 95PPU of its values ranges from 0 to 1, where 1 represents perfect model simulation
considering the uncertainty. The R-factor measures the thickness of the 95PPU band. For
discharge, P-factor > 0.7 and R-factor <1.5 are recommended; however, these values depend
upon the project scale and adequacy of the input and calibrating [54,55]. A larger P-factor
can be achieved at the expense of a large R-factor; hence, a balance must be reached between
the two.

The SWAT-CUPP program was used for calibration. The model performance was
defined based on the Nash–Sutcliff model efficiency coefficient (NSE), the coefficient of
determination (R2), percent bias (PBIAS), and RMSE-observations standard deviation ratio
(RSR) [55,57]. NSE values can range between –∞ to 1, which measures how well the
simulated output matches the observed data along a 1:1 line (regression line with slope
equal to 1). The NSE value greater than 0.5 for a monthly time step is applicable to the
catchment and the impact analysis [53,57]. R2 statistics can range from 0 to 1, where 0
indicates no correlation and 1 indicates perfect correlation. R2 value greater than 0.5 is
considered acceptable [58,59].

The calibration period for this study was 1990–1998, which means measured observed
data of this time period were used with different adjusted parameter value ranges to fit
with the simulated model. After calibration was obtained, the model was validated with
calibrated parameter ranges using observed data from 1999–2005. Discharge was calibrated
at first, as it is the primary controlling variable [50]. Similar processes were repeated for the
sediment load obtained from the LOADEST model.

The output from the SWAT model was simulated using the land cover data for the
year 2001. The result was then used for model calibration and validation. Land cover data
for the year 2016 and weather data from the year 2005 to 2016 were used to observe the
relationship between land cover change and discharge and sediment. DEM and soil data
were kept the same when the model was a rerun. The change in discharge and sediment
was compared using the simulated results obtained from the two different land cover data.

3. Results
3.1. Calibration, Uncertainty, and Validation of Discharge

Figures 6 and 7 show the graphical representation of observed and simulated discharge
data during the calibration and validation period. The calibrated model attained a P-factor
of 0.50. This represents that 50% of the measured discharge data was bracketed by 95PPU
within the model uncertainty prediction. The P-factor during the validation period was
0.62, which is higher than calibrated. The R-factor had the desired value of 0.83 and 1.04
during calibration and validation (which are less than 1.5).

Table 4 shows statistical parameters NSE, R2, PBIAS, and RSR values estimated as
0.76, 0.85, 5.4, and 0.49 during calibration, and 0.74, 0.8, 12.2, and 0.51 during validation, re-
spectively. The NSE and R2 values were greater than 0.7 for both calibration and validation
periods, suggesting a good match between measured and simulated monthly discharge
data [53,57].
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Table 4. Statistical results of model calibration and validation accuracy for discharge.

Calibration/Validation Criteria Value

Calibration (1990–1998)

NSE 0.76
R2 0.85

PBIAS 5.4
RSR 0.49

P-factor 0.5
R-factor 0.83



Land 2023, 12, 147 12 of 20

Table 4. Cont.

Calibration/Validation Criteria Value

Validation (1999–2005)

NSE 0.74
R2 0.8

PBIAS 12.2
RSR 0.51

P-factor 0.62
R-factor 1.04

3.2. Calibration, Uncertainty, and Validation of Sediment

Sediment was found to be the most sensitive to v__CH_N2.rte (p-value = 0, t-stat =−20.88),
r__CN2.mgt (p-value = 0, t-stat = 6.43), v__ALPHA_BF.gw (p-value = 0.05, t-stat = 1.88). The
graphical representation of monthly sediment data during the calibration and validation
period is shown in Figures 7 and 8, respectively. The P-factor was 0.91 during calibra-
tion and 0.90 during validation. This represents that 95PPU bracketed 91% and 90% of
observations during calibration and validation, respectively. The R-factor was 1.60 during
calibration and 1.79 during validation, which represents the uncertainties of the model.
P-factor and R-factor are used to judge the strength of calibration and validation [45]. Our
result showed strong statistical agreement with more than 90% of observed data enveloped
by our modeling result, shown as the 95PPU graph in Figures 8 and 9.

