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Abstract: Pakistan has the highest rate of urbanization in South Asia. The climate change effects
felt all over the world have become a priority for regulation agencies and governments at global
and regional scales with respect assessing and mitigating the rising temperatures in urban areas.
This study investigated the temporal variability in urban microclimate in terms of land surface
temperature (LST) and its correlation with land use-land cover (LULC) change in Lahore city for
prediction of future impact patterns of LST and LULC. The LST variability was determined using
the Landsat Thermal Infrared Sensor (TIRS) and the land surface emissivity factor. The influence of
LULC, using the normalized difference vegetation index (NDVI), the normalized difference building
index (NDBI), and the normalized difference bareness index (NDBaI) on the variability LST was
investigated applying Landsat Satellite data from 1992 to 2020. The pixel-level multivariate linear
regression analysis was employed to compute urban LST and influence of LULC classes. Results
revealed that an overall increase of 41.8% in built-up areas at the expense of 24%, 17.4%, and 0.4%
decreases in vegetation, bare land, and water from 1992–2020, respectively. Comparison of LST
obtained from the meteorological station and satellite images showed a significant coherence. An
increase of 4.3 ◦C in temperature of built-up areas from 1992–2020 was observed. Based on LULC
and LST trends, the same were predicted for 2025 and 2030, which revealed that LST may further
increase up to 1.3 ◦C by 2030. These changes in LULC and LST in turn have detrimental effects on
local as well as global climate, emphasizing the need to address the issue especially in developing
countries like Pakistan.

Keywords: land management; LST; remote sensing; climate change; surface temperature; LULC

1. Introduction

Recent climate change effects are felt all over the world and have become a priority
for city authorities and scientists as ways are sought to reduce rising temperatures in
urban areas and designing liveable cities. Constant modification of the structure and land
use in urban areas, especially clearing of natural vegetation [1] and conversion of fertile
lands into impervious surfaces, not only raises heat absorption and retaining capacity
of land surface [2,3], but also indirectly leads to social and environmental degradation,
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biodiversity loss and destruction of urban ecosystems throughout the globe [1,4–10]. Apart
from the obvious effects, there are secondary effects on the local climate, such as alteration
in wind patterns, smog, cloud development, disturbances in rate of precipitation and flash
floods [11]. Thus, temperature studies of big cities are important in determining thermal
comfort, energy consumption, emission of GHGs and pollutants contributing to global
warming [5,12].

The phenomenon of excess heating of urban areas is widely known as the urban heat
island (UHI) and can be monitored via the Land Surface Temperature (LST). The LST
is a major factor in the surface energy balance by efficiently portioning latent heat and
consequently the surface temperature responses as a function of varying soil moisture and
vegetation cover, thus significantly affecting the local climate [8,9]. For this reason, there
is an increasing trend in the recent past to study LST, or the process of UHI development
and its multivariate controlling factors [11,13]. Recent spatial and temporal changes in
land use-land cover (LULC) have greatly influenced LST in cities as witnessed in previous
years [6,7,14].

Conventional maps alone are not sufficient to make correct decisions on land use
planning or land management activities [15]. Use of satellite data is a common solution
with relatively high accuracy along with vegetation indices [1,16,17]. The latest satellite
products provide both, high spatial resolution e.g., Landsat and advanced space-borne
thermal emission and reflection (ASTER), as well as higher temporal resolution, e.g., GOES
(geostationary operational environmental satellite), AVHRR (advanced very high-resolution
radiometer) and MODIS (modest resolution imaging spectroradiometer).

Moreover, use of spectral indices, such as the soil-adjusted vegetation index (SAVI),
the normalized difference vegetation index (NDVI), the index of biological integrity (IBI)
also called an index of biotic integrity, the modified normalized difference water index
(MNDWI), the normalized difference built-up index (NDBI), the bare soil index (BSI)
and the normalized difference bareness index (NDBaI) etc., along with development of
computer-based models and algorithms, have made it an effective decision support tool
to identify micro- or macro-climate change patterns with a minimum margin of time and
error [18,19].

