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Abstract: Since land use/cover change profoundly impacts climate change and global warming has
become an irreversible trend in the Anthropocene, there have been numerous global studies on the
impact of climate change on vegetation growth (VG). However, the effects of climate extremes on
the growth and direction of various vegetation types need to be better investigated, especially in the
climate transition zones. In this paper, we examined the effect of diurnal warming on the growth of
various types of vegetation in China’s north–south transition zone. Based on the daily observation
data of 92 meteorological stations in the Qinling-Daba (Qinba) mountainous area from 1982 to 2015,
coupled with the Normalized Difference Vegetation Index (NDVI) and data on the type of vegetation.
This research examined the temporal changes in the highest and lowest temperatures during the last
33 years using trend analysis. Second-order correlation analysis was used to investigate vegetation
NDVI response characteristics to diurnal warming and to examine the effect of diurnal warming
on the growth of different vegetation types. Our results showed that maximum temperature (Tmax)
and minimum temperature (Tmin) showed an obvious upward trend, with the daytime temperature
increase rate 1.2 times that at night, but failing the t-test. In addition, diurnal warming promoted
vegetation growth, with NDVI associated positively correlated with Tmax at approximately 91.2%
of the sites and 3492 rasters and with Tmin at roughly 53.25% of the sites and 2864 rasters. Spatial
significance analysis showed an apparent difference, but few areas passed the t-test. Furthermore,
daytime warming enhanced the growth of grasses, shrubs, deciduous broad-leaved forests, crops,
and conifers, while the effect of nighttime warming on VG had a positive effect only on the growth
of evergreen broad-leaved forest vegetation. These findings reveal the mechanisms of the impact of
climate extremes on VG under global change, particularly the extent to which different vegetation
types in climatic transitional zones respond to climate extremes.

Keywords: climate change; day and night temperature; vegetation NDVI; partial correlation analysis;
Qinling-Daba mountains

1. Introduction

According to the fourth report of the Intergovernmental Panel on Climate Change
(IPCC), the global average surface temperature increased by 0.74 ◦C between 1906 and 2005
and 0.65 ◦C over the past 50 years, with the latter warming at a rate that is about twice as
fast as the former [1]. China’s temperature has increased between 0.5 and 0.8 ◦C over the
past century, and precipitation has varied widely [2]. The impacts of climate change on
global terrestrial ecosystems are already significant. Vegetation is a natural link between
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the various cycles and an essential part of terrestrial ecosystems [3,4]. The mechanism of
climate influence on vegetation growth (VG) has become a crucial part of global change
research [5,6]. In the 20th century, the climate-driven potential net primary productivity
(NPP) of vegetation increased by 13% on a global scale [7]. Increasing precipitation increases
VG in arid areas on regional scale [8], while it inhibits vegetation growth in humid and semi-
humid regions [9,10]. Consequently, investigating the spatial nonstationary relationship
between vegetation activity and climate change at varying spatial scales and its response
mechanism has become a frontier area of research. Identifying the relationship between
the influence of different climate factors on VG can help clarify the mechanism of global
change in plant growth.

Previous studies have focused on measuring the interrelationships between VG and
precipitation, temperature, and human activities [11–14]. In terms of vegetation–climate
relationships, through an analysis of vegetation cover in Africa, Ghebrezgaber et al. [15]
revealed that increased precipitation promotes VG, whereas increased temperature inhibits
VG. Zhou et al. [16] found that droughts triggered by rising temperatures in the Northern
Hemisphere were the main reason for the decline in vegetation cover at high latitudes
during the 1980s. Zhao et al. [17] showed that precipitation was the main control factor
affecting vegetation cover changes in China, and local climate conditions were more pro-
nounced for VG in climate-affected areas. Piao et al. [18] concluded that the increase in
temperature promoted the growth in NDVI, whereas the effect of precipitation on VG was
more significant on a regional scale. In terms of VG and human activities, anthropogenic
disturbances have dual effects on vegetation growth. On the one hand, rapid urbanization
results in encroachment of construction land on agricultural land and forest land, resulting
in a reduction in vegetation cover [19]. On the other hand, implementing environmental
projects, such as returning farmland to forest and grass, is beneficial for enhancing vegeta-
tion cover [20]. Both climate change and anthropogenic impacts can have some effect on
VG, and there are significant regional differences in the degree to which VG responds to
climate change and anthropogenic impacts [21].

Since the beginning of the Anthropocene, the frequency and intensity of extreme
climate events have increased significantly, posing a serious threat to the safety of human
life and VG [22,23]. Academic studies have concentrated more on the interrelationship
between VG and climate change [24,25], but the impact of climate extremes on VG has
received less attention [26,27].