1 
 

 
  

Figure 8. Observed and simulated monthly sediment during the calibration period (1990–1998) at the
Cumberland River in the watershed under study.

Similarly, the R2, NSE, PBIAS, and RSR values during calibration were 0.75, 0.74,
5.9, and 0.51, and during validation, were 0.68, 0.67, 2.8, and 0.57, respectively, as shown
in Table 5. The model accuracy was satisfied with the desired values for NSE, R2, RSR,
and PBIAS according to the guidelines, which represented a close relationship between
observed and simulated sediment yields [53,57]. PBIAS values were low and positive,
which indicated accurate model simulation.
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Figure 9. Observed and simulated monthly sediment during the validation period (1999–2005) at the
Cumberland River in the watershed under study.

Table 5. Statistical results of model calibration and validation accuracy for sediment.

Calibration/Validation Criteria Value

Calibration (1990–1998)

NSE 0.74
R2 0.75

PBIAS 5.9
RSR 0.51

P-factor 0.91
R-factor 1.6

Validation (1999–2005)

NSE 0.67
R2 0.68

PBIAS 2.8
RSR 0.57

P-factor 0.9
R-factor 1.79

3.3. Land Use Land Cover Change Characteristics

Land cover classes considered in this study include water, developed, barren, for-
est, shrubland, and pasture/grassland, and are shown for 2001 and 2016 in Figure 10,
respectively. From these figures, we can observe that previously forested areas have been
converted into shrubland and pasture/grassland, which can be attributed to reclaimed
mined areas.

The percentage change of different land cover classes is shown in Table 6. The wa-
tershed was overall dominated by forest, followed by developed and pasture/grassland.
From the years 2001 to 2016, forest decreased by 2.4%, while developed area increased by
0.1%, barren land increased by 0.3%, shrubland increased by 0.5%, and pasture/grassland
increased by 1.4%. Changes in forest areas indicate that the site was affected by human
activities. With the increase in human demand to extract natural resources, forest areas
decreased. Additionally, human activities such as surface mining and reclamation ac-
tivities leave the land barren or convert the forest land into developed, shrubland, or
pasture/grassland.
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Table 6. Percentage of land cover classes and their change from 2001 to 2016.

Land Cover Class 2001 2016
% Difference

Area (%) Area (%)

Water 0.2 0.2 −0.01
Developed 5.5 5.6 0.1

Barren 1.0 1.3 0.3
Forest 90.0 87.1 −2.4

Shrubland 1.0 1.6 0.5
Pasture/Grassland 2.4 3.9 1.4

Total 100 100

The contribution of sediment yield from different land cover classes has increased
from the year 2001 to 2016 (Figure 10). An increase in barren, developed pasture and
shrubland leads to an increase in discharge and sediment yield, as barren and developed
lands have an erosive property with no water-holding capacity, while pasture and shrub-
land have less water-holding capacity compared to forest land. The sediment yield from
forest land also increased from 2001 to 2016. The watershed is dominated by forest, and
several mining operations were in existence during the period resulting in changes in land
cover. Such practices disrupted the hydrological cycle of a drainage basin and altered the
sediment yield.

3.4. The Response of Discharge and Sediment under Different Land Cover Scenarios

Table 7 shows the impact of land cover changes on surface runoff and sediment yield.
The result shows that annual surface runoff increased from 92.3 mm/year to 104.7 mm/year
from 2001 to 2016. Similarly, annual sediment yield increased from 0.83 t/ha to 1.63 t/ha,
representing a 19.35% change. Furthermore, results found that potential evapotranspiration
and lateral flow increased from 595 mm to 607.4 mm, and 541.6 mm to 562.6 mm, between
2001 and 2016, respectively. The loss of water due to evapotranspiration is related to the fact
that the forest is the major land cover class in this watershed. The increase in lateral flow
can be attributed to soil properties and land cover class in the watershed. Increased surface
runoff indicates a lower infiltration capacity of the land surface. Similarly, an increase in
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sediment is due to a decrease in forest area. Barren land, followed by pastures/grassland
and shrubland, additionally contributed to soil erosion and increased sediment yield.