This study was focused on Lahore, the second largest city of Pakistan and the twenty-
sixth largest city in the world. Few studies on thermal and ecological assessment are
available for Lahore; most of them are based on older data, up until 2016–2017 [10,20,21].
These studies found a significant increase in urban settlements with up to a two-fold
decrease in vegetation cover and concluded that future UHI increase will be the outcome
of urbanization trend and resulting land use imbalances. However, there have been
substantial demographic changes as well as population increase (25–30%) over the last five
years. Furthermore, we are witness to extreme weather events, like heatwaves in summer
and record-breaking rainfall, which warrant the need of periodic and close monitoring of
such climatic changes and precise information of air temperature using LST can help to
track climate change on regional and global scale using satellite remote sensing. Cities like
Lahore need to evolve with the rapidly changing climate. This is the biggest urban challenge
being faced by Asia and the world today, thus we need evolution of cities into ‘liveable’
places using precise monitoring and management to sustain economic development as well
as meet global goals like UN-SDG 11 (sustainable cities and human settlements).

Therefore, the current study aims to: (1) assess the relationship of land cover changes
on LST variation in the study area using different spectral indices, and (2) identify LULC
and LST change patterns and then predict their impact on future scenarios using Landsat
satellite data. Moreover, a comparison is made between the surface (LST) and the near-
surface temperature.
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2. Materials and Methods
2.1. Study Area

Lahore is Pakistan’s second largest city in terms of spatial extent and population,
extending from 31◦15′ to 31◦45′ N and 74◦01′ to 74◦39′ E, respectively. It is spread over
an area of 405 km2 (Figure 1) and has undulating terrain, with the highest and lowest
elevations from 245 m to 142 m. Lahore has a tropical semi-arid climate (Köppen climate
classification), with humid, long, and hot summers, with the monsoon season occurring
from late June until August, and dry winter. The hottest month of the year is June, when
temperatures routinely exceed 40 ◦C, and the coolest month is January with dense fog,
while July is the wettest month, with heavy rain fall. The mean maximum and minimum
temperatures in summer are 48 ◦C and 38 ◦C, and in winter 25 ◦C and −1 ◦C, respectively.
The annual average rainfall is 628 mm (24.78 inches). The topography of Lahore is generally
flat and slopes towards the south and south-west at an average gradient of 1:3000. It can be
divided into two parts, i.e., the low-lying area along the River Ravi, and the comparatively
upland area in the east away from Ravi (https://lahore.punjab.gov.pk/ (accessed on
16 June 2022)).
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It is also the wealthiest city, with an estimated GDP of US $94 billion. It exhibits rapid
environmental changes in terms of air temperature because of the high rate of urbanization.
Due to recent urbanization sprawl, most of the natural land cover has been replaced by
concrete and asphalt surfaces resulting in frequent urban floods and heat waves. As a result
of these events, several man-made urban areas have displaced rural areas with increased
thermal conductivity surfaces, resulting in higher temperatures in the urban areas as well
as high LST [22,23].

2.2. Data Acquisition and Processing

The weather data, which included temperature and precipitation, was acquired from
the Pakistan Meteorological Department (PMD) and collected from the Pilot Balloon Obser-
vatory weather station at Lahore (https://www.pmd.gov.pk/en/ (accessed on 18 August

