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Abstract: In the context of rapid urbanization, Urban Heat Island (UHI) is considered as a major
anthropogenic alteration in Earth environments, and its temporal trends and future forecasts for
large areas did not receive much attention. Using land surface temperature (LST) data from MODIS
(Moderate Resolution Imaging Spectro-radiometer) for years 2006 to 2020, we quantified the temporal
trends of daytime and nighttime surface UHI intensity (SUHII, difference of urban temperature to
rural temperature) using the Mann-Kendall (MK) trend test in six major cities of the Punjab province
of Pakistan and estimated the future SUHII for the year 2030 using the ARIMA model. Results from
the study revealed that the average mean SUHII for daytime was noted as 2.221 ◦C and the average
mean nighttime SUHII was noted as 2.82 ◦C for the years 2006 to 2020. The average mean SUHII for
daytime and nighttime exhibited increasing trends for all seasons and annually, and for the daytime
spring season it showed a maximum upward trend of 0.486 ◦C/year (p < 0.05) and for the nighttime
annual SUHII with an increasing rate of 0.485 ◦C/year (p < 0.05) which exhibited a maximum upward
trend. The ARIMA model forecast suggested an increase of 0.04 ◦C in the average daytime SUHII
and an increase of 0.1 ◦C in the average nighttime SUHII until 2030. The results from this study
highlight the increasing trends of daytime and nighttime SUHII, ARIMA also forecasted an increase
in daytime and nighttime SUHII, suggesting various strategies are needed for an effective mitigation
of the UHI effect.

Keywords: SUHII; land cover; LST; MK trend test; ARIMA; MODIS; Punjab

1. Introduction

Urbanization is a complex process that changes the cover of land from rural areas
to industrial and urban areas. It is a vital component of land surface conversion and one
of the most important demographic and spatial trends across the globe [1]. It produces
distinguished spatial patterns that are influenced by different factors such as local physical
characteristics and the transport network [2]. Currently, the urban population of the world
is about 4.22 billion (55.3%) and by 2050 it will increase to 6.68 billion (68.37%) [3]. Rapid
urbanization gradually replaces natural land cover by artificial features such as roads,
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roofs and hard structures, leading to an increase in nontranspiring and nonevaporating
surface in cities [4]. This can have a direct effect on the energy of the surface of the
land and have an impact on the biophysical properties of the surface of the land [5]. In
particular, urbanization causes a decrease in the greenery required for humans in cities,
which increases the heat that badly affects the hydrology of the environment and climate
change [6]. One of the most prominent effects on urbanization is generating the urban
heat island (UHI) effect. In 1833, Howard [7] initially presented the idea of UHI; UHI is a
phenomenon in which the temperatures of urban areas are more than the temperature of
its associated rural areas [8]. In recent decades, a large number of researchers have studied
the negative effects of UHI on human life, ecosystem, reduction of biodiversity [9], climate
change [10], destruction of vegetation [11], increase in the rate of disease and mortality [12],
and reduction in water and air quality [13].

Five different methods, including fixed stations, remote sensing, mobile traverses [12,13],
vertical sensing, and energy balances, can be used to measure the two types of UHI: (1) atmo-
spheric UHI (AUHI) and (2) surface UHI (SUHI) [14]. AUHI utilized temperature data from
ground weather stations [15]; all over the world, weather stations are unevenly distributed
and they are very few in numbers, which causes the low observation density of results [16].
Therefore, it is very difficult to use data from the weather station for a large study area. On
the opposite side, remote sensing technology (RS) can obtain continuous data for land surface
temperature (LST) over a large study area. In 1972, Rao [17] performed the first analysis of
SUHI and after that many researchers adopted RS data to perform SUHI analyses [18–21].
Generally, UHI showed its peak at nighttime, while the SUHI intensity (SUHII) showed
greater values during the daytime [22].

Advanced techniques are necessary to comprehensively monitor the spatial distribu-
tion of UHI. These techniques are also used to measure periodic and dynamic changes in
urban thermal environments [23]. LST products from Moderate Resolution Imaging Spec-
troradiometer (MODIS) were adopted by numerous researchers to study SUHI on a large
scale due to the high temporal resolution and large area coverage of MODIS [24]. Studies
from the past showed that SUHI have different temporal and spatial trends across the globe.
For example, nine cities in central Europe showed high SUHII values on a monthly basis,
and daytime SUHII values for the summer season showed the highest values [24]. The
study by Roth et al. [25] showed that the SUHII at daytime was greater than the SUHI at
nighttime for the cities of Los Angeles, Seattle and Vancouver. Zhou et al. [26] studied the
SUHII for southern China, and the results showed that the daytime SUHII was greater
than in other areas. The study by Yao et al. [27] focused on the temporal trends of SUHII in
31 cities in China for the study period 2001–2015, and the results showed the expansion and
increase in SUHII. In addition, many studies focused on analyzing the fundamental factors
influencing SUHII, for example, climatic conditions, heat emission by human activities,
vegetation cover and urban areas [28]. A study showed that daytime SUHII for 419 cities
globally had a significantly negative correlation with vegetation cover, and nighttime SUHII
is insignificantly correlated with vegetation cover [20]. The contributions of these studies
to understanding the primary causes of the SUHII effect are remarkable.

