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Abstract: The global degradation of wetlands is increasing their susceptibility to invasions, which
is greatly determined by a niche overlap between native and invasive species. We analyze its
role in regulating the coexistence of the native Mediterranean stripe-necked terrapin Mauremys
leprosa and the invasive Red-eared Slider Trachemys scripta elegans in a coastal wetland. We analyzed
both water chemistry and landscape attributes, using variance-partitioning analysis to isolate the
variance explained by each set of variables. Then, the influence of environmental variables on species
co-occurrence patterns was assessed by using latent variable models (LVM), which account for
correlation between species that may be attributable to biotic interactions or missing environmental
covariates. The species showed a very low niche overlap, with clear differences in their response
to environmental and landscape filters. The distribution of T. s. elegans was largely explained by
landscape variables, preferring uniform landscapes within the daily movement buffer, whereas at
larger scales, it was associated with a high diversity of habitats of small and uniform relative sizes.
A high percentage of the distribution of M. leprosa was unexplained by the measured variables and
may be related to the competitive exclusion processes with T. s. elegans. The species was positively
related with large patches with high perimeter values or ecotone area at medium spatial scales,
and it was benefited from a marked heterogeneity in the patches’ size at larger scale. According
to latent variable models, both species had wide eutrophication and salinity tolerance ranges, but
they showed different environmental preferences. T. s. elegans was related to eutrophic freshwater
environments, whereas M. leprosa was related to more saline and less eutrophic waters. Our results
suggest that M. leprosa modifies its habitat use in order to avoid interaction with the T. s. elegans.
Thus, management actions aimed at removing the invasive species from the territory and promoting
habitat heterogeneity might be needed to protect M. leprosa and avoid local extinctions.

Keywords: landscape structure; latent variable models; invasive species; niche selection; coexistence;
reptiles; Mauremys leprosa; Trachemys scripta; biodiversity conservation

1. Introduction

The introduction of exotic species is currently one of the main threats to global bio-
diversity [1–4]. Most studies on invasive species have focused on the ecological traits of
the species or their competitive ability (e.g., [5,6]). However, some authors have suggested
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that niche width is a key factor influencing invasion success (e.g., [7–9]) and its impact on
native communities [10–13]. The concept of ecological niche has been defined in various
ways (e.g., [14–17]). The “niche breadth–invasion success” hypothesis represents the first
attempt at the generalization that species have attributes that make them successful in-
vaders [18]. It suggests that species with broad niches (generalists) are more likely to invade
new regions than species with narrow niches (specialists) [18–20]. Geographic and climatic
niche have been used to determinate the invasiveness of introduced species [18,21,22], but
fine-grained studies are needed to understand the mechanisms and consequences of species
introductions [12,23,24].

Modification of the landscape by humans has undoubtedly been a key factor in
the introduction of foreign species [25–27]. Anthropogenic alteration of ecosystems is
promoting invasion success because the spread of invasive species occurs more rapidly
in fragmented landscapes [28–30], and habitat destruction favors invasions by habitat
generalists [31–34]. Within this context, wetlands are interesting ecosystems in which to
study the dynamics of invasions, since they are one of the most degraded and, at the same
time, most biodiverse ecosystems of the world [35–39].

Semi-aquatic organisms (e.g., insects, amphibians, reptiles) that depend on aquatic and
terrestrial habitats to complete their life-cycle and maintain viable populations are threatened
by the degradation of both wetlands and their associated terrestrial habitats [40–43]. Despite
the global decline in populations of many freshwater turtle species, the response of this group
to habitat fragmentation has been poorly described [44–47]. Most studies on the ecological
niche of freshwater turtles have focused on segregation at the microhabitat level and on
feeding strategies [48–51]. However, how does a native turtle species such as Mauremys
leprosa respond to a highly invasive and competitive species such as Trachemys scripta elegans
at larger spatial scales and in multiple niche dimensions in human-altered environments?
Existing evidence suggests that niche overlap is likely to be important for answering this
question [52–55]. The main goal of this study was to analyze the factors determining the
coexistence of M. leprosa and T. s. elegans in a coastal wetland heavily modified by human
activity (Llobregat Delta, Spain). Specifically, we aimed to (1) determine the extent of co-
occurrence between the two species and (2) quantify the role of environmental and landscape
variables for coexistence of these two species.