The Normalized Difference Vegetation Index (NDVI) is an indicator for monitoring
and signaling changes in vegetation activity and productivity [28]. Its value reflects the
level of vegetation activity [29]. As various NDVI products exist, the differences in sensors,
spectral response function and correction methods, the accuracy of the study results is
affected to some extent [30,31]. Monitoring the research of long-term vegetation dynamics
and their impact mechanisms needs the selection of suitable NDVI data. In comparison
to other NDVI data products, GIMMIS NDVI3g data have been widely used to monitor
vegetation dynamics [32], land degradation [33], and carbon balance [34] on large regional
scales because of their long monitoring time and high stability.

In addition, the magnitude of response to diurnal warming varies among vegetation
types. In temperate regions, grass and scrub are more sensitive to summer daytime
warming, whereas autumn warming significantly impacts broad-leaved and coniferous
forests [35]. Rossi et al. [36] found that nighttime warming was more likely than daytime
warming to promote earlier germination in black spruce. Zhao et al. [37] demonstrated,
through the analysis of the mechanisms of VG response to diurnal warming in Xinjiang,
that daytime warming was beneficial to the growth of coniferous forests, while nighttime
warming had significant positive effects on coniferous forests, agricultural vegetation, and
grassland. Despite the global research on the mechanisms of diurnal warming on the
growth of various types of vegetation, there are few studies on the mechanisms of diurnal
warming on typical vegetation types in climate-vegetation transitional areas, especially in
the transitional zone from the northern subtropics to the warm temperate zone.
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This study’s main objective was to investigate the mechanism of diurnal warming
on the growth of typical vegetation types in China’s north–south transitional zone. We
had two specific questions: (1) How does diurnal warming promote or inhibit vegetation
growth at the site and raster scales? (2) How does diurnal warming affect the growth of
typical vegetation types (grass, scrub, deciduous broad-leaved forest, evergreen deciduous
broad-leaved mixed forest, evergreen broad-leaved forest, coniferous forest, and crops), and
are there any differences in the response of various vegetation types to diurnal warming?
First, we collected GIMMIS NDVI data, meteorological station data, and maps of vegetation
type. The precipitation and daily minimum/maximum temperature datasets at the raster
scale were formed by ANSUPLIN interpolation. Second, we measured the degree and
significance of diurnal warming on vegetation NDVI at the site scale using second-order
partial correlation. After controlling for precipitation variables, we further identify the
effects of daily maximum temperature (Tmax) and daily minimum temperatures (Tmin) on
typical vegetation. Finally, based on the interpolated climate data and NDVI, we applied
second-order partial correlation to measure the degree that diurnal warming at the raster
scale affects the NDVI of different vegetation types.

2. Data and Methods
2.1. Study Area

The Qinba Mountains (102◦24′–112◦40′ E, 30◦43′–35◦29′ N) are in the transitional zone
between the north subtropical zone and the south warm temperate zone in China (Figure 1).
They cover an area of about 3 × 105 km2, including Hubei, Henan, Chongqing, Shaanxi,
Gansu, and Sichuan provinces and cities. The climate types in the region are complex and
diverse, with a north subtropical maritime climate, subtropical monsoon climate, temperate
monsoon climate, and warm temperate continental climate. Climate has typical vertical
variation on the growth of vegetation. In terms of topography, it is high in the northwest
and low in the southeast, with hills, basins, valleys, and plains dominating the terrain. The
eastern part of the study area is dominated by plains and hills, with an average elevation of
400 m above sea level. Its western part is composed of basins and valleys, with an average
elevation of 1600 m. The spatial and temporal distribution of precipitation is uneven, due to
monsoonal and continental climate, with an average annual precipitation of 450–1300 mm.
The Qinba Mountains, located across the Yangtze River, Yellow River, and Huaihe River
basins, boast well-developed water systems, abundant runoff, and 53% forest coverage, and
hence are an important national biodiversity and water-conserving ecological function area.
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Figure 1. Distribution of meteorological stations in the Qinba Mountains.