Forecasting models that are data-driven and can predict UHI in the future are neces-
sary due to the growing impacts of UHI in major urban centers. Regression analysis [29],
weighted regression analysis [30], principal component analysis (PCA), factor analysis (FA),
canonical correlation analysis (CCA), cluster analysis (CCA), and spectral analysis [19] are
all statistical methods frequently used in the development of UHI forecast models. How-
ever, most regression analysis is not good enough to capture nonlinear relationships [31,32].
Additionally, an artificial neural network model was used to predict weather; while highly
accurate, the model can only make small adjustments to a series of data values [33]. Conse-
quently, the Autoregressive Integrated Moving Average (ARIMA) model is used to predict
the SUHI of the study area, as it improves the accuracy of the prediction while requiring
fewer data inputs.
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The diurnal and seasonal variations of the SUHII temporal variations were thor-
oughly studied. It was generally agreed that SUHII was at its peak during the summer.
In general, daytime SUHII was stronger in warm cities compared to cold cities and in
summer compared to winter. The SUHII did not change significantly at night as the city or
season changed [34–40]. The interannual trend in SUHII has recently received more atten-
tion [18,19,41–48]. In some cities in China [8,14,41,43,48–53], India [54], Seoul Korea [31],
Sri Lanka [55], Nigeria [56] Tehran City [57] and the Mediterranean [58], SUHII indicated a
significant increasing trend. Similarly, very few researchers focused on studies related to
SUHI in Pakistan [59,60]. A study of the expansion of SUHI in coastal areas of Pakistan
has recently been conducted [60] in addition to this, only the cities of Karachi [61] and
Lahore [62] have attracted attention to study SUHI patterns. Rizvi et al. [60] explored
SUHII of coastal areas in Pakistan for the year 2017 and the result revealed that of five
selected coastal cities Karachi showed the highest mean SUHII (2.60 ◦C), following by
Ormara having the mean SUHII of 2.35 ◦C, the mean of Pasni city was recorded as 1.40 ◦C,
Gwadar has the mean SUHII of 1.35 ◦C and Jiwani has the minimum mean SUHII (0.462 ◦C).
A study analyzed the LST variations in the city of Lahore from 1996 to 2016 using Landsat
data and according to the results of this study, the LST of Lahore increased by 4.8 ◦C and
according to the prediction it will increase by 2 ◦C by the year 2035 [61]. Bilal et al. studied
the UHI of Karachi city using MODIS data for years 2000–2020, the results showed that the
mean SUHII for Karachi in the last 20 years (for months of January and May) is 0.15 ◦C [62].
Although previous studies concluded that SUHII variations typically occur on a variety of
temporal time scales, such as diurnal variations, seasonal variations, and the interannual
trend (i.e., temporal trends of SUHII are composed of seasonal variation and interannual
trend, presenting the difference in days and nights in different cities). Using day- and
night-time LST data from various cities, it is possible to analyze the diurnal variations of
SUHII separately. However, the analysis of temporal variations is affected by the coupling
of seasonal variation and annual trend in time series. So, to describe the temporal variations
of SUHII more precisely, the seasonal variation and interannual trend must be separated.
To create sustainable and resilient cities for SUHI, daytime and nighttime variations of
SUHI must be considered. Understanding the SUHII trends can help urban planners avoid
SUHI and urbanization-related issues when planning/designing urban growth. Therefore,
we examined the temporal trends of daytime and nighttime SUHII and its forecast until
2030 in different cities of Punjab province of Pakistan by using the autoregressive integrated
moving average (ARIMA) model. This study may help policymakers, urban planners, and
other decision makers in their efforts to address the growing problem of SUHI in cities
and develop sustainable urban designs. Furthermore, this research will be more helpful
to those cities that may require additional consideration when planning and managing
urbanization and SUHI mitigation strategies to reduce the rising urban surface heat island
for a livable environment and sustainable cities.

This study aims to use the MODIS data for a detailed study of the SUHII phenomenon
in the most populous province of Pakistan. To address the primary goal, precise objectives
of this study are: (1) to evaluate the spatial distribution of SUHII for each city, (2) to measure
the temporal trends of daytime and nighttime SUHII effect for each city, and (3) time series
analyses and forecasting the urban LST, rural LST, and SUHII using ARIMA model.