2. Materials and Methods
2.1. Study Site and Species Description

The Llobregat Delta plain is formed by the Llobregat River estuary, lakes, marshes
and flood-zone grasslands, irrigation channels, agricultural, urban and industrial areas,
dunes, coastal pine forests, and major infrastructure development (i.e., Barcelona’s airport
and port) (Figure 1). Artificial habitats and agricultural fields occupy about 95% of the
delta surface (Table 1). Due to its geomorphology and its fluvial origin, the Llobregat
Delta is especially rich in aquatic environments and provides an important habitat for
freshwater turtles. This area has an important population of autochthonous Mauremys
leprosa [56] and at the same time, exotic freshwater turtles (Trachemys scripta elegans) are
often observed [57,58] at very high densities [56,59].

The Mediterranean pond turtle (M. leprosa), is mainly distributed in countries sur-
rounding the Mediterranean Sea (mainly Tunisia, Algeria, Morocco, Spain, Portugal and in
south-western France) [60]. Mauremys leprosa is a thermophilic freshwater species and is not
very selective in aquatic habitat requirements [61,62]. Its diet appears both opportunistic
and omnivorous [60]. The species is classified as “Vulnerable” in the European Red List of
Reptiles and in the Spanish Red List [63,64].

The red-eared slider (T. s. elegans) is a subspecies native to the south-western United
States. Its native range extends from Virginia to north-eastern Mexico, occupying practically
the entire Mississippi basin [65,66]. In this original distribution, T. s. elegans is considered
a habitat generalist, being present in a wide variety of continental aquatic environments
characterized by soft bottoms, minimal or no current and abundant vegetation [67–69]. The
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species is considered omnivorous with a wide spectrum of food resources, both animal
and plant, and with a clear tendency toward carnivory in newborns and juveniles and
vegetarianism in adults [68,70].

Land 2022, 11, x FOR PEER REVIEW 3 of 19 
 

 

Figure 1. Location of the study area (Llobregat Delta, Spain) in the distribution range of Mauremys 

leprosa in the Mediterranean coast of the Iberian Peninsula (squares on top). Mainland-use categories 

of study area: dark gray: unproductive artificial; gray: semi-natural (essentially fields); pale gray: 

natural (wooded areas, wetlands, water bodies, etc.). The red dots represent our sampling stations: 

Ca l’Arana (CA), Cal Tet (CT), la Murtra (EB10), Bassa dels Pollancres (EB4), Braç de la Vidala (EB5), 

Riera de Sant Climent (EB6), Can Dimoni Gran (EB7), canal de la Bunyola 2 (EC4), canal de la 

Bunyola 1 (EC5), Llera Nova 1 (LL1), Llera Nova 2 (LL2), el Remolar (RE) and la Ricarda (RI). 

Table 1. Mainland-use categories and their occupied surface within the study area (Llobregat Delta, 

Spain). Natural landscape does not exceed 7% of total surface. 

Category Surface (km2) Percentage 

Artificial Unproductive artificial 51.31 78.64 

Seminatural Fields 9.81 15.03 

Natural 

Dense wooded 2.31 3.54 

Shrublands 0.85 1.30 

Unproductive natural 0.45 0.68 

Continental waters 0.41 0.62 

Wetlands 0.06 0.09 

Light wooded 0.03 0.05 

Meadows and grasslands 0.03 0.04 

TOTAL 65.24 100.00 

The Mediterranean pond turtle (M. leprosa), is mainly distributed in countries 

surrounding the Mediterranean Sea (mainly Tunisia, Algeria, Morocco, Spain, Portugal 

and in south-western France) [60]. Mauremys leprosa is a thermophilic freshwater species 

and is not very selective in aquatic habitat requirements [61,62]. Its diet appears both 

Figure 1. Location of the study area (Llobregat Delta, Spain) in the distribution range of Mauremys
leprosa in the Mediterranean coast of the Iberian Peninsula (squares on top). Mainland-use categories
of study area: dark gray: unproductive artificial; gray: semi-natural (essentially fields); pale gray:
natural (wooded areas, wetlands, water bodies, etc.). The red dots represent our sampling stations:
Ca l’Arana (CA), Cal Tet (CT), la Murtra (EB10), Bassa dels Pollancres (EB4), Braç de la Vidala (EB5),
Riera de Sant Climent (EB6), Can Dimoni Gran (EB7), canal de la Bunyola 2 (EC4), canal de la Bunyola
1 (EC5), Llera Nova 1 (LL1), Llera Nova 2 (LL2), el Remolar (RE) and la Ricarda (RI).