2.2. Data Source and Processing

Vegetation data were mainly collected from the European Space Agency Climate
Change Initiative Land Cover Website (ESA CCL-LC). We extracted the vegetation type in
the Qinba Mountains changing from 1982 to 2015 and obtained the vegetation type shift and
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change area during the study period using the Intersect tool in ArcGIS 10.3 [38]. It combines
types of urban and bare land and waterbodies into one category and is not analyzed in
this paper. The reclassification tool was used to calculate the areas where the vegetation
types had not changed and to measure the dynamic growth of vegetation in response to
diurnal warming of different vegetation types separately (Figure 2). The GIMMS3gV1.0
data from 1982 to 2015 were supplied by Global Inventory Modeling and Mapping Studies
(GIMMS), USA, with a spatial resolution of 8 km, and NDVI datasets were synthesized
every 15 d (http://www.resdc.cn/) (accessed on 16 August 2019). The meteorological
data of Tmax, Tmin, and precipitation for 94 meteorological stations in the Qinba Mountains
from 1982 to 2015 were collected from the China Meteorological Science Data Sharing
Service (http://cdc.nmic.cn/) (accessed on 23 August 2019). The extreme temperatures
(Tmax and Tmin) were filtered from the daily weather station data, and then the extreme
temperatures on the monthly and annual scales were obtained for each weather station.
In order to determine whether there was a significant difference in the diurnal warming
rates, we used analysis of covariance to calculate the correlation between the slopes of
daytime and nighttime warming changes from 1982 to 2017 [39]. The digital elevation
model (DEM) was derived from the geospatial data cloud (http://www.gscloud.cn/)
(accessed on 24 August 2019) with a resolution of 30 m. It was downloaded from the United
Stated Geological Survey website (USGS) (https://earthexplorer.usgs.gov/) (accessed
on 4 September 2019) using a chunked download and was stitched and cropped to get
the complete Qinba Mountain DEM data. On the basis of comprehensive consideration
of the influence of terrain and number of stations on meteorological elements, the thin
disk smooth spline function built into ANUSPLIN software uses smooth parameters for
multivariate smooth interpolation of irregularly distributed data to achieve an optimal
balance between data fidelity and smoothness of the fitted surface [40,41]. Currently,
ANUSPLIN has been widely used for spatial interpolation of temperature and precipitation,
and it has been shown that ANUSPLIN interpolation results are significantly better than
other interpolation methods [42]. ANUSPLIN interpolation was used to interpolate the
temperature and precipitation at each station into a 1 km × 1 km raster, which was
resampled into an 8 km × 8 km raster [43]. Second-order partial correlation analysis, which
refers to the calculation of the correlation coefficient between two variables when they are
simultaneously correlated with a third variable by excluding the effect of the third variable,
has been widely used in the study of global change [44,45]. Hence, the second-order partial
correlation analysis was used to compute the correlation coefficients and significance levels
between diurnal warming and NDVI of different vegetation types at the raster level.
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2.3. Methodology

In the Qinba Mountains, the response mechanism of transitional vegetation growth to
diurnal warming has been a complex research topic. In this study, the effects of climate
extremes on the growth of different vegetation types were thoroughly analyzed on two
scales, site and raster, using multiple data sources, including NDVI, vegetation type, climate
extreme indicators and DEM. In most previous research, the impact of climate change on
VG was analyzed using a single-scale site or raster scale, which needs to be more precise.
Here, we investigated the effect of climate extremes on the growth of various types at
the site and grid scale, which can be used to verify and improve the results’ reliability
(Figure 3). In addition, we increased the accuracy of vegetation types by extracting areas
with constant vegetation types between 1982 and 2015, which made up for the previous
defects of single-year vegetation types.
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2.3.1. Maximum Value Composite Method

The maximum value of monthly NDVI is obtained through the maximum value
synthesis (MVC) method, which can effectively reduce clouds, aerosols, cloud shadows,
observation angles and solar altitude angles in the atmosphere [46]. The MVC method can
be expressed as follows:

MNDVIi = Max(NDVI1, NDVI2) (1)

where i is the month serial number with values between [1,12]; MNDVi is the NDVI value
of month i; NDVI1 is the NDVI value for the first half of month i; NDVI2 is the NDVI
value for the second half of month i. The annual NDVI values are further calculated by
calculating the monthly NDVI maxima [47].

2.3.2. ANUSPLIN Interpolation Method

ANUSPLIN interpolation is based on the theory of interpolation of ordinary thin disk
and local thin disk spline functions, where the local thin disk smooth spline method is
an extension of the thin disk smooth spline prototype, which allows the introduction of
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linear covariates to the model except for the ordinary spline independent variables also
allows the introduction of linear covariate sub-models [48,49]. The interpolation software
ANUSPLIN is capable of interpolating multiple surfaces simultaneously and has a set of
detailed statistical analysis, data processing and calculation of standard errors of spatial dis-
tribution, with the advantages of high computational efficiency and ease of operation [50].
Therefore, we used DEM as a covariate to interpolate Tmax, Tmin and precipitation in the
Qinba Mountains by ANUSPLIN software. The ANUSPLIN interpolation method can be
expressed as follows:

zi = f (xi) + bTyi + ei (i= 1, 2, 3, . . . , N) (2)

where zi is the dependent variable located at spatial location; f is an unknown smooth
function about xi; xi is a d-dimensional vector with respect to the sample independent
variables; b is the p maintenance of yi; yi is the p dimensional independent covariates; T is
the number of iterations; ei is the random error of the independent variable with expectation
0. The function f and the vector of coefficient b can be calculated as follows:

N

∑
i=1

(
zi − f (xi)− bTyi

wi

)
+ ρJm( f) (3)

where wi is the known local relative coefficient of variation used as a weight; ρ is the smooth
parameter, determined by the Bayesian-based generalized maximum likelihood method
provided by ANUSPLIN [51]; Jm (f ) is the m-order partial derivative of the function f.