Table 7. Estimated water balance components under two different land cover scenarios.

Component
Land Cover

2001 2016 %Change

Surface Runoff (mm) 92.3 104.7 11.8
Sediment Yield (t/ha) 0.8 1.63 49.0

Potential Evapotranspiration (mm) 595.5 607.4 1.9
Lateral Flow (mm) 541.6 562.6 3.7

4. Discussion

This study simulated discharge and sediment over 19 years using the SWAT model
and analyzed the relationship between land cover pattern, discharge, and sediment at a
monthly scale. SWAT-CUPP was used to calibrate and predict the model performance.
The calibration results showed that the uncertainties indicated by 95PPU (P-factor and
R-factor) shown in Table 5 for discharge are desirable. However, the observed peak values
for discharge were not falling under the 95PPU band, as shown in Figures 5 and 6. A similar
finding was also reported by Narsimlu et al. [60]. Several factors cause model uncertainties,
such as conceptual simplifications (e.g., SCS curve number method for flow partitioning),
natural and human-induced processes occurring in the watershed but not included in the
program (e.g., wind erosion), occurrences of landslides, large construction (roads, bridges),
and so on [55]. The increase in discharge may be due to more water being added through
rainfall and tributary streams into the main channel, impervious layer, and human activities
such as disturbances in the landscape. According to Zhang et al. [35], precipitation is the
fundamental factor in the formation of runoff, and an increase in precipitation leads to an
increase in stream discharge [35]. They also mentioned that temperature affects runoff and
sediment yield, as an increase in temperature will cause an increase in evapotranspiration
as well as an increase in soil moisture deficit. The lower P-factor during calibration, as
compared to validation, indicates the uncertainties in input variables such as rainfall.

A study conducted by the University of Kentucky Animal Research Center in north-
central Kentucky reported the SWAT model as an effective tool for simulating monthly
runoff, with NSE values of 0.58 during calibration and 0.89 during validation [39]. Another
study used SWAT-CUP to calibrate the model and found acceptable model performance
in terms of NSE values (0.67 during calibration and 0.84 during validation) for runoff in
the Chinquapin watershed of the Atlantic Coastal Plain [61]. Tang et al. [62] performed
model calibration and uncertainty using SWAT-CUP and found P-factor 0.85 and 0.83, and
R-factors 1.12 and 2.15, during the calibration and validation period, respectively. They
further satisfied the model with NSE values of 0.77 (calibration) and 0.74 (validation) for
monthly runoff. A study on a watershed in Morocco also successfully calibrated the SWAT
model for monthly discharge (NSE = 0.76) and sediment (NSE = 0.69) [63]. Jha et al. [64] also
used LOADEST to estimate sediment in the Upper Mississippi river basin. They simulated
the model on a monthly basis and found an NSE value of 0.66 during calibration and 0.54
during validation. These results from previous studies are in accordance with our statistical
results for our model performance.

Gyawali et al. [41] observed that topography dominates flow dynamics in a moun-
tainous watershed, causing surface runoff and increasing sediment yield. Our findings are
consistent with the results of this study. The SWAT model’s parameter sensitivity is de-
pendent on climate, land use, topography, and soil types, resulting in sensitivity outcomes
that are specific to watersheds [65]. Therefore, a sensitivity analysis has to be carried out
independently for each study area.