Table 1. Mainland-use categories and their occupied surface within the study area (Llobregat Delta,
Spain). Natural landscape does not exceed 7% of total surface.

Category Surface (km2) Percentage

Artificial Unproductive artificial 51.31 78.64

Seminatural Fields 9.81 15.03

Natural

Dense wooded 2.31 3.54
Shrublands 0.85 1.30

Unproductive natural 0.45 0.68
Continental waters 0.41 0.62

Wetlands 0.06 0.09
Light wooded 0.03 0.05
Meadows and

grasslands 0.03 0.04

TOTAL 65.24 100.00
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T. s. elegans is the most widespread alien turtle in the world [71–73]. It is currently
considered one of the 100 most dangerous invasive species worldwide [74]. The invasive
species causes predation [75–77], competition [78–80], hybridization [81–83] and disease
transmission [84–86] against native species, with the consequent loss of biodiversity of
native ecosystems [87–90].

Multiple studies highlight evidence of conflict between T. s. elegans, the alien species, and
M. leprosa, the native species (e.g., [91,92]). M. leprosa avoids interaction with T. scripta [93], the
alien species competes efficiently for basking areas and food under experimental and natural
conditions [94–97] and can transmit diseases and parasites to the native species [98–100].

2.2. Sampling Methodology

Thirteen water bodies with different characteristics were sampled twice per month
(Figure 1) from February to November 2004 and from February to November 2005. In each
sampling occasion, we recorded (1) geographic coordinates of turtle collection location and
different associated variables such as the number of captures, traps, time, and (2) habitat
features, measured at the local and the landscape levels. Turtles were captured using nets
and baited funnel traps [101,102]. The traps were installed in different locations within
each water body, making sure that they were close to water chemistry sampling stations.
Twenty-four hours after installation, traps were inspected and all captured turtles marked
by making marginal cuts on the carapace scutes following an international procedure for
capture–mark–recapture of turtles and measured [102]. Immediately, individuals were
released at the site of capture, except for the last sampling campaign, in which all the
collected T. s. elegans were transferred to a wildlife rehabilitation center (Centre de Recu-
peració d’Amfibis i Rèptils de Catalunya—CRARC) for its management as an invasive
alien species. During the study period, 863 freshwater turtle individuals were captured. All
capture points were integrated into a Geographic Information System, ArcGIS 10.2 [103]
and QGis 2.4.0-Chugiak [104]. Only the first captures of each individual (n = 374: 230 M.
leprosa and 144 T. s. elegans) of total caches were analyzed, ignoring re-captured individuals
in order to avoid any intraspecific or interspecific biases.

2.3. Landscape and Environmental Variables

For each first turtle location, three different buffers were generated: 100 m in diameter to
include proximity movements (daily movements), 500 m for movements related to the annual
cycle of activity and 2000 m for movements that occur occasionally (dispersive movements
related to a change in the environmental conditions, in demography, etc.) [105–108].

Landscape structure was used to explore how the landscape affects the distribution
of freshwater turtles, calculating different landscape parameters obtained from land-use
cartography (Catalonian Land Cover Cartography [109]) for each individual. Eighteen
landscape variables for each buffer were computed using the Patch Analyst Tool [110,111]
implemented in ArcGIS 10.2. The variables considered were: three measures of patch
richness, diversity and evenness; five patch shape and fractal dimension metrics; four edge
density metrics, four patch size metrics; and two landscape descriptive metrics (Table 2).
Once all variables had been registered for each captured individual, the mean value for
each species per buffer combination (i.e., 100, 500 and 2000 m in diameter) at each sampling
station was estimated (Supplementary Materials, Table S1). Landscape variables changed
minimally during the study period (2 years).

Different variables related to water chemistry were taken (Table 2). Conductivity, pH,
water temperature, and dissolved oxygen were measured using a multiparametric sensor
(WTW, multiparameter model 197i), and water transparency was measured through Secchi
disk depth. A surface-water sample (1.5 l) was collected at each site and preserved at
4 ◦C for laboratory analysis of nutrients (NH4

+, NO3
−, NO2

−, PO4
3−, TP and SiO4

2−),
total organic carbon (TOC), suspended solids (SSP), major ions (SO2

4−, Cl−, Ca2+, Mg2+,
Na+, K+) and phytoplanktonic chlorophyll-a (chl-a) following standard methods [112]
(Supplementary Materials, Table S2).
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Table 2. Landscape descriptive metrics computed from a land-use cartographic database [109] and
environmental variables considered in analyses.