2.3.3. Second-Order Partial Correlation Analysis Method

Partial correlation analysis measures the linear correlation of two variables by remov-
ing the linear effects of other variables. The first-order partial correlation coefficient is the
result obtained by excluding the effect of one variable, the second-order partial correlation
coefficient is the result obtained by excluding the effect of two variables, and the correlation
coefficient is the result obtained when no other variables are excluded [52]. In this study,
second-order partial correlation analysis is used because three climatic factors (Tmax, Tmin
and precipitation) are employed. The effects of precipitation and Tmin (Tmax) need to be
excluded when the effects of Tmax (Tmin) on the NDVI of vegetation are analyzed. The
correlation coefficients are calculated as follows:

rxy =

n
∑

i=1
(xi − xmean)(yi − ymean)√

∑n
i=1(xi − xmean)∑n

i=1(yi − ymean)
(4)

where x is the NDVI of vegetation; y is the Tmax (Tmin); xmean is the average of elements
NDVI; ymean is the average of elements Tmax (Tmin); rxy is the correlation coefficient of NDVI
and Tmax (Tmin). The first-order partial correlation analysis coefficient is calculated as:

rxy−z =
rxy − rxzryz√

1− rxz2
√

1− ryz2
(5)

The second-order partial correlation analysis coefficient is calculated as follows:

rxy−z−u =
rxy−z − rxu−zryu−z√

1− rxu−z2
√

1− ryu−z2
(6)

where rxy-z is the bias correlation coefficient between NDVI and Tmax (Tmin) excluding
variable z; z is the precipitation; rxz is the NDVI and precipitation correlation coefficient;
ryz is the Tmax (Tmin) and precipitation correlation coefficient; rxy-z-u is the bias correlation
coefficient of NDVI and Tmax (Tmin) excluding variables precipitation and Tmin (Tmax); u
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is the Tmax (Tmin). The t-test is used to test the significance of the second-order partial
correlation coefficients and is calculated as follows:

t =
r
√

n− q− 1√
1− r2

(7)

where r is the partial correlation coefficient; n is the number of samples; q is the number
of degrees of freedom. Referring to previous studies [53] and based on the actual situ-
ation, the correlation coefficient between vegetation NDVI and day–night temperature
increase was divided into moderate positive correlation (0.5 ≤ r < 0.8), low positive cor-
relation (0.3 ≤ r < 0.5), weak positive correlation (0 ≤ r < 0.3), weak negative correlation
(−0.3 ≤ r < 0), and low negative correlation (−0.5 ≤ r < −0.3) and moderate negative
correlation (−0.8 ≤ r < −0.5).

3. Results
3.1. Analysis of Diurnal Warming Trends in the Qinba Mountains

There was a significant upward trend in the Tmax and Tmin in the Qinba Mountains
between 1982 and 2015. Figure 4 indicates that the variation of Tmax was higher than Tmin,
where Tmax increased 0.5 ◦C per decade and Tmin increased 0.4 ◦C per decade.
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3.2. Effect of Site-Scale Diurnal Warming on Different Vegetation Types in the Qinba Mountains
3.2.1. Significance Analysis of Diurnal Warming and NDVI Activity on the Site Scale

The GIMMIS sensor NDVI and Tmax bias second-order correlation are computed in
this paper, by excluding the effects of precipitation and Tmin (Figure 5). About 91.2% of
the 92 meteorological stations in the Qinba Mountains showed a positive correlation, of
which about 24.09% passed the t-test (p < 0.01) and 21.68% of the stations passed the t-test
(p < 0.05). The percentage of meteorological stations that passed the negative correlation
test was 8.7%, among which about 12.5% displayed a negative correlation (p < 0.05). After
removing the effects of precipitation and Tmax, about 53.25% of the meteorological stations
showed a positive correlation between NDVI and Tmin. Where about 2.04% passed the
t-test (p < 0.01) and about 20.4% of the meteorological stations were positively correlated
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(p < 0.05). Similarly, about 46.75% of the meteorological stations displayed a negative
correlation between vegetation NDVI and Tmin, with about 9.3% showing a negative
correlation (p < 0.01) and about 2.3% with a negative correlation (p < 0.05). The stations
where NDVI and Tmax passed the t-test were relatively large and concentrated in the
middle- and low-elevation regions. In contrast, the sites where NDVI and Tmin passed
the t-test were scattered at the edges of the Qinba Mountains, such as in the northwest,
northeast, and southeast.
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3.2.2. Correlation Analysis of Different Vegetation Types on Diurnal Warming