https://lahore.punjab.gov.pk/
https://www.pmd.gov.pk/en/
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2021)). As urbanization is not a very fast process and it takes years for considerable
changes to take place, the images were taken within a time span of 4–6 years as de-
scribed in previous studies [20,24,25]. Multispectral cloud-free satellite images of the
same months from Landsat 5 TM for the years 1992, 1996, 2000 and 2008, and Land-
sat 8 OLI/TIRS for years 2014 and 2020, were downloaded from USGS Earth Explorer
(https://earthexplorer.usgs.gov/ (accessed on 22 August 2021)). Data uniformity was
maintained during downloading. After retrieving the images, they were pre-processed
in ERDAS Imagine® v14 (developed by Hexagon Geospatial, Madison, AL, USA) and
free open source software QGIS v3.16 (developed by Open Source Geospatial Foundation
Project, Austin, TX, USA (http://qgis.osgeo.org, accessed on 22 August 2021)) for dark ob-
ject subtraction (to remove haze and other anomalies), and with the bidirectional reflectance
distribution function (BRDF) to remove the effects of terrain on pixels for atmospheric and
radiometric corrections to ensure all had similar spectral characteristics [25]. Later, band
staking was performed to unite all the bands to shape a multispectral image. Multispectral
bands of both the satellites have the same spatial resolution, whereas the thermal bands
(TB) were resampled using the nearest neighbour algorithm with a pixel size of 30 m to
match the optical bands to avoid any conflicts for LST estimation and comparison with
other results.

2.3. Methodological Formwork

The methodological formwork of the study is presented in Figure 2. Supervised classi-
fication (maximum likelihood algorithms) was applied to each image to get LULC maps for
each year. Four major LULC classes, i.e., water (river, canal, lakes, and ponds, not included
swamps, wetlands, and waterlogged soils), vegetation (trees, crops, forest lands, parks
including urban ornamental plantation and lawns), built-up area (residential, commercial,
industrial zone and scattered peri-urban settlements), and bare land were developed from
each image considering their influence on LST variability. The training samples were se-
lected with the help of Google Earth, as well as expert opinion and researcher’s knowledge
of the area.
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To establish the relationship between LST and LULUC, 1200 random sample points
(300 for each class) were taken and cross validated with Google Earth images for the

https://earthexplorer.usgs.gov/
http://qgis.osgeo.org
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respective years. Statistical accuracy was also assessed using a confusion/error matrix and
the kappa coefficient test. The confusion matrix provides three accuracy measures, i.e.,
overall accuracy, producer accuracy, and user accuracy. The overall accuracy is determined
by dividing accurately classified pixels by the total number of pixels. The overall accuracy
decides the classification accuracy of the entire image, whereas the producer’s accuracy
and the user’s accuracy decide the accuracy of individual LULC classes. The producer’s
accuracy is calculated as the accurately classified pixels divided by the sum of total pixels
in the reference image. The user’s accuracy is calculated as the accurately classified pixels
divided by the sum of the total pixels in the classified image. The accuracy of classification
is assessed by the kappa coefficient matrix and computed as described in Equation (1) [26].

K =
NΣn

i=1 mii − Σn
i=1(GiCi)

N2 − Σn
i=1(GiCi)

(1)

n = number of rows in the error matrix, i = class number, mii = number of observations in
class ‘i’ Gi = total number of truth value in class ‘i’ Ci = number of predicted values in class
‘i’ and N = total number of classified values compared to truth values.

Parallel to image classification, different indices, such as NDVI, NDBI, and NDBaI,
were applied to validate vegetation, built-up and barren areas, respectively [9,24,27,28].
Index value ranges were found to be different for different images due to variation in
seasonal, atmospheric, and ground conditions of the respective images. Positive NDVI,
NDBI and NDBaI values (0.2 and above) show high vegetation cover, built-up and bare
land, respectively, while low or negative values show other land covers [25,27,29]. As there
was a negligible change in water areas, water indices were not used. The formulas for
calculating NDVI, NDBI, and NDBaI are given in Equations (2)–(4), respectively.

NDVI = (NIR − R)/(NIR + R) (2)

NDBI = (SWIR − NIR)/(SWIR + NIR) (3)

NDBaI = (SWIR − TIR)/(SWIR + TIR) (4)

where, R = red; NIR = near infrared; SWIR = shortwave infrared; TIR = thermal Infrared.