2. Materials and Methods
2.1. Study Area

Punjab is the largest province of Pakistan, with a population of 109.98 million, of
which 63.14% is the rural population and 36.86% is the urban population [63] and Punjab is
the second largest province by area, occupying a total area of 205,344 km2 [56] (Figure 1).
Punjab showed a maximum population growth of 49.40% in Pakistan during the last Census-
1998 [57]. Punjab has a subtropical climate with a humid summer and cold winter, Punjab
received rainfall between 100 mm in the south and 600 mm in the northwest region [58].
The variation in temperature in Punjab is between −2 ◦C and 45 ◦C, but in some extreme
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conditions the mercury can reach 47 ◦C in summer and can drop to −5 ◦C in winter [60].
Punjab is the leading province in the economic and social development of the country
and, with that, it is also the fastest growing province of the country. Due to this growth
and urbanization, Punjab is facing various urban thermal issues. It is essential to address
these thermal issues for sustainable urban management. The six main cities in Punjab were
chosen to examine the spatial patterns and future trends of LST in this study, which are
Lahore, Faisalabad, Gujranwala, Multan, Sialkot, and twin cities of Rawalpindi/Islamabad
(RWP/ISB), Table 1 showed the details of these cities.
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Figure 1. Punjab map with selected cities.

Table 1. Area, population, and population density of selected cities (according to the 2017 census).

City Name Total Area
(km2)

Total
Population

Urban
Percentage

Population
Density (km−2)

Lahore 1772 11,119,985 100 6275.39
Faisalabad 5857 7,882,444 47.79 1345.82
ISB/RWP 6191 7,405,748 53.00 1616.715

Gujranwala 3622 5,011,066 58.85 1383.51
Multan 3720 4,746,166 43.38 1275.85
Sialkot 3016 3,894,938 29.39 1291.43

2.2. Data

The LST products of the MODIS satellite provided the ability to obtain continuous
data with appropriate spatial resolution to differentiate between rural and urban areas.
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MODIS LST products are widely used to study SUHII on a large scale [63–65]. In this study,
MODIS MOD11A2 with 1 km spatial resolution and 8 days temporal resolution [66,67] was
used to evaluate LST trends and the effect of SUHII. To delineate the urban and rural area
for each city annually, the MODIS MCD12Q1 composite land cover product with a spatial
resolution of 500 m was chosen, the International Geosphere Biosphere Programme (IGBP)
MCD12Q1 classification scheme provides 17 categories [68] To match the resolution of LST
data, the MCD12Q1 product was rescaled to 1 km.

2.3. Methods

This study can be divided into three parts: (1) delineation of rural and urban areas
by MCD12Q1 product, (2) calculation of SUHII using MOD11A2 LST data, (3) analysis of
the trend of daytime and nighttime SUHII using the Mann-Kendall (MK) trend test (4) and
prediction of daytime and nighttime SUHII for each city in Punjab using the autoregressive
integrated moving average model (ARIMA). The complete methodology flow chart is
illustrated in Figure 2.
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2.3.1. Delineation of Rural and Urban Areas

For the delineation of rural and urban areas for each city in this study, first water
pixels with a value of 17 pixels have been removed, as it is necessary to remove these pixels
to eliminate the possible effect of these pixels on LST calculations [68,69]. Subsequently,
urban pixels with the 13-pixel value were extracted for each city and the remaining pixels
after the water and urban pixels in each city were considered rural areas [70].

2.3.2. SUHII Calculation

After defining the extent of the urban and rural area for every city, we use the following
formula to calculate SUHII:

SUHII = Urban LST − Rural LST (1)

where SUHII denotes the intensity of the urban heat island of the city, Urban LST represents
the average LST from urban areas and Rural LST denotes the LST average of rural areas.
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2.3.3. Mann-Kendall Test for Trend

Mann-Kendall (MK) is a nonparametric technique for identifying trend in time series
data [71] MK used classifications of time-based data and treats each entry as a reference
for comparison with all entries in time series [72]. Generally, MK is widely adopted to
check trends in environmental time series data [73]. The statistics to calculate MK are
given below:

S = ∑n−1
p=1 ∑n

q=p+1 sgn
(
Tq − Tp

)
(2)

sgn
(
Tq − Tp

)
=


i f
(
Tq − Tp

)
< 0 ; then −1

i f
(
Tq − Tp

)
= 0 ; then 0

i f
(
Tq − Tp

)
> 0; then 1

(3)

where n is the number of data entries, Tp and Tq denote the successive entries in the time
series for time p and q, sgn is the representation of the function that takes −1 if Tq − Tp < 0,
takes 0 if Tq − Tp = 0, and takes 1 if Tq − Tp > 0. In the case of n > 10, the normal estimation
is used (Z value of Kendall). To calculate the Z value, we need to calculate the variance of S
VAR (S) [74].