The Tmax, Tmin and precipitation data of meteorological stations in the Qinba Moun-
tains from 1982 to 2015 were extracted, and the second-order correlation coefficients and
significance of each vegetation type with diurnal warming were calculated on the basis
of NDVI data of various types of vegetation at each station. Differences in NDVI bias
correlations for Tmax and Tmin were found for different types of vegetation (Table 1). In
terms of the correlation between vegetation types and Tmax, except for crops, which passed
the negative correlation (p < 0.01), all other vegetation types were positively correlated
with Tmax. All other positive correlation values were below 0.2 and did not pass the t-test,
except for mixed evergreen broad-leaved forests, which had a higher correlation of 0.414.
In terms of the correlation between different vegetation types and Tmin: coniferous forest,
scrub, and crops all showed a positive correlation with Tmin (p < 0.01); grass showed a
positive correlation with Tmin, and evergreen broad-leaved forest and mixed evergreen
broad-leaved forest showed negative correlation with Tmin, but none of the above passed
the t-test. Overall, daytime warming was found to promote the growth of mixed evergreen
deciduous broad-leaved forests, grasses, evergreen broad-leaved forests, scrubs, and conif-
erous forests and inhibit the growth of crops. The effect of increasing nighttime temperature
on VG was inhibited only in mixed deciduous broad-leaved and evergreen broad-leaved
forests, but had a positive effect on all other vegetation types, which significantly promoted
the growth of coniferous forests and scrub.

Table 1. Partial correlation analysis of different vegetation types with Tmax, Tmin in the Qinba
Mountains.

Vegetation Type Tmax Tmin

Grass 0.182 0.323
Scrub 0.156 0.776 **

Deciduous broad-leaved forest - -
Evergreen deciduous broad-leaved mixed forest 0.414 −0.136

Evergreen broad-leaved forest 0.168 −0.003
Coniferous forest 0.146 0.843 **

Crops −0.145 ** 0.175 **
Note: ** indicate passing p < 0.01 t-tests.
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3.3. Effect of Grid-Scale Diurnal Warming on Different Vegetation Types in the Qinba Mountains
3.3.1. Spatial Response Characteristics of NDVI to Daytime Maximum Temperatures in
Different Vegetation Types

Figure 6 and Table 2 indicate that the direction and intensity of the effect of increasing
daytime maximum temperature (Tmax) on VG in the Qinba Mountains varied spatially. On
the whole, the increase in Tmax positively affected all types of vegetation. Low positive
and weak positive correlations dominated the correlation between NDVI and Tmax. The
moderate positive correlation was clustered in the middle of the study area in a band,
which was consistent with the spatial pattern of the t-test, suggesting that the region where
Tmax promoted VG passed the t-test (p < 0.01). Few areas within the grass, scrub and
cultivated plant types passed the overall t-test (p < 0.05), revealing the varying degrees
of sensitivity and regional variability of different vegetation types to Tmax. According to
the correlation coefficient rank, the primary correlations between vegetation types and
Tmax are low positive correlation, weak positive correlation, and weak negative correlation.
The number of grids with moderately positive correlation had a high proportion of 103,
87 and 98, respectively, and all of them passed the t-test (p < 0.01), indicating that Tmax
promotes the growth of vegetation types such as evergreen broad-leaved forest, evergreen
deciduous broad-leaved forest and crops with significant intensity. Other vegetation types
were covered by fewer grids that passed the t-test (p < 0.05) and moderately positively
correlated. In terms of low positive correlation, mixed evergreen deciduous broad-leaved
forests accounted for the highest percentage (35.83%), with 63 grids passing the t-test
(p < 0.01) and 163 significant test grids accounting for 18.81% and 48.66%, respectively.
Evergreen broad-leaved forests were the second-most important, with 314 grids and 32.50%
of the weight, and 197 grids passing the t-test, accounting for 62% of the low positive
correlation. Low positive correlation grasslands included the smallest proportion of rasters,
10.61%, and deciduous broad-leaved forests comprised the fewest rasters, with 19 images.
Regarding the level of weak positive correlation, grasses occupied 226 rasters, with a weight
of 68.48%, while 19 pixels passed the t-test, with a weight of 8.41%. The results of the
research demonstrated that there were differences in the degree of response of different
vegetation types to daytime warming. The increase in Tmax promoted VG in general, and
the reaction of evergreen broad-leaved forests, mixed evergreen deciduous broad-leaved
forests, coniferous forests, and crops was more pronounced. The weak positive correlation
between deciduous broad-leaved forests and grasses and the Tmax increase reflects the
weak effect of daytime warming on deciduous broad-leaved forests and grasses.
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Table 2. Numbers and t-tests of grids with different correlation coefficients between different vegeta-
tion types and Tmax in Qinba Mountains.