2.4. Retrieving LST from Satellite Remote Sensing Data

The LST maps for the respective years were developed by using Equation (5). Bright-
ness temperature (BT) used for LST was calculated following Equation (6), and land surface
emissivity (LSE), as given in Equation (8), by using the Landsat satellite data provided by
LPSO (2002) [30].

LST =
BT

1 + (W×TB
σ )× ln(LSE)

(5)

W = wavelength emitted radiance, h = Plank’s constant (6:626 × 10−34 J/s)
C = light velocity (2:998 × 108 m/s), σ = Boltzmann constant (1:38 × 10−23 m2 kg s−2 K)

BT =

(
K2

Ln ( K1
RTM

+ 1)

)
(6)

The K1 and K2 = Pre-launch calibration constants (also found in metadata MTL.txt file).
For each pixel, the digital number (DN) values of the thermal band were first converted

to radiance luminance (RTM) as given in Equation (7), and then converted into satellite
brightness temperature (BT) using the Kelvin scale (Equation (6)).

RTM = BTIR/255 (Rmax − Rmin) + Rmin (7)

RTM = Radiance Luminance, BTIR = DN values of TB i.e., (band 6 for Landsat 5 and 10 for
Landsat 8), Rmax, Rmin = Constants (from image metadata (MTL.txt) file.
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The LSE, also called surface emissivity (εo), was calculated by using Equation (8). This
method uses NDVI values as the means for calculating the LSE from satellite image [31].

LSE (εo) = 1.009 + 0.047·Ln (NDVI) (8)

These LST and LULC classified maps were further explored and analysed by correlat-
ing them with air temperature data from weather stations for validation of results. Because
the nature of the underlying land cover can affect LST [3,22], the relationship of these
factors needed to be examined. The relationship between the LULC and the resulting LST
was statistically analysed by associating each LULC class with LST. After analysing the
relationship between LULC change and the temperature and validating this relationship
with meteorological data, the next step was to predict/forecast the future patterns and
trend of LULC changes and the associated temperature using simple linear regression
techniques. The trend and rate of change of LULC and LST obtained from satellite image
(except 2020) were used in the regression equation to forecast for the years 2025 and 2030.
The mean LST was obtained by averaging the value for all the pixels in the respective
LULC class in specific Landsat based LST Images. Each value was the spatial mean of all
the pixels belonging to the specific class in the image for the specific year. The estimated
change was validated by comparing the predicted changes in the area for each land cover
and its temperature for the year 2020 with the image derived results. After validation of
the 2020 results, the values were predicted for the year 2025 and 2030, respectively.

3. Results
3.1. LULC Classification and Spectral Indices

The LULC classes were developed from satellite data and mapped as shown in Figure 3.
Accuracy assessment for each classified image was also performed using the error matrix
(Table 1). For the satellite images of year 1992, 1996, 2000, 2008, 2014, and 2020, the average
overall classification accuracy was over 90% and with an overall kappa statistic of 0.88.
The LULC classification results (which were used for prediction) for all the years were
validated with ground control points taken from high resolution google earth imagery
for each respective year. Accuracy assessments along with confusion matrices were also
generated for each year (see Supplementary Materials for details).
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Table 1. Classification accuracy assessment from 1992–2017.

Dates
(d/m/y)

Vegetation
Cover (km2)

Built-Up
(km2)

Bare Land
(km2)

Water
(km2)

User
Accuracy

(Built Up %)

Producer
Accuracy

(Built Up %)

Overall Kappa
Statistics

Overall
Accuracy

9 June 1992 1010 260.5 471.4 26.6 88.9 91.6 0.87 90.8
4 June 1996 928.5 363.26 453.6 24.8 88.2 92.3 0.89 91.2

30 May 2000 903.7 428.8 414.6 21.3 88.6 91 0.83 90.7
5 June 2008 894.9 581.2 278.2 28.4 91.7 92.3 0.9 90.3
6 June 2014 689.3 838.2 214.4 28.4 91.7 92.3 0.9 92.6
7 June 2020 590.07 1001.2 161.3 19.5 85.5 90.3 0.88 90.3