VAR(S) =
1

18
[n(n − 1)(2n + 5)− ∑i

j=1 yj
(
yj − 1

)(
2yj = 5

)
] (4)

The equation considers the numerous tied entries (equal entries); where i represents
the number of these equal trend values or groups, yj is the representation of the number
of entries presented in the jth group. After computing S and VAR (S) we can calculate the
value of Z.

Z =


i f S > 0; then

S − 1√
VAR(S)

i f S = 0; then 0

i f S < 0; then
S + 1√
VAR(S)

(5)

The positive value Z indicates the increasing trend and the negative value of Z indicates
the decreasing trend in time series. Z values were tested at significance levels of 1% and 5%.

2.3.4. Sen’s Slope Estimator

The Sen slope estimate derived by Sen [75] has been a widely adopted method for
estimating the slope of trends in time series [76] The representation of a linear model is
as follows:

f (t) = St + C (6)

where S is the slope, the function f(t) is the representation of time series, t is the time, and
C is constant. S can be calculated by the following equation:

Si =
xp − xq

p − q
(7)

Here i = 1,2,3, . . . , n, xp and xq are the entries for times p and q and p > q. Calculating
the median values of n of Si can be done by the following equation [71].

S =


i f n is odd then S n+1

2

i f n is even then
S n

2
+S n+2

2
2

(8)

A positive value of Si denotes the upward trend, a negative value of Si denotes the
downward trend, and zero value of Si denotes that there is no trend in time series.
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2.4. ARIMA Modeling

ARIMA (p, d, q) consists of two integration models; the first is the autoregressive (AR)
model and the second is the moving average (MA) model. ARIMA is a widely adopted
model to study time-series data. Meanwhile, LST data are time series data and in general
time series data have trends in it that are non-stationary [77]. Removal of nonstationarity is
performed by finite differencing of data points (d) in the ARIMA model [78]. In ARIMA,
p represents the order of autoregression and q is the representation of the order of moving
average [79]. To check the stationarity of the original data, the Dickey-Fuller unit root (ADF)
test is a common method; if the test results suggest that the data are nonstationary, then
differencing is applied to data to make in stationary [80]. When variance and mean of time
series data are time-independent, then a time series is considered as stationary series [81].
The ARIMA (p, d, q) model can be presented by following mathematical equation:

ϕ(L)(1 − L)dyt = θ(LT)εt (9)

(1 − ∑p
i=1 ϕiLi)(1 − L)dyt = (1 + ∑q

j=1 θjLj)εt (10)

where the order of the autoregressive, integrated, and moving average parts is represented
as p, d, and q, respectively. However, ARIMA is not always useable for time series fore-
casting, in case of seasonal variations due to climatic data; seasonal ARIMA (SARIMA
(p, d, q) is used instead of normal ARIMA, where index refers to the observations per
season. Identifying the correct values for p and q is a challenging task in ARIMA. The
autocorrelation function (ACF) and the partial autocorrelation function (PACF) facilitate
this task, since these functions evaluate the relationship between the entries of time series.
It is useful to plot ACF and PACF against their lags to identify the values of p and q [82].

The root mean square error (RMSE) and the mean absolute percentage error (MAPE)
are the most common methods for measuring forecast accuracy in time series data. RMSE
and MAPE can be calculated from the following formulas:

RMSE =

√
1
n ∑n

t=1

(
yt + zt)2 (11)

MAPE =
1
n ∑n

t=1

∣∣∣∣yt − zt

xt

∣∣∣∣× 100 (12)

where t represents the time, yt is representation of original values on time t, zt denotes
the predicted value sat time t, sequence of time points denoted by n. The performance of
the model can be measured by the values of RMSE and MAPE, a lower value for RMSE
and MAPE shows better performance [83,84]. Validation is an important step to test the
robustness of the ARIMA model. We also used the one-year (12 months) method to validate
the ARIMA model. Figure 3 illustrates the complete flow for the ARIMA model.
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3. Results
3.1. Distribution of the Average SUHII for the Last 15 Years

All selected cities showed positive values for nighttime SUHII from 2006 to 2020 in
all seasons and annually, for daytime SUHII most cities showed positive values except for
few cities (Table 2). The maximum value of SUHII was observed at nighttime in the spring
season (3.855 ◦C) and the minimum value of SUHHI was observed at daytime in the winter
season (0.855 ◦C) for the averaged six cities. In case of individual city, Gujranwala showed
the highest SUHII for nighttime spring (4.980 ◦C) and ISB/RWP exhibited the lowest value
for SUHII for daytime winter (−0.923 ◦C).
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Table 2. Averaged annual and seasonal SUHII for each city from 2006 to 2020.