Landscape Descriptive Metrics Metric Description

Patch richness, diversity and evenness
R Richness

SDI Shannon’s diversity index
SEI Shannon’s evenness index

Patch shape and fractal dimension

AWMSI Area weighted mean shape index
MSI Mean shape index

MPAR Mean perimeter–area ratio
MPFD Mean patch fractal dimension

AWMPFD Area weighted mean patch fractal dimension

Edge density

TE Total edge (m)
ED Edge density

MPE Mean Patch Edge (m)
PSCoV Patch size coefficient of variance

Patch size

MedPS Median patch size (m2)
MPS Mean patch size (m2)

NumP Number of patches
PSSD Patch size standard deviation (m2)

Landscape descriptive variables CA Total core area (m2)
TLA Landscape area (m2)

Environmental Variables Metric Description

General variables

Ox Dissolved oxygen in water (mg/L)
Ox% Dissolved oxygen saturation in water (%)
pH pH of water

Secchi Water transparency (m)
T Temperature (◦C)

Primary production and nutrient
concentration

Chl-a phytoplanktonic chlorophyll-a concentration (µg/L)
DIN Dissolved inorganic nitrogen concentration (mg/L)

NH4
+ Ammonium concentration (mg/L)

NO2
− Nitrite concentration (mg/L)

NO3
− Nitrate concentration (mg/L)

PO4
3− Phosphate concentration (mg/L)

SiO4
2− Silicate concentration (mg/L)

SRP Soluble reactive phosphorous concentration (mg/L)
TOC Total organic carbon concentration (mg/L)
TP Total phosphorous concentration (mg/L)

Conductivity and ion concentration

Ca2+ Calcium concentration (mg/L)
Cl− Chloride concentration (mg/L)

Cond Water conductivity (µS/cm)
Fe2+ Iron concentration (mg/L)
K+ Potassium concentration (mg/L)

Mg2+ Magnesium concentration (mg/L)
Mn2+ Manganese concentration (mg/L)
Na+ Sodium concentration (mg/L)
Si2+ Silicon concentration (mg/L)

SO2
4− Sulphates concentration (mg/L)

SSP Suspended solids concentration (mg/L)

2.4. Data Analysis

Co-occurrence between the two species was calculated from the community matrix
(presence/absence data of the two species in our study sites) using the Schoener index [113]
in the function niche.overlap (R package spa [114]). This function allows for using “species
lists” (lists of species generated from short-term ecological censuses within areas of rel-
atively homogeneous habitat) to compute species co-occurrence based on null model
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algorithms [115]. Later, the influence of environmental and landscape variables on the
co-occurrence of species was examined through variance partitioning analysis. Initially,
to reduce multicollinearity from multivariate analysis, each landscape variable with the
lower biological meaning from any pair of variables having a Spearman correlation co-
efficient higher than 0.70 or lower than −0.70 [116,117] was removed. Then, the varpart
function in the vegan package [118] was used in order to isolate the variance in species
occurrence (i.e., number of captures of each species at each site) explained by each set of
abiotic variables (i.e., environmental and landscape variables) and their combined effects.
The partitioning is based on redundancy analysis (RDA), and the function uses adjusted R2

to assess the partitions explained by the explanatory variables and their combinations [119].
After that, different analyses were applied to environmental and landscape variables. This
is because these two sets of variables had different properties. Environmental variables
were measured once at each location and represented the environmental characteristics of
the place in which species were captured (therefore being equal for both species), whereas
landscape variables were calculated based on a buffer around the precise place in which
each individual was captured and, therefore, were different for each species.