Correlation Coefficient
Grade

Grass Scrub
Deciduous

Broad-Leaved
Forest

Evergreen
Deciduous

Broad-Leaved
Mixed Forest

Evergreen
Broad-Leaved

Forest
Coniferous

Forest Crops

Number % Number % Number % Number % Number % Number % Number %

Moderately
positive

correlation

Tmax - - 20 12.2 6 7.5 87 9.30 103 11.55 15 3.10 98 9.21
p < 0.01 - - 20 100 6 87 100 103 100 15 100 98 100
p < 0.05 - - - - - - - - - - - -

Low
positive

correlation

Tmax 35 10.61 54 32.93 19 23.75 335 35.83 314 35.20 107 22.11 234 21.99
p < 0.01 - - 3 5.56 - - 63 18.81 34 10.83 8 7.48 38 16.24
p < 0.05 - - 31 57.41 11 57.89 163 48.66 163 51.91 55 51.40 121 51.71

Weak
positive

correlation

Tmax 226 68.48 79 48.17 44 55.00 468 50.05 432 48.43 304 62.81 512 48.12
p < 0.01 3 1.33 - - - - - - - - - - - -
p < 0.05 16 7.08 - - - - - - - - - - - -

Weak
negative

correlation

Tmax 69 20.91 11 6.70 11 13.75 44 4.71 43 4.82 58 11.98 209 19.64
p < 0.01 - - - - - - - - - - - - -
p < 0.05 - - - - - - - - - - - - -

Low
negative

correlation

Tmax - - - - - 1 0.11 - - - - 11 1.03
p < 0.01 - - - - - - - - - - - 1 9.09
p < 0.05 - - - - - - - - - - - 1 9.09

Moderately
negative

correlation

Tmax - - - - - - - - - - - - -
p < 0.01 - - - - - - - - - - - - -
p < 0.05 - - - - - - - - - - - - -

Total 330 100 164 100 80 100 935 100 892 100 484 1064

3.3.2. Spatial Response Characteristics of NDVI to Nighttime Minimum Temperatures in
Different Vegetation Types

Figure 7 indicates that the effect of nighttime minimum temperatures (Tmin) on VG
was insignificant, dominated by weak positive and weak negative correlations (Table 3).
Moderately positive correlations were concentrated in the northwest, southeast, and at the
border, consistent with the spatial pattern that passed the t-test (p < 0.01), indicating that the
area where Tmin promoted VG was highly significant. Regional variability existed between
VG types for Tmin, with evergreen deciduous broad-leaved mixed forest exhibiting a higher
sensitivity to nighttime warming: the number of image elements in positive correlation was
702, accounting for 75.08%, and the raster number passing the t-test was 114, accounting
for 16.24%; raster numbers in low negative correlation and weak negative correlation were
18 and 215, respectively, and only the number of 60 pixels in the weak negative correlation
passed the t-test. Concerning the weak positive correlation, the image elements proportion
accounted for by different vegetation types ranged from 39.57% to 53.70%, with the highest
proportion (53.70%), with evergreen broad-leaved forests with crops possessing the lowest
percentage (39.57%), and only the presence of image elements in coniferous forests passed
the t-test. Regarding the low positive correlation, nighttime warming had an enhanced
effect on VG promotion, as a higher number of rasters passing the t-test (p < 0.05). More
than half the grids passed the t-test for both crops and broad-leaved evergreen forests—201
and 106, respectively—demonstrating that the increase in Tmin significantly increased the
growth rate of vegetation. In terms of moderately positive correlation, the number of rasters
accounted by the vegetation types was small, and only coniferous forests failed the t-test,
reflecting that the stronger the promotion effect of Tmin on VG, the higher the degree of
significance. In terms of negative correlations, weak negative correlations were the primary
type of Tmin on VG in different regions. Only crops and grasses had rasters with a moderate
negative correlation and passed the t-test, suggesting that the increase in Tmin had a more
significant suppressive effect on crops and grasses. The rasters of broad-leaved evergreen
forests, crops, and grasses passed the t-test. Both mixed evergreen deciduous broad-leaved
and coniferous forests had grids that passed t-test on weak negative correlation with
a weight of 27.91% and 9.23%, respectively. It shows that nighttime warming inhibits
evergreen broad-leaved forests, mixed evergreen deciduous broad-leaved forests, crops,
and grasses more than other vegetation types.
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Table 3. Numbers and t-tests of grids occupied by different vegetation types and different Tmin

correlation coefficients in Qinba Mountains.