City
Daytime SUHII (◦C) Nighttime SUHII (◦C)

Annual Winter Spring Summer Autumn Annual Winter Spring Summer Autumn

Lahore 2.924 1.837 3.902 3.542 2.393 3.232 3.382 4.639 2.078 2.841
Faisalabad 3.139 1.609 3.915 3.854 3.147 3.213 3.540 3.809 2.139 3.377
ISB/RWP −0.219 −0.923 −0.160 0.582 −0.416 1.042 0.750 1.268 1.121 1.024
Gujranwala 2.108 0.717 2.324 2.266 3.071 3.336 3.436 4.980 1.514 3.449

Multan 3.327 1.823 3.947 4.118 3.417 3.069 2.822 4.007 2.102 3.357
Sialkot 2.045 0.065 2.017 2.944 3.146 3.045 3.269 4.425 1.542 2.982

Average 2.221 0.855 2.657 2.877 2.460 2.823 2.866 3.855 1.749 2.838

3.2. Statistical Summary of SUHII

The statistical summary of the daytime and nighttime SUHII for each city is presented
in Table 3. Statistical results revealed that for the daytime SUHII Multan city has the highest
mean value (3.327 ◦C) and ISB/RWP showed the lowest mean value of −0.219 ◦C. In case of
nighttime SUHII Gujranwala showed maximum mean value of 3.332 ◦C and like daytime
SUHII ISB/RWP showed minimum mean value of 0.452 ◦C.

Table 3. Statistical summary of daytime and nighttime SUHII for Punjab cities.

City
Daytime SUHII (◦C) Nighttime SUHII (◦C)

Mean SD Mean SD

Lahore 2.924 1.289 3.229 1.288
Faisalabad 3.139 1.304 3.214 0.916
ISB/RWP −0.219 1.295 1.042 0.452

Gujranwala 2.108 2.476 3.332 1.541
Multan 3.327 1.633 3.068 1.023
Sialkot 2.045 2.154 3.041 1.427

Average 2.221 1.370 2.821 0.975

3.3. Fifteen-Year Temporal Trends of SUHII for Punjab

Figure 4 showed the temporal trends of averaged daytime SUHII for selected six cities
from 2006 to 2020; all results including annually, spring, summer, autumn and winter
showed upward trends for SUHII, the highest significant upward trend is recorded in
spring season (0.486 ◦C/year, p < 0.05) and the lowest significant increasing trend shown
by annual data (0.410 ◦C/year, p < 0.05). Temporal trends for nighttime were shown in
Figure 5; nighttime trends for SUHII are similar to daytime SUHII and trends from all
four seasons and annually are recorded as upward. The highest significant increasing trend
was recorded annually (0.485 ◦C/year, p < 0.05) and the minimum significant increasing
trend was shown by the summer season (0.352 ◦C/year, p < 0.05). For daytime SUHII, the
summer and autumn seasons exhibited insignificant increasing trends and for nighttime
SUHII, two seasons (winter and spring) exhibited insignificant increasing trends.

Table 4 presented details of the temporal trends of daytime and nighttime SUHII
for each city; for daytime annual SUHII, eight of the nine cities showed an increasing
trend and only Multan exhibited an insignificant decreasing trend. ISB/RWP showed
the highest significant increasing trend at a rate of 0.583 ◦C/year (p < 0.01) and Sialkot
exhibited the lowest significant increasing trend of 0.371 ◦C/year (p < 0.05). For winter
daytime SUHII only Gujranwala exhibited a downward trend and all other cities exhibited
upward trends, the highest upward trend was recorded in Sialkot (0.371 ◦C/year, p < 0.05).
Meanwhile, increasing trends in SUHII during the daytime were observed in all cities for
the spring season and the maximum significant increase trend was observed in ISB/RWP
(0.543 ◦C/year, p < 0.05). Additionally, two cities (Lahore and Multan) exhibited downward
trends and all other cities showed upward trends for the summer season and a maximum
significant upward trend was observed in ISB/RWP (0.410 ◦C/year, p < 0.05). Lastly, for
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the autumn season, six cities showed increasing trends for daytime SUHII, the highest
significant increasing trend was shown in ISB/RWP with an increasing rate of 0.562 ◦C/year
(p < 0.01).
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All cities showed upward trends for the annual, spring, summer and autumn season,
and only two cities (Gujranwala and Sialkot) in the winter season showed downward trends
for the nighttime SUHII. For the annual nighttime SUHII the highest significant upward
was recorded in Faisalabad with an increasing rate of 0.543 ◦C/year (p < 0.01). The winter
season showed all insignificant trends for the nighttime SUHII. Meanwhile, a significant
increase trend was observed for the spring season in Faisalabad with a rate of 0.390 ◦C/year
(p < 0.05). Additionally, Gujranwala showed a significant increasing trend (0.371◦C/year,
p < 0.05) for the summer season. In the last, Lahore showed a maximum significant upward
trend with a rate of 0.371 ◦C/year (p < 0.05) and Multan showed a minimum significant
increasing trend (0.352 ◦C/year, p < 0.05).
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Table 4. The last 15 years of temporal trends of SUHII for Punjab (Z represents the MK value and
S represents the Sen’s slope value).