The LULC classification results for different temporal images showed that expansion
of built-up land has led to a decrease in other land uses, vegetation cover being the most
affected. The LULC classification analysis showed that the vegetation cover experienced
a significant decrease from 1992–2020 (Figure 3). Vegetation cover area decreased from
≈1010 km2 in 1992 to ≈590 km2 in 2020. Similarly, areas of barren land decreased from
≈471 km2 in 1992 to ≈161 km2 in 2020. Built-up land showed a significant increase from
≈260 km2 (which is about 14% of the Lahore’s total area) in 1992 to ≈1001 km2 (almost
56% of the total area) in 2020. Statistical analysis shows that about 65% of total vegetation
area and 10% of the total bare land area in 1992 had changed into built-up land by 2020.
Moreover, the LULC maps show that from 1992 to 2000, green areas within the core urban
area have been changed into built-up area, but since then there has been very little change
(Figure 4). However, after year 2000, the expansion in the built-up area is more on the
out-skirts of the city, thus consuming prime agricultural land. The land cover class of water
experienced a negligible change in areas throughout the study period.
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The error matrices revealed that there was spectral confusion between the areas of bare
land and built-up land, as the two have a quite similar spectral response causing between
class misclassifications [25,32].

From 1992 to 2020, Lahore has experienced drastic changes in the spatiotemporal LULC
patterns. Major developments took place in the city centre where haphazard settlements
gave rise to a more contiguous built-up area. Figure 4 shows the trend of temporal LULC
type changes in Lahore for the study period, i.e., 1992–2020, while percentagewise LULC
change analysis (Table 2), showed that built-up area has been the most rapidly growing
land cover type (14.7% to 56.5%). The percentage increase in built-up area resulted in
overall reduction in bare land (from 26.6% in 1992 to 9.1% in 2020), and vegetation cover
(from 57% in 1992 to 33.3% in 2017, with a major decrease occurring during the period from
2008–2017) (Table 2). A look at the total percentage difference between the LULC types
from 1992 to 2020 clearly shows an increase of about 41% in built-up land by 2020, at the
cost of a decrease of about 23% and 17% in vegetation and bare land, respectively.

Table 2. Temporal LULC changes (in percent) for each measured year from the previous one from
period 1992 to 2020 with overall change.

LULC Types Land Cover
(km2)

Temporal LULC Change (in Percent) Overall Change
(1992–2020)1992 1996 2000 2008 2014 2020

Water 26.6 1.5 1.4 (−0.1) 1.2 (−0.2) 0.9 (-1.5) 1.6 (0.7) 1.1 (−0.5) 19.5 km2 (1.1%)
Built-Up 260.5 14.7 20.5 (5.8) 24.2 (3.7) 32.8 (8.6) 47.3 (14.5) 56.5 (9.2) 1001 km2 (56.5%)

Vegetation 1010 57 52.4 (−4.6) 51 (−6.0) 50.5 (−0.5) 38.9 (−11.6) 33.3 (−5.6) 590 km2 (33.3%)
Bare land 471.4 26.6 25.6 (−1.0) 23.4 (−2.2) 15.7 (−7.7) 12.1 (−3.6) 9.1 (−3.0) 161.3 km2 (9.1%)

Values in () represent change with respect to previous monitoring year.

3.2. Spectral Indices

The NDVI, NDBI, and NDBaI values for all images developed from the Landsat 5 and
Landsat 8 images for the period from 1992 to 2020 (Figures 5 and 6) collectively fell in the
ranges of −0.63 to 0.71, −0.59 to 0.78, and −0.6 to 0.8, respectively. The temporal NDVI
maps showed a decreasing vegetation trend in agreement with the LULC classification
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result. Whereas the NDBI maps showed a slightly higher increase in built-up area in
comparison to the LULC classification results. The reason for this slight difference in built-
up area is because of the similar spectral response of bare land and built-up area; the NDBI
index could not precisely differentiate between these two, however, the NDBaI index did.
The NDBaI values showed most bare land was in June 1992 and the least bare land in June
2020. A comparison of NDBI and NDBaI indices confirmed that, bare land was decreasing
at the cost of increases in built-up areas, in conformity with the LULC classification results.
The purpose of using these indices was to analyse and compare the LULCs classified from
the Landsat’s imagery, to develop a better understanding of the relationship between NDVI,
NDBI, and NDBaI indices, and LST by associating the major LULC types. Appropriate
threshold values of all the indices were ascertained to help distinguish the LULC class.