Correlation
Coefficient

Grade

Grass Scrub
Deciduous

Broad-Leaved
Forest

Evergreen
Deciduous

Broad-Leaved
Mixed Forest

Evergreen
Broad-Leaved

Forest
Coniferous

Forest Crops

Number % Number % Number % Number % Number % Number % Number %

Moderately
positive

correlation

Tmin 2 0.61 6 3.66 5 6.25 39 4.17 12 1.34 8 1.65 103 9.68
p < 0.01 2 1 6 100 5 100 3 7.69 12 100 - - 103 100
p < 0.05 - - - - - - 6 15.38 - - - - - -

Low positive
correlation

Tmin 39 11.82 41 25 18 22.5 202 21.60 195 21.86 40 8.26 300 28.20
p < 0.01 6 15.38 6 14.63 2 11.11 24 11.88 11 5.64 4 10.00 57 19.00
p < 0.05 13 33.33 23 56.10 9 50 15 7.43 95 48.72 2 5.00 144 48.00

Weak positive
correlation

Tmin 155 46.97 81 49.39 39 48.75 461 49.30 479 53.70 218 45.04 421 39.57
p < 0.01 - - - - - - 26 5.64 - - 4 1.83 - -
p < 0.05 - - - - - - 40 8.68 - - 11 5.05 - -

Weak negative
correlation

Tmin 130 39.39 31 18.90 16 20 215 22.99 188 21.08 206 42.56 216 20.30
p < 0.01 - - - - - - 19 8.84 - - 5 2.43 - -
p < 0.05 - - - - - - 41 19.07 - - 14 6.80 - -

Low negative
correlation

Tmin 3 0.91 5 3.05 2 2.5 18 1.93 18 2.92 12 2.48 23 2.16
p < 0.01 - - 3 60.00 - - - - 1 5.56 - - 2 8.70
p < 0.05 1 33.33 - - - - - - 4 22.22 - - 1 4.35

Moderately
negative

correlation

Tmin 1 0.30 - - - - - - - - - - 1 0.09
p < 0.01 1 1 - - - - - - - - - - 1 100
p < 0.05 - - - - - - - - - - - - - -

Total 330 100 164 100 80 100 935 100 892 100 484 100 1064 100

4. Discussion

Regarding the effect of diurnal warming on VG, the correlation between vegetation
NDVI and Tmax and Tmin was analyzed using meteorological station data. The results
showed that about half the meteorological stations passed the t-test with Tmax, whereas
few stations indicated a significant correlation with Tmin, showing higher significance for
daytime warming on vegetation growth at the station level. Additionally, about 91.2%
of the sites were positively correlated with Tmax and 53.25% were positively correlated
with Tmin, demonstrating that VG in the Qinba Mountains is more significantly affected by
daytime warming. This is consistent with Peng et al.’s [9] finding that increased daytime
temperatures greatly promote VG and its ecosystem carbon sink function in boreal and
temperate humid regions, but contrary to the results of Zhao et al. [37], who studied the
effect of diurnal warming on VG in Xinjiang. Possible causes are the spatial heterogeneity
of the region, the number of sites and the difference in vegetation type products [54,55].

On the other hand, ANUSPLIN was used to interpolate the station data to obtain
meteorological data at the 8 km × 8 km raster level. The correlation and significance of
NDVI and diurnal warming of vegetation on the raster scale were further analyzed, the
result revealing that diurnal warming was the dominating factor in VG promotion. Both
site and raster scales indicated that diurnal warming promoted VG. Still, the degree of
significance was low and somewhat related to the number of meteorological sites and
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the effect of ANUSPLIN interpolation accuracy. Additionally, the natural environment
(soil quality, topography, parent material, etc.), climatic factors (temperature, precipitation,
light intensity, sunshine number, extreme weather), and human activities, all influence VG,
which may be one of the reasons affecting the t-test of diurnal warming and NDVI.