City
Daytime SUHII (◦ C/Year) Nighttime SUHII (◦C/Year)

Annual Winter Spring Summer Autumn Annual Winter Spring Summer Autumn

Lahore
Z 0.048 0.029 0.219 −0.105 −0.448 * 0.295 0.048 0.162 0.181 0.371 *
S 0.002 0.007 0.041 −0.016 −0.040 0.032 0.016 0.036 0.028 0.050

Faisalabad
Z 0.124 0.333 0.124 0.067 0.124 0.543 ** 0.181 0.390 * 0.371 * 0.486
S 0.016 0.056 0.023 0.008 0.007 0.039 0.037 0.039 0.039 0.034

ISB/RWP
Z 0.581 ** 0.314 0.543 ** 0.410 * 0.562 ** 0.486 * 0.219 0.333 0.162 0.314
S 0.095 0.037 0.178 0.114 0.092 0.025 0.016 0.034 0.013 0.017

Gujranwala Z 0.276 −0.124 0.295 0.124 0.124 0.314 −0.048 0.390 * 0.371 * 0.314
S 0.031 −0.015 0.057 0.042 0.015 0.030 −0.003 0.077 0.036 0.049

Multan
Z −0.105 0.200 0.086 −0.219 −0.371 * 0.314 0.067 0.143 0.162 0.352 *
S −0.014 0.054 0.016 −0.060 −0.094 0.025 0.008 0.024 0.023 0.042
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Table 4. Cont.

City
Daytime SUHII (◦ C/Year) Nighttime SUHII (◦C/Year)

Annual Winter Spring Summer Autumn Annual Winter Spring Summer Autumn

Sialkot
Z 0.371 * 0.371 * 0.257 0.314 −0.086 0.333 * −0.067 0.257 0.333 0.371 *
S 0.040 0.062 0.054 0.063 −0.006 0.030 −0.021 0.073 0.056 0.041

Average Z 0.410 * 0.448 * 0.486 * 0.276 0.086 0.485 * 0.067 0.314 0.352 * 0.390 *
S 0.031 0.036 0.061 0.027 0.006 0.032 0.006 0.043 0.029 0.034

** p < 0.01 and * p < 0.05.

3.4. ARIMA Model for Daytime and Nighttime SUHII

As SUHII was calculated from LST, which is a seasonal phenomenon, and plots of
the significant ACF and PACF confirms at multiple lags of 12, so SARIMA with seasonal
differencing of 12 was adopted to perform forecasting of daytime and nighttime SUHII.
Initially, the ADF unit root test was applied to check the stationarity of the data and then
the values for p and q along with the seasonal order P and Q were recognized as SARIMA
(0,0,1) (1,1,1)12 to estimate the SUHII daytime and nighttime for each city. Values for RMSE
and MAPE were calculated by testing data for the individual model. Table 5 showed the
values of RMSE, MAPE and p for the ADF test.

Table 5. RMSE, MAPE and p(ADF) for the fitted ARIMA Model.

City
Daytime SUHII (◦C) Nighttime SUHII (◦C)

p-Value (ADF) RMSE MAPE p-Value (ADF) RMSE MAPE

Lahore <0.0001 0.74 0.24 <0.0001 0.66 0.19
Faisalabad <0.0001 0.77 0.3 <0.0001 0.53 0.14
ISB/RWP <0.0001 0.75 2.19 <0.0001 0.38 0.63

Gujranwala <0.0001 0.82 0.76 <0.0001 0.66 0.56
Multan <0.0001 1 0.46 <0.0001 0.64 0.22
Sialkot <0.0001 0.91 1.39 <0.0001 0.68 0.32

Average <0.0001 0.43 2.98 <0.0001 0.43 0.12

Forecasting was estimated for monthly daytime and nighttime SUHII averages after
selection of the best-fit SARIMA model. Monthly average data of daytime and nighttime
SUHII for each city from January 2006 to December 2019 were taken as validation data
for the model, and then forecasting was done on monthly average of SUHII from January
2020 to December 2030. Figure 6 showed the forecasting values for the average SUHII
during the daytime for each city and Figure 7 showed the forecasting values for the average
SUHII during the nighttime for each city with 95% upper and lower confidence level.
All forecasted values seem very close to the observed values, which confirmed the good
forecasting of the selected SARIMA model. The forecast of the averaged daytime and
nighttime SUHII endorsed the increasing trends of SUHII, as the averaged daytime SUHII
of six cities for year 2030 was forecasted at 2.37 ◦C, which is higher than the average
daytime SUHII of six cities for year 2020 (2.33 ◦C) and the averaged nighttime SUHII of
six cities for year 2030 was forecasted at 3.00 ◦C, which was higher than the SUHII of 2020
(2.99 ◦C).
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Figure 6. Forecasting for daytime SUHII by best fitted ARIMA.