3.3. Land Surface Temperature (LST)

The spatiotemporal distribution of LST over different LULC types shows a high LST
in June 2020, with temperatures soaring up to approximately 46 ◦C (Figure 7), with a
temperature of about 35.3 ◦C at the point of the weather station and validated with the
actual temperature of that day (Table 3). An overall increasing trend in temperature in
agreement with the LULC classification can be observed in the study area from 1992 to
2020, except for the year 2008, where lower temperatures (23 to 31.45 ◦C) were observed for
different LULCs. This decrease in temperature was due to precipitation of about 12 mm on
the image acquisition day (confirmed from PMD data). The June 2020 image showed the
highest temperature for all LULCs compared to previous years. These results show that
the higher LST, which act as proxy indicator of air temperature, seems to be influenced
by multiple urban LULCs as well as other factors, such as moisture content, density of
vegetation, and area of vegetation cover, etc.
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Table 3. Spatiotemporal Distribution of LST.

LULC Types
Mean Estimated LST (◦C) from Satellite Data *

1992 1996 2000 2008 2014 2020

Built-Up 28.4 30.5 33.5 31.45 34.3 35.35
Vegetation 25.9 29.1 28.5 26.2 29.3 30.7
Bare Land 34.5 35.7 33.1 32.6 36.8 37.2

Water 24.9 25.3 26.8 23.5 27.1 27.5
* An average LST value for all the pixels in particular LULC classes in specific Landsat based LST Image. Each
value is the spatial mean of all the pixels belonging to the specific class in the image for specific year.

Moreover, temperature data (on image acquisition date), from the PMD weather station
within the study area, was used for comparison and validation of the LST retrieved from
the images [33]. The comparison revealed a slight variation in temperature (difference)
between the image derived LST and the weather station data (Table 4). Positive and
negative differences indicate the situations when the image derived LST is higher or lower
than the temperature obtained from the weather station data, respectively. The observed
differences were within a range of ±2 ◦C and support the accuracy of the image derived
LST [4,12,34].

Table 4. Comparison of air temperature recorded at the weather station and the surface temperature
derived from the image at the same location (data collected from Lahore Pilot Balloon Observatory).

Date
LST

(Landsat)
◦C

Air Temperature
(Weather Station)