Correlations and t-test analysis between diurnal warming and different types of VG
on both site and raster scales indicate that the positive effect of diurnal warming on VG is
more widely distributed than the inhibitory effect. The impact of an increase in daytime
temperature on VG is more significant, mainly because an increase in daytime temperature
promotes the transpiration and respiration of vegetation while increasing the rate of CO2
into the leaf area to enhance photosynthetic efficiency, thus promoting the accumulation of
nutrients in vegetation [56]. Analysis of the t-test showed that daytime warming signifi-
cantly promoted the growth of mixed evergreen deciduous broad-leaved forests, grasses,
evergreen broad-leaved forests, scrub, and coniferous forests, while inhibiting the growth
of crops. The effect of increasing nighttime temperature on VG was only inhibited in
mixed evergreen deciduous broad-leaved and evergreen broad-leaved forests, but had a
positive impact on all other vegetation types, among which the effect was more evident in
coniferous forests and scrub. Nighttime warming had a positive impact on the growth of
coniferous forests and other plants by regulating leaf carbohydrate content [57,58], reducing
frost damage [59,60], and enhancing the resistance of plant communities to drought. In
addition, nocturnal autotrophic respiration has a negative impact on the growth of mixed
evergreen deciduous broad-leaved and evergreen broad-leaved forests by elevating the
plant autotrophic respiration rate [61,62], shortening the plant filling period [63,64] and
reducing the size of endosperm cells at the maturity stage [65], which results in diurnal
warming. On the site scale, the effect of diurnal warming on deciduous broad-leaved
forests was not analyzed, because deciduous broad-leaved forests were not distributed
over the site when vegetation types were extracted.

Due to the changes in altitude and temperature, the ecosystem in mountainous regions
is characterized by a complicated environmental gradient and vertical differentiation
of forest vegetation. From the foot to the top of the hills, in proper order, are various
vegetational forms such as evergreen broad-leaved forests, broadleaved deciduous forests
and coniferous forests, which determine the relationship between climate extremes and
vegetation in spatial pattern [66]. Moreover, the same vegetation influences the climate
differently during various menstrual periods. For example, as the growing season of
vegetation on the Qinghai–Tibet Plateau is positively affected by nighttime warming,
revival comes earlier [67]. In the nongrowing season, however, nighttime warming causes
the postponement of the early phenological phenomena of vegetation while daytime
warming will cause an increase in the thermal buildup, resulting in the early appearance
of these phenomena [68]. All these studies demonstrate that multiple factors influence
vegetation growth and that there is an intricate nonlinear relationship between vegetation
and the natural environment, climate change, and human activities.

This paper clarifies the mechanism of diurnal warming on VG in the transition zone
and reveals the response mechanisms of different vegetation types to diurnal warming.
The results of this study can be used as a reference for vegetation-climate studies in other
climatic transition zones around the world, especially in the transition from subtropical to
warm temperate zones. In future research, we could further develop the following: (1) to
further investigate the NDVI of vegetation in the Qinba Mountains based on MODIS data,
to monitor the dynamic growth of vegetation for a long time period by fusing from multiple
sources and to study the effect of global changes on VG; (2) by simulating climate models,
improve the accuracy of meteorological interpolation and vegetation types, and detect the
effects of diurnal warming on the growth of different types of vegetation under future
scenarios; (3) to screen representative extreme climate indicators and analyze in depth the
impact of different extreme climates (precipitation, temperature) on VG, with a particular
focus on monitoring the effect of major meteorological disasters on VG; and (4) give priority
to the analysis of the mechanisms of influence of extreme climate on the phenological
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phenomena of vegetation based on the collection of data from multiple sources, in order
to clarify the responsiveness of the same vegetation to daytime and nighttime warming
during different growing periods.

5. Conclusions

Global warming is an essential element of future climate change, and diurnal warming
is already significantly impacting VG. In this study, we found that the daytime maximum
temperature increase rate was 1.2 times higher than the daytime minimum temperature
increase rate in the Qinba Mountains from 1982 to 2015.

Furthermore, diurnal warming had an overall positive effect on VG in the Qinba
Mountains, with daytime warming being more effective than nighttime warming in pro-
moting vegetation growth. Approximately 91.2% of meteorological stations had a positive
correlation between Tmax and NDVI, with 45.27% passing the t-test. The proportion of
all types of NDVI exhibiting a positive correlation with Tmax at the raster level exceeded
85%. About 53.25% of the meteorological stations passed the positive correlation test
between NDVI and Tmin. At the raster level, the correlations between Tmin and NDVI were
insignificant, with primarily weak positive and weak negative correlations, indicating that
daytime warming had more significant effects on VG.

Lastly, in terms of correlations and t-tests between different vegetation types and Tmax
and Tmin, daytime warming greatly promoted the growth of grasses, scrub, deciduous
broad-leaved forests, crops and coniferous forests, and inhibited the growth of evergreen
broad-leaved forests in the study area. The effect of nighttime warming on VG was positive
only for the growth of evergreen broad-leaved forest vegetation and negative for other
vegetation types.
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