Land 2023, 12, 142 14 of 20Land 2023, 12, x FOR PEER REVIEW 15 of 22 
 

 

0

1.2

2.4

3.6

4.8

6

2005 2008 2011 2013 2016 2019 2022 2024 2027 2030

FA
ISA

LA
BA

D 
SU

HI
I

SUHII ARIMA (SUHII) Validation Prediction Lower bound (95%) Upper bound (95%)

-1

0.2

1.4

2.6

3.8

5

6.2

7.4

2005 2008 2011 2013 2016 2019 2022 2024 2027 2030

GU
JR

AN
WA

LA
 SU

HI
I

-0.5

0.5

1.5

2.5

3.5

2005 2008 2011 2013 2016 2019 2022 2024 2027 2030

ISB
/R

W
P S

UH
II

0

1.3

2.6

3.9

5.2

6.5

2005 2008 2011 2013 2016 2019 2022 2024 2027 2030

LA
HO

RE
 SU

HI
I

0

1

2

3

4

5

6

2005 2008 2011 2013 2016 2019 2022 2024 2027 2030

MU
LT

AN
 SU

HI
I

-1

0

1

2

3

4

5

6

7

2005 2008 2011 2013 2016 2019 2022 2024 2027 2030

SU
HI

I

Figure 7. Forecasting for nighttime SUHII using best fitted ARIMA.
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4. Discussion

Statistical and spatial distributions of daytime and nighttime SUHII for six cities in
Punjab were analyzed on a seasonal and annual scale for years 2006–2020. The average
daytime SUHII for all six cities varied from daytime SUHII 0.855 ◦C in winter to nighttime
SUHII 3.855 ◦C in spring. The average mean for the daytime SUHII for the six cities was
recorded as 2.221 ◦C and the average nighttime SUHII for the six cities was recorded as
2.82 ◦C.

Temporal trends for daytime and nighttime SUHII were evaluated using MK trend
analyses for every city from 2006 to 2020. Temporal trends for the average daytime and
nighttime SUHII of six cities exhibited upward trends annually and seasonally. These
results of increasing SUHII are similar to the results of recent study in Islamabad [52] that
showed an increase in the effect of UHI due to the change in LULC, increasing SUHII was
also observed in recent study in metropolitan cities of Pakistan [58,85]. Furthermore, the in-
creasing trends of SUHII are similar to the results of Kuwait [86], Penang (Malaysia) [87], the
mega-cities of Bangladesh [88–92] and Wuhan (China) [93]. The highest significant upward
trend for daytime SUHII was observed in the spring season (0.486 ◦C/year, p < 0.05), for
nighttime the highest significant upward trend was shown by annual SUHII (0.485 ◦C/year,
p < 0.05). Almost every city showed an increasing trend for daytime and nighttime SUHII
for all seasons and annually; maximum increasing trend for annual daytime SUHII was
observed in ISB/RWP at a rate of 0.583 ◦C/year (p < 0.01), Sialkot with an increasing
rate of 0.371 ◦C/year (p < 0.05) exhibited the highest upward trend for daytime SUHII of
winter season, the largest significant rising trend was observed in ISB/RWP (0.543 ◦C/year,
p < 0.05) daytime SUHII for spring season, for summer season daytime SUHII maximum
significant upward trend was observed in ISB/RWP (0.410 ◦C/year, p < 0.05) and for
autumn season daytime SUHII the highest significant rising trend was shown by ISB/RWP
with an increasing rate of 0.562 ◦C/year (p < 0.01). For the annual SUHII nighttime Faisal-
abad showed a maximum significant upward trend with an increase rate of 0.543 ◦C/year
(p < 0.01), no city showed a significant trend for nighttime SUHII in the winter season, for
the spring season the highest significant increasing trend for nighttime SUHII was shown
by Faisalabad (0.390 ◦C/year p < 0.05), Gujranwala presented a maximum significant rising
trend with the rate of 0.371◦C/year (p < 0.05) for nighttime SUHII in the summer season,
and the largest upward trend for nighttime SUHII in winter season was recorded in Lahore
(0.371 ◦C/year (p < 0.05). Increasing trends in SUHII indicate that man-made structures
are causing the increase in urban LST. SARIMA (0,0,1) (1,1,1)12 was fitted for the monthly
daytime and nighttime SUHII of six cities in Punjab from 2006 to 2020 after checking the
stationarity of the data. The ADF test was adopted [86] to check the stationarity of the data
giving p values <0.0001 for every city, ACF and PACF were applied to achieve the values
for p, d, and q to set the SARIMA model [84]. The RMSE and MAPE values confirmed
the fitness of the SARIMA model. The SARIMA model confirmed the increasing trends of
SUHII at daytime and nighttime for six cities of Punjab and forecast higher SUHII values
in 2030.