◦C

Temp. Difference
(Landsat-Weather

Station) ◦C

9 June 1992 28.4 29.5 −1.1
4 June 1996 30.5 32.05 −1.55

30 May 2000 33.5 31.9 1.6
5 June 2008 31.45 33.4 −1.95
6 June 2014 34.3 32.9 1.4
7 June 2020 35.35 33.6 1.75

3.4. LST vs. Spectral Indices

The NDVI values can be used as an important measure for the density of vegetation
and the evaluation of variation in temperature [7,35]. These are the mean values obtained
for each index and LST in association with the LULC classes. The mean pixel value for each
LULC (average of all the pixels in a particular LULC class for a specific year) against the
respective Index and LST were used to compare LST and the respective index in association
with the LULC classes. A regression analysis was performed between the NDVI values of
different LULCs and LST which showed a strong negative relationship (Figure 8). Such a
negative relationship has also been reported by many relevant studies [27,36]. For the years
2014 and 2020, higher mean LST and lower mean NDVI values of built-up area and bare
land were observed. In 2008, due to high precipitation and moisture a linear negative trend
was observed, with vegetation having the minimum LST and maximum NDVI, opposite to
bare land and built-up area, which had high LST and low NDVI, respectively.
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Figure 8. Scatterplots of mean NDVI, NDBI and NDBaI values vs. LST in association with LULC
from 1992 to 2020. Each point is the mean value obtained for each index, and LST in association with
LULC classes.
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The relationship between LST and NDBI are also plotted and illustrated in Figure 9.
Although the correlation was reasonable for the selected years, the spectral similarity
of built-up area and bare land in the respective bands used in NDBI made it difficult
to distinguish these two classes, whereas the NDBaI data amply reduced this spectral
confusion. The mean values of NDBaI for the corresponding LULC types confirmed the
relationship between bareness and the corresponding LST and indicated a correlation
among the three variables (LST, NDBaI, LULC). However, due to the presence of moisture
in 2008, the LST for bare land dropped considerably, while that of built-up areas increased,
thus making the temperature difference between them higher in accordance with their
corresponding NDBaI values.
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) indicates the position of Pilot Balloon Observatory (PBO).

3.5. Relationship between LST and LULC Pattern

Comparison of the temporal changes in LST and urban area extent from 1992 to 2020
showed an increasing trend in both variables. There was expansion in urban areas with
time and consequently higher LST values were observed from satellite data in the same
years. The increases in LST were also compared from ground weather stations (Pilot
Balloon Observatory (PBO) to confirm the air temperature (Figure 9). A positive correlation
between LST and built-up area (R = 0.65) was also observed (Figure 10), because, in our
case, built-up area is a major driving factor due to the decrease in vegetation and bare land.
This indicates that clearing of vegetative lands for buildings not only reduces the ‘cooling
effect’ but those built-up areas also act as permanent source for urban microclimates.
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3.6. Validation of LULC and LST and Future Trends

Future projections of LST and LULC were made by using the existing trend retrieved
from the temporal satellite images (Figure 11a). To validate the future projection results,
first, the trend for the year 2020 was predicted and then compared with the values retrieved
from satellite images. The high correlation (R2 = 0.98) suggests the reliability of the results
for effective decision making (Figure 11b).
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Figure 11. (a). LULC and LST’s validation (for year 2020) and future prediction (for year 2025 and
2030), (b) Comparison of predicted and image derived LULC and LST for 2020.
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It is worth mentioning that the difference in actual and predicted values for LULC
remained within the range of 5% for built-up area, 3% for vegetation, and 1% for other
LULCs (Table 5), whereas the LST differences remained within the range of 1 ◦C (Table 6).
Moreover, the temperature predictions for LST suggest that mean temperature is continu-
ously increasing and will be maximum for built-up and bare land rising to 37.4 ◦C in 2030
(Table 6). Although it looks like the temperature for bare land is highest, because bare land
area is continuously decreasing, it will make less contribution to increasing temperature
compared to the rapidly increasing built-up land. The LULC transformations show that
the percent LULC area will be 1.01, 25.6, 72.5, and 0.14, for water, vegetation, built-up area,
and bare land, respectively.

Table 5. Validation of percent change in LULC (by comparing predicted results for 2020 with the
image derived results for the same year) and prediction for the year 2025 and 2030.

Years Built-Up (%) Vegetation (%) Bare Land (%) Water (%)

2020 (Image derived) 56.5 33 9.2 1.1
2020 (Predicted) 52 36.5 9.4 1.1

2025 64.7 29.7 3.7 1.05
2030 72.6 25.6 0.14 1.01

Table 6. Validation of change in LST (by comparing predicted results for 2020 with the image derived
results for the same year) and prediction for the year 2021, 2025 and 2030.