RDA analysis was used to explore the relationship between environmental variables
and the abundance of each species using the function cca in the vegan package [118]. Then,
the influence of environmental variables on species co-occurrence patterns was assessed
through latent variable models (LVM [120]), which can be regarded as an extension of
factor analysis [121], following Letten et al. [122]. LVMs use latent variables as a parsi-
monious means of modeling residual species correlation [123], which accounts for any
residual correlation between species not attributable to spatial heterogeneity in the mea-
sured environmental variables. This correlation may be driven by biotic interactions such as
competition (negative) or facilitation (positive) or alternatively to missing predictors. After
fitting the LVMs, in order to visualize patterns of co-occurrence arising from the different
environmental factors, two types of correlation matrices were calculated. The first was
constructed by calculating the correlation between the fitted values of the two species [122],
representing the correlation between species that can be attributed to a shared/diverging
environmental response. The second type of correlation matrix was calculated using the
latent variable coefficients, also known as factor loadings. This second residual correla-
tion matrix represents the correlation between species that may be attributable to biotic
interactions or missing environmental covariates. Since Bayesian MCMC estimation was
used, the correlation between fitted responses was calculated for each MCMC sample,
which made it possible to obtain a posterior distribution for each cell of the environmental
and residual correlation matrix. As such, correlation “significance” was evaluated on the
basis of the 95% credible intervals for the posterior mean excluding zero. Bayesian MCMC
was performed through JAGS v3.4.0 [124] using the package R2jags v0.03-08 [125]. For
each species, the most relevant landscape variable explaining the species occurrence and
abundance were selected using a stepwise algorithm (function “step” in R “stats” package).
Multiple generalized linear-regression models (including all possible combinations of land-
scape variables) were fitted, and the model with the lowest Akaike’s information criterion
was selected (AIC [126,127]). All statistical analyses were carried out using the statistical
computing software R 3.5.0 [128].

3. Results

We captured 374 individuals, 230 corresponding to M. leprosa and 144 to T. s. elegans
(Table 3). The two species showed a co-occurrence of 46.15% in the studied water bod-
ies, 38.46% of the water bodies only had T. s. elegans and 15.38% with only M. leprosa
(Table 3, Figure 2). After multicollinearity analysis, nine environmental variables (pH, T◦,
DIN, SRP, SSP, TOC, SO2

4− and K+) and 15 landscape variables (SEI(Ø100), NumP(Ø100),
PSCoV(Ø100), PSSD(Ø100), CA(Ø100), MSI(Ø500), MPAR(Ø500), CA(Ø500), R(Ø2000),
SEI(Ø2000), MPAR(Ø2000), ED(Ø2000), MedPS(Ø2000), PSCoV(Ø2000) and CA(Ø2000))
were retained. The distribution of T. s. elegans was largely explained by landscape variables
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(39.13% of total variance), whereas M. leprosa showed a very high percentage (75.60%) of
unexplained variance (Figure 3).

Table 3. Sampling stations and number of captures per species.

Station Name Code Longitude (E) Latitude (N) Typology
Captures

M. leprosa T. s. elegans

Braç de la Vidala EB5 2.0605 41.2857 Irrigation channel 0 17
Canal de la Bunyola 1 EC5 2.1243 41.2987 Irrigation channel 0 1
Canal de la Bunyola 2 EC4 2.1150 41.3076 Irrigation channel 35 85

Llera Nova 1 LL1 2.1307 41.3061 Estuary 1 0
Llera Nova 2 LL2 2.1169 41.3189 Estuary 0 2

Cal Tet CT 2.1221 41.3056 Lagoon 68 7
La Murtra EB10 2.0396 41.2772 Lagoon 0 9
El Remolar RE 2.0723 41.2817 Lagoon 9 2
La Ricarda RI 2.1151 41.2927 Lagoon 49 3

Riera de Sant Climent EB6 2.0660 41.2771 Lagoon 0 1
Ca l’Arana CA 2.1300 41.3037 Lagoon 47 0

Can Dimoni Gran EB7 2.0480 41.3110 Pond 1 12
Bassa dels Pollancres EB4 2.0655 41.2813 Pond 20 5

Total: 230 144
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Figure 2. Abundance of each species (M. leprosa and T. s. elegans) at each sampling site in relation to
each other. Zero values for each species are marked with a short gray dash line.

Two main environmental gradients were identified by the RDA analysis: nutrient
enrichment (i.e., concentrations of SRP and the different forms of nitrogen) and salinity
(i.e., conductivity and ion concentrations). Although there was no clear differentiation of
each species along the two environmental gradients, T. s. elegans tended to dominate in areas
with higher nutrient concentrations and lower salinity than M. leprosa (Figure 4). Despite
this, both species seemed to prefer sites with low nutrient enrichment and salinity (Figure 4).