The increasing trends of daytime and nighttime SUHII by the MK trend test is pointing
to an increase in urban LST in cities of Punjab which can be related to the decrease in
vegetation due to urbanization [19,63]. Forecasting of the increase in SUHII and the trends
of increasing SUHII in all cities of Punjab need the attention of policy makers for future
planning of cities and management of cities with higher values of SUHII such as ISB/RWP.

4.1. Implications

In recent years, a noticeable increase in daytime and nighttime SUHII has been ob-
served in Pakistan, and this trend is expected to continue. Although the effects of urban-
ization on UHI are inevitably, there are mitigation measures that can be taken in planning,
management, and policy making to reduce surface temperature and make the urban ther-
mal environment more livable. Pavement is a significant element of the city and occupies a
significant portion of the urban area; as a result, it contributes significantly to the formation
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of the urban heat island effect (UHI) [94]. The utilization of cool pavements, which have a
lower surface temperature and a lower rate of sensible heat flux to the atmosphere, is one
of the most effective mitigation strategies that can be used to combat the UHI effect. It is
more effective to fully implement the strategy of cool and evaporative roofs in high-density
urbanized areas, while in low-density urbanized areas, there is considered more space for
planting, which makes street trees an effective strategy for mitigating the effects of the
urban heat island effect [62]. In addition, urban reflective materials that prevent the direct
transformation of incident solar radiation into sensible heat have the potential to reduce the
impact of UHI [65,95]. In general, the method proposed in this study can help us evaluate
the efficacy of mitigation measures by characterizing the temporal variations of historical
and future UHI. This allows us to determine whether the rising trend of UHI is changing
when mitigation measures are implemented, which in turn provides decision makers with
technical support.

4.2. Limitations and Future Work

MODIS data (MOD11A2 and MCD12Q1) were used in the study to examine the area of
urbanization and its effects on SUHI for cities of Punjab. Researchers widely used MODIS
data to examine spatiotemporal trends of SUHII [21,72,96], especially for a large study
area, processing of MODIS data is convenient, which makes it a good choice. Analyzing
the effects of urbanization on SUHII for Punjab using higher spatial resolution data (e.g.,
Landsat) can be very time consuming. Furthermore, data with higher spatial resolution
have low temporal resolution. Future studies should adopt higher spatial resolution, which
can ensure more accuracy than MODIS data. Higher spatial resolution data and multisensor
fusion (MODIS and Landsat) can be used to investigate urbanization effects on VC in future
studies [97,98]. Additionally, this study adopted the ARIMA model for forecasting which
performed well; however, future studies should focus on machine learning models for
forecasting. The present study revealed the significant effects of uncontrolled urbanization
on SUHII in Punjab cities, however future studies should focus on the consequences of
this effect on human health and quality of life in these cities. Future studies also can
focus on each city separately and consider more variables like land cover, land use and
vegetation index.

5. Conclusions

In this study, trends and forecasting for daytime and nighttime SUHII for six cities in
Punjab were evaluated for the study period 2001 to 2020 using the MK trend test and the
ARIMA model, respectively. The following conclusions were drawn from the results of
this study:

The average mean for the daytime SUHII for the six cities was recorded as 2.221 ◦C
and the average nighttime SUHII for the six cities was recorded as 2.82 ◦C.

The averaged daytime SUHII showed upward trends for all seasons and annually,
spring season with an increasing rate of 0.486 ◦C/year (p < 0.05) showed a maximum
significant rising trend and annual SUHII with an increasing rate of 0.410 ◦C/year (p < 0.05)
showed a minimum significant rising trend.

The average nighttime SUHII for all six cities exhibited an increase for all four seasons
and annually. Annual SUHII with an increasing rate of 0.485 ◦C/year (p < 0.05) exhib-
ited highest significant increasing trend and summer SUHII with an increasing rate of
0.352 ◦C/year (p < 0.05) exhibited lowest significant increasing trend.

The ARIMA model forecast an increase of 0.04 ◦C in the average SUHII at daytime
of six cities of Punjab and an increase of 0.01 ◦C in the nighttime SUHII for all six cities
of Punjab.

The increase in SUHII can cause a decrease in vegetation in urban areas of Punjab.
Furthermore, increasing trends for SUHII in most cities of Punjab indicate a rapid and
unplanned urbanization that requires immediate attention of policy makers.
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