In this study, we investigated the overall spatial distribution pattern of land cover
change (between 2001 and 2016) with annual discharge and sediment yield in the Cum-
berland River near Harlan watershed, Kentucky. We found that the forest area decreased,
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whereas pasture, shrubland, and developed areas increased from the year 2001 to 2016
(Table 6). In addition, results showed that the surface runoff and sediment increased
by 11.8% and 47.07% from the year 2001 to 2016, respectively. This implies that land
cover change, i.e., conversion of forest area into other land cover types (including pas-
ture/grassland, shrubland, barren land), has an impact on the annual water balance in
the watershed. Changes in runoff and sediment yield could be justified due to changes
in forest land as well as sediment transport from mining fields, pasture/grassland, and
built-up areas [3,24]. Several studies have suggested that hydrology changes in response
to land cover change. A study conducted by Ngo et al. [66] found an increase in annual
surface runoff from 182.5 mm to 342.7 mm due to drastic changes in forest land into other
land cover types between the years 1995 and 2005. Pokhrel [33] also found an increase in
runoff from 171.99 mm/year to 219.17 mm/year, an increase in sediment from 2.99 mt/ha
to 3.15 mt/ha with a decrease in the forest, and an increase in built-up areas from 2000
to 2010 in Khokana Outlet of the Bagmati River, Nepal. Similarly, several other studies
reported the effect of historical land cover change on runoff and sediment [37,67,68]. Their
results are consistent with the results of our study.

5. Conclusions

In this research, a GIS-based hydrological tool, the SWAT model, was used to simulate
discharge and sediment under two different land cover scenarios to quantify the response
of hydrological characteristics to land cover change. The SWAT model was successfully
applied to estimate the discharge and sediment yield. SWAT-CUPP was used to perform the
sensitivity analysis, calibration, uncertainty analysis, and validation of the model. Using
the recommended statistical parameters (NSE, R2, RSR, and PBIAS), model performance
was evaluated, which showed that the estimated discharge and sediment at the outlet
obtained from the SWAT model indicated good agreement with the observed data.

The land cover data reveals that the watershed is dominated by forest, followed by
pasture/grassland, shrubland, and barren land. From the years 2001 to 2016, changes in
the land cover types of the watershed showed a decrease in forest area and an expansion
of the pasture/grassland. Such change was attributed to the destruction of forest land
for surface mining purposes, then reclamation of previously surface-mined areas through
their conversion to grassland. The relationship of land cover change with annual discharge
and sediment was also determined. The discharge and sediment yield were found to be
relatively higher from the land cover data of 2016 as compared to the year 2001, which
implies that land cover changes, specifically ongoing mining activities and increasing
pasture/grassland, have contributed to increased surface runoff and sediment yield in
the watershed. Therefore, a viable and realistic strategy is needed for the sustainable
management of water resources in the watershed. Best management practices (BMPs), such
as the protection of forests and the use of vegetative riparian buffers, could be applied to
control the sediment transport in the river channel.

The SWAT model was efficient and effective in quantifying the discharge and sediment
yield response to land cover change; however, there were some limitations in this study.
During the data acquisition period of this research, it was found that regular monitoring
of sediment data was not conducted. This research suggests conducting water quality
monitoring programs at major river outlet basins for a systematic study of watersheds in
Kentucky. Even though there exist some limitations and uncertainties in SWAT, a well-
calibrated SWAT model can simulate discharge and sediment related to the land cover
change. This study provides valuable information for land managers about the effect of
land cover change on soil and water conservation in the Cumberland River near Harlan,
which has experienced surface mining and reclamation activities. Further study on the
influence of anthropogenic causes of land use change on discharge and sediment yield, as
well as possible climate change impacts at river basins, is recommended.
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Appendix A. SSURGO Soil Class Descriptions

Mapunit Symbol Mapunit Name
17F Gilpin–Berks complex, 55 to 70 percent slopes
29F Gilpin–Summers–Kimper complex, 20 to 55 percent slopes, very stony
35F Wallen–Rock outcrop complex, 35 to 85 percent slopes, very stony
6E Bethesda, Fairpoint, and Sewell soils, 0 to 80 percent slopes, very rocky
AgB Allegheny loam, 2 to 6 percent slopes
AlC Allegheny loam, 2 to 15 percent slopes
AtF Alticrest–Ramsey–Wallen complex, 20 to 55 percent slopes, rocky
Bo Bonnie silt loam, occasionally flooded