Year Built-Up (◦C) Vegetation (◦C) Bare Land (◦C) Water (◦C)

2020 (Image Derived) 33.6 30.7 37.2 27.5
2020 (Predicted) 33 30.7 36.2 27.4

2025 34.8 32 36.9 28.3
2030 35.5 32.8 37.4 29.01

4. Discussion

This study focused on examining the relationship between LST and LULC changes
in Lahore, using temporal remote sensing data from 1992 to 2020. The NDVI, NDBI
and NDBaI indices as LULC indicators were found to be associated with LST and can
efficiently be used to assess the urban climate and ecosystems. The results showed that
LST is more influenced by LULC changes such as built-up area and bare land surface,
while green areas (vegetation) and water bodies have lower impact on LST [37]. This has
a multifaceted impact in urban areas like Lahore, where expansion of built-up area is at
the expense of vegetative areas, not the barren lands, as the trend of increase in built-up
area is in the SW and NE sides of the city by invading agricultural lands. Thus, increasing
vegetation for a cooling effect has a positive effect on the ecosystem and can help to improve
climate change. However, this is still not enough to balance the temperature rise caused by
increased built-up area. Therefore, it is important for urban planners and administrators
to think of some out-of-the-box solutions for redesigning and modification of buildings
along with focusing on revegetation to achieve effective mitigation of urban climates while
increasing green spaces [13]. This also indicates that bare lands are already decreasing,
which means that in future, the major controlling factor of LST will be build-up area, thus
strict policies on luxurious lateral expansions and illegal developments might be more
effective solutions [20].

A suitable validation is essential for any satellite retrieved LST result by in situ mea-
sured data [38,39]. Comparison of the LST with a set of air temperature data recorded by
ground stations at the time of satellite passes (approx.) was performed, as done previously
in some studies [40–42]. This approach was followed considering the reported direct rela-
tionship between surface temperature and air temperature [38,43]. Quantitative models
describing the land cover and LST relationships were constructed using multivariate linear
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regression analysis considering each pixel value. These, combined with analysis of LST and
LULC maps, indicated an evident increase in LST in 25 years depicting significant coher-
ence between the urban thermal patterns and spatial distribution of urban LULCs [44–46].
Similar findings have also been found in other cities such as Rajshahi [47] and Dhaka [48]
in Bangladesh and Ibadan-Nigeria [7]. Results indicate that there was an increase of about
41% in built-up area, whereas vegetation cover, bare land, and water declined by 24%,
17%, and 0.4%, respectively, confirming that built-up areas raise LST and, correspondingly,
air temperature, whereas vegetation and water add lower LST; similar findings were also
reported earlier [32,35]. Moreover, the overall classification accuracy for all the images was
found good (in the range of 90 to 95%). However, there it was also observed that spatial
distribution of different LULCs in the city tend to affect the variations in LST, which in
turn, determine spatial thermal patterns and intensities. Quantitative analysis between
LST and the indices revealed differences in temperature within an LULC, apart from those
amongst various LULC types. A strong positive correlation between NDBI, NDBaI, and
LST, illustrated the significant contribution of built-up area and bare land towards the rise
in urban temperature [27]. By comparing the urban temperature with other land uses, it
was found that after bare land, built-up area has the highest temperature. However, as the
bare land has been reduced, built-up area has the higher contribution in land surface and
thus towards air temperature rise.

5. Conclusions

Assessing the LST and its relationship with LULC using spectral indices from remote
sensing help to track local climate and air temperature efficiently, however, use of multiple
algorithms or models, along with adding higher number of observations or ground truthing,
will add confidence for future predictions. The observed increase in the surface and near
surface temperature is leads to increasing LST and is attributed to the LULC changes (per-
centage of perviousness to imperviousness) and mainly the depletion of natural vegetation
cover. The affects can also be attributed to poor land use planning and implementation,
and inconsistent government policies. However, there is dire need of detailed mapping of
this phenomenon using fine spatial resolutions to refine information and suggest to policy
makers and city manager to seek site-specific potentials, risk and solutions. These results
can help in policy- and decision-making for the improvement of ecological environments in
future development plans for Lahore and other cities, to make them ‘liveable’ and thereby
reduce their environmental footprints and limit other urban disasters.
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