LVM yielded negative correlations (i.e., due to divergence in the environmental prefer-
ences of the species) for all environmental variables except for the Na+ (Table 4), although
these were weak and not significant. Only SRP, ammonia (NH4), chlorophyll-a (Chl-a) and
suspended solids (SSP) seemed to have some importance in explaining the co-occurrence
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of both species (Table 4). M. leprosa preferred lower ammonium, chlorophyll-a and phos-
phorous concentrations, and it tolerated higher SSP concentrations (highly correlated with
conductivity) than T. s. elegans (Figure 5). The mean residual correlation was −0.48, mean-
ing that 48% of the variation in the co-occurrence of the two species was explained by their
biotic interaction or by variables that we did not measure.
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Table 4. Results from latent variable models (LVM). We show two types of correlation. The first
(Environmental) is the correlation between the fitted values of the two species [122], representing the
correlation between species that can be attributed to a shared/diverging environmental response.
The second type of correlation (Residual) was calculated using the latent variable coefficients, also
known as factor loadings. It represents the correlation between species that may be attributable to
biotic interactions or missing environmental covariates.

Environmental Residual

Chl-a −0.34 −0.43
C− −0.04 −0.45

NH4
+ −0.38 −0.39

Ox −0.09 −0.47
Secchi −0.12 −0.53
Na+ 0.06 −0.48
SRP −0.41 −0.18
SSP −0.29 −0.46

T −0.12 −0.40
TOC −0.19 −0.19
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SRP: soluble reactive phosphorous concentration; SSP: suspended solids.

The best model explaining the distribution of M. leprosa included the following
variables: NumP(Ø100) + MPAR(Ø500) + MPFD(Ø500) + MedPS(Ø500) + SEI(Ø2000)
+ MPAR(Ø2000) + ED(Ø2000) + PSCoV(Ø2000) + PSSD(Ø2000) (Table 5, Figure 6). The
model was significant (p = 0.017) and explained 33% of the total variance in the species’
distribution. None of the landscape variables at 100 m diameter buffer (for proximity
or daily movements) were selected by the model. Median patch size (MedPS) and mean
perimeter–area ratio (MPAR), both at 500 m diameter buffer (for movements related to the
annual cycle of activity), were positively and negatively correlated to M. leprosa abundance,
respectively. Additionally, the patch-size coefficient of variance (PSCoV) at 2000 m diam-
eter buffer was positively correlated to M. leprosa abundance. The best model to explain
T. s. elegans distribution was SEI(Ø100) + NumP(Ø100) + PSCoV(Ø100) + PSSD(Ø100) +
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CA(Ø100) + R(Ø2000) + MedPS(Ø2000) (Table 5) (Figure 6). The model was significant
(p < 0.001) and explained 67% of the variance in the distribution of the species. At the 100 m
diameter buffer (for proximity or daily movements), Shannon’s evenness index (SEI), the
number of patches (NumP), the patch-size standard deviation (PSSD) and the patch-size
coefficient of variance (PSCoV) were negatively correlated to T. s. elegans abundance. On the
contrary, total core area (CA) showed a positive correlation. The model did not select any
landscape variable at a 500 m diameter buffer (i.e., movements related to the annual cycle of
activity). Finally, at the 2000 m diameter buffer, richness (R) and median patch size (MedPS)
showed a positive and negative correlation with T. s. elegans abundance, respectively.

Table 5. Statistical values and significance of each variable in the models built for each species using
landscape variables at different spatial scales. Buffer diameters related to different movement types of
the species: Ø100: proximity movements; Ø500: annual movements; Ø2000: occasional movements. ML:
Mauremys leprosa; TSE: Trachemys scripta elegans. Significance codes: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘·’; 0.1 ‘ ’; 1.

Estimate Std. Error t Value Pr (>|t|) Sign.