CgF Cloverlick–Guyandotte–Highsplint complex, 20 to 80 percent slopes,
very stony

CkF Cloverlick–Kimper–Highsplint complex, 30 to 65 percent slopes,
very stony

Cr Craigsville–Philo complex, occasionally flooded
DrF Dekalb–Gilpin–Rayne complex, 25 to 65 percent slopes, very rocky
Du Dumps, Mine; tailings; and Tipples
FbC Fairpoint and Bethesda soils, 2 to 20 percent slopes
FbF Fairpoint and Bethesda soils, 20 to 70 percent slopes, stony
FkE Fiveblock and Kaymine soils, 0 to 30 percent slopes, stony
GlD Gilpin–Shelocta complex, 12 to 25 percent slopes
GmF Gilpin–Summers–Kimper complex, 20 to 55 percent slopes, very stony
GsC Gilpin–Shelocta silt loams, 3 to 12 percent slopes
GsD Gilpin–Shelocta silt loams, 12 to 20 percent slopes
GtF Gilpin–Rayne–Sequoia complex, 25 to 55 percent slopes, very stony
HeF Helechawa–Varilla–Jefferson complex, 35 to 75 percent slopes, very rocky

HgD Highsplint very flaggy silt loam, 5 to 20 percent slopes,
extremely bouldery

HsF Highsplint–Shelocta–Dekalb complex, 35 to 80 percent slopes, very stony
Hy Holly loam, frequently flooded
JfD Jefferson gravelly silt loam, 12 to 20 percent slopes
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Mapunit Symbol Mapunit Name

KfF Kaymine, Fairpoint, and Fiveblock soils, benched, 2 to 70 percent slopes,
very stony

KmD Kimper silt loam, 5 to 20 percent slopes, very stony

KrF Kimper–Cloverlick–Renox complex, 30 to 80 percent slopes,
extremely stony

Ph Philo fine sandy loam, occasionally flooded
Po Pope fine sandy loam, occasionally flooded
SeB Shelocta gravelly silt loam, 2 to 6 percent slopes
SeC Shelocta channery silt loam, 6 to 12 percent slopes
SgE Shelocta–Gilpin silt loams, 20 to 35 percent slopes
ShF Shelocta–Highsplint–Gilpin complex, 20 to 70 percent slopes, very stony
SkF Shelocta–Kimper–Cloverlick complex, 20 to 80 percent slopes, very stony
SmF Shelocta–Kimper–Cutshin complex, 20 to 55 percent slopes, very stony
Ud Udorthents–Urban land complex, occasionally flooded
uDut Dumps, mine, and tailings
uGrig Grigsby fine sandy loam, 0 to 3 percent slopes, frequently flooded

uMgmF Matewan–Gilpin–Marrowbone complex, 12 to 80 percent slopes,
very rocky

UrC Udorthents–Urban land complex, 3 to 15 percent slopes
UrE Udorthents–Urban land complex, 15 to 35 percent slopes
uRgrB Rowdy–Grigsby complex, 0 to 6 percent slopes, occasionally flooded
uShgF Shelocta–Highsplint–Gilpin complex, 20 to 70 percent slopes, very stony
uUdoC Udorthents–Urban land complex, 0 to 15 percent slopes

uUdrB Udorthents–Urban land-Grigsby complex, 0 to 6 percent slopes,
occasionally flooded

uUduE Udorthents–Urban land-Rock outcrop complex, 0 to 35 percent slopes
VaF Varilla–Jefferson–Alticrest complex, 35 to 75 percent slopes, very rocky
VrD Varilla very stony loam, 5 to 20 percent slopes, extremely bouldery
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