TSE ML TSE ML TSE ML TSE ML TSE ML

intercept −1.901 × 102 2.015 × 102 0.642 × 102 1.222 × 102 −2.963 1.649 0.006 0.112 ** -

Ø100

SEI −0.456 × 102 - 6.557 × 100 - −6.957 - <0.001 - *** -
NumP −6.051 × 100 2.604 × 100 1.691 × 100 1.449 × 100 −3.578 1.798 0.001 0.084 ** ·
PSCoV 0.263 × 100 - 0.118 × 100 - 2.221 - 0.035 - * -
PSSD −3.357 × 102 - 0.623 × 102 - −5.393 - <0.001 - *** -

CA 3.423 × 102 - 0.868 × 102 - 3.944 - <0.001 - *** -

Ø500
MPAR - −2.306 × 10−3 - 1.019 × 10−3 - −2.263 - 0.033 - *
MPFD - −1.357 × 102 - 7.889 × 101 - −1.720 - 0.098 - ·
MedPS - 3.161 × 101 - 1.388 × 101 - 2.277 - 0.032 - *

Ø2000

R 2.836 × 100 - 1.319 × 100 - 2.151 - 0.041 - * -
MedPS −0.301 × 102 - 0.145 × 102 - −2.082 - 0.047 - * -

SEI - 5.854 × 101 - 3.176 × 101 - 1.843 - 0.077 - ·
MPAR - 4.973 × 10−3 - 2.863 × 10−3 - 1.737 - 0.095 - ·

ED - −1.690 × 10−1 - 9.427 × 10−2 - −1.793 - 0.085 - ·
PSCoV - 9.766 × 10−2 - 4.147 × 10−2 - 2.355 - 0.027 - *
PSSD - −5.398 × 100 - 3.894 × 100 - −1.386 - 0.178 - -
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NumP: number of patches; SEI: Shannon’s evenness index; R: richness; MPAR: mean perimeter–area
ratio; MedPS: median patch size; PSCoV: patch size coefficient of variance.
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4. Discussion

We found that co-occurrence in less than 50% of the sites, and 48% of the variation in
their co-occurrence was explained by their biotic interaction or by variables that we did not
measure (which might be few since we included a long list of local and landscape variables
in our study). Thus, according to previous studies [93–95,102], our results suggest that
M. leprosa might be displaced by T. s. elegans. This could be partly explained by a combination
of differences in environmental and habitat preferences and competitive exclusion.

Aquatic ecosystems with high levels of nutrients and organic content (and consequent
eutrophication) are rich in trophic resources. This may represent an advantage for generalist
species of freshwater turtles [129–131]. The two species in our study seem to be very tolerant
of eutrophication. M. leprosa has been reported to tolerate eutrophic waters [132,133] and
has been found in highly polluted waters [134]. In addition, its sister species, Mauremys
rivulata, can have very dense populations in eutrophic wetlands [135]. At the same time,
T. s. elegans has been found in polluted environments within its natural [130] and introduced
ranges [131,136]. Regarding salinity, both species appear to tolerate a certain degree of
salinity: M. leprosa has been recorded in brackish estuarine waters in Portugal [137] and in
coastal brackish lagoons along the Mediterranean coast of the Iberian Peninsula [102]. T. s.
elegans has been found in brackish lagoons (<10 ppm) in South Carolina, USA [138], and in
environments with salinities ranging between 0.1‰ and 26‰ in China [139]. In agreement
with these results, we did not find strong differences in the environmental preferences
of both species. However, the latent variable models showed some moderate negative
correlations for SRP, NH4, Chl-a and SSP, which aligned with the RDA results. Overall,
M. leprosa preferred more saline and less eutrophic waters, whereas T. s. elegans preferred
eutrophic freshwaters. Concordantly, and in the same study area, Franch et al. [102]
reported M. leprosa from high salinity environments due to the presence of T. s. elegans in
other environments with lower salinity.

Landscape structure is characterized by the proportion of available habitat, the overall
habitat’s diversity and the size and arrangement of these in the landscape [140,141]. The
study area has been heavily transformed by human activities, causing severe habitat
fragmentation and degradation affecting the landscape structure [142]. According to the
results, both species are likely to be affected by this landscape transformation at the three
scales studied (Ø100, Ø500 and Ø1000) and, therefore, in movement types associated
with different stages of their life cycles. The native M. leprosa was the least affected by
landscape structure of the two studied species. At medium scale, it was positively related
with large patches (i.e., high MedPS) of high perimeter values or ecotone area (i.e., high
MPAR). A large scale was benefited from a marked heterogeneity in patch sizes (i.e., high
PSCoV), whereas T. s. elegans abundance was negatively related to the heterogeneity
and fragmentation of the surrounding landscape structure. This invasive species prefers
uniform landscape within the buffer where daily movements occur, i.e., it has a preference
for a low number of different patches, Shannon evenness and patch size heterogeneity.
Large-scale landscape structure, related to occasional or sporadic movements of the species,
had a weak influence on the distribution of T. s. elegans. At this scale, only habitat richness
was positively related with T. s. elegans abundance, whereas the average patch sizes showed
a negative relation. Thus, it seems that at large scales, T. s. elegans is associated with a high
diversity of habitats of small and uniform relative sizes. These results are consistent with
those of Rizkalla and Swihart [143], who showed that T. s. elegans was negatively affected
by land-use diversity surrounding the wetland.

Freshwater turtles are particularly vulnerable to fragmentation and its consequences
(i.e., increased predation pressure or isolation) because of their life history (i.e., long
juvenile period, limited fecundity, and dependence on high survival rates of adults) [144].
Wetlands are critical for spawning, hibernation and aestivation and terrestrial dispersion
of these animals, and they provide a permanent habitat. While habitat preferences vary
from one species to another, all are dependent on land connections between neighboring
wetlands [145–147]. In the case of the Llobregat Delta, aquatic habitats might play a key
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role in inter/intra-population connectivity, since they are present along the landscape in
very different forms (e.g., irrigation channels, lagoons, ponds wetlands) and they provide
simple and secure dispersal routes, although water quality tends to be very poor [148,149].
If the study area is framed within a regional scale, beyond the geomorphological deltaic
unit, the terrestrial matrix can be expected to have a greater importance as connector with
the surrounding landscape. At this scale, landscape structure had an opposite effect on the
two studied species.

Thus, the current transformation process of the Llobregat Delta (which is homogeniz-
ing of the landscape and decreasing habitat connectivity) could promote the geographical
expansion of T. s. elegans through its population settlement and consolidation, competition
with native turtles, transfers of parasites and diseases, structuring impact on habitats,
etc. Despite the high niche breadth and habitat tolerance of M. leprosa [60,62,150,151], this
species could be severely affected in an indirect way by the Delta transformation process.

Our results suggest that there were some variables with significant influence in the
distribution of M. leprosa that we did not consider. Since the climatic and environmental
conditions of the study area are highly favorable to M. leprosa, which has expanded its
distribution within the region [152], the unstudied variables may be related to the occur-
rence of competitive exclusion processes between the native M. leprosa and the introduced
T. s. elegans [153]. Competitive exclusion between the two species has been previously
suggested by earlier studies in the same area [102], field observations in Doñana National
Park [154], and studies under controlled conditions [91,92]. In addition, previous studies
have revealed the existence of different competitive advantages of T. s. elegans over M.
leprosa. For example, T. s. elegans tends to monopolize the limited sites appropriate for ther-
moregulation and displace native turtles to less suitable or suboptimal places [94,155,156].
Less basking can severely affect physiological efficiency (especially digestive) of M. leprosa
and, consequently, the long-term survival rates of the species [96,153]. Food competition
may also play a key role in the co-existence of both species. M. leprosa is described as an op-
portunistic omnivorous species with the ability to modify its diet in response to variability
in trophic resources [97], whereas T. s. elegans has been described as omnivorous with high
carnivorous preferences [106,157,158]. Under controlled conditions, access to food sources
for M. leprosa is severely restricted by T. s. elegans. This species has a dominant aggressive
behavior that can seriously affect feeding efficiency of M. leprosa, negatively impacting
on their survival or reproduction [95]. Another aspect to consider is the chemosensory
responses to the presence of freshwater turtles in aquatic habitats. It has been reported that
M. leprosa prefers aquatic environments with conspecific chemical traces, avoiding those
containing traces of T. s. elegans [92].

Within the context of habitat generalists species [68,150,152,159], the presence of M.
leprosa in highly saline and less eutrophic environments and the high unexplained variation
in its distribution suggest that its distribution is strongly conditioned by the presence of
the invasive T. s. elegans. These results may have implications for the conservation of
the Mediterranean Pond Turtle. For example, the management of introduced sliders by
removing individuals from areas with less salinity may allow M. leprosa to recolonize areas
where it has been displaced. In addition, restoring natural habitats and promoting habitat
heterogeneity might benefit M. leprosa.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/land11091582/s1, Table S1: Landscape metrics for three
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environmental variables for each sampling station.
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