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Abstract: The ecological environment is important for the survival and development of human
beings, and objective and accurate monitoring of changes in the ecological environment has received
extensive attention. Based on the normalized difference vegetation index (NDVI), wetness (WET),
normalized differential build-up and bare soil index (NDBSI), and land surface temperature (LST),
the principal component analysis method is used to construct a comprehensive index to evaluate
the ecological environment’s quality. The R package “Relainpo” is used to estimate the relative
importance and contribution rate of NDVI, WET, NDBSI, and LST to the remote sensing ecological
index (RSEI). The optimal parameter geographic detector (OPGD) model is used to quantitatively
analyze the influencing factors, degree of influence, and interaction of the RSEI. The results show
that from 2001 to 2020, the area with a poor grade quality of the RSEI in Guangzhou decreased from
719.2413 km2 to 660.4146 km2, while the area with an excellent quality grade of the RSEI increased
from 1778.8311 km2 to 1978.9390 km2. The NDVI (40%) and WET (35%) contributed significantly
to the RSEI, while LST and NDBSI contributed less to the RSEI. The results of single factor analysis
revealed that soil type have the greatest impact on the RSEI with a coefficient (Q) of 0.1360, followed
by a temperature with a coefficient (Q) of 0.1341. The interaction effect of two factors is greater
than that of a single factor on the RSEI, and the interaction effect of different factors on the RSEI is
significant, but the degree of influence is not consistent. This research may provide new clues for the
stabilization and improvement of ecological environmental quality.

Keywords: ecological quality; remote sensing ecological index (RSEI); influential factors; optimal
parameter geographic detector (OPGD)

1. Introduction

As the basic guarantee of human survival and the material basis for the development
of society, the ecological environment will directly affect the quality of human life [1,2].
Humans obtain tangible ecosystem products and intangible ecological value services for
survival and life from the ecological environment [3]. Therefore, building a stable and safe
ecological environment is important for maintaining sustainable social development [4].
In recent decades, with the continuous advancement of urbanization, a large number
of people are concentrated in urban areas. However, the disorderly expansion of urban
construction land and the massive loss of ecological land has restricted the sustainable
development of the overall ecological environment [5–7]. Ensuring the structural stability
and functional safety of natural ecosystems to achieve the sustainable development of the
ecological environment is a global issue [8,9]. Especially in China’s big cities, regional
ecological security is faced with the problems of a deteriorating climate environment,
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serious soil erosion, and the soaring physical environment of buildings [8,10]. Paying
attention to the monitoring and evaluation of the quality of the ecological environment and
its dynamic changes has important practical significance for realizing the joint protection
and co-governance of the regional ecological environment and sustainable development.

With the development of “3S” technology, many scholars have carried out a series
of studies to evaluate the regional ecological status from different angles, combining the
advantages of all three [11]. One is single-factor change analysis, such as the analysis
of changes in factors closely related to the ecological environment including changes
in land use, changes in the net primary productivity of the vegetation, and changes in
vegetation coverage [8,9,12–14]. However, for complex ecosystems, especially urban–rural
composite ecosystems, the quality of the ecological environment is difficult to measure and
quantify using a single ecological index/indicator that only reflects the characteristics of
one aspect of the ecosystem [13]. Therefore, another type is the comprehensive analysis
of multifactor changes. Compared with single-factor analysis, multifactor comprehensive
analysis is more comprehensive and accurate, and scholars have proposed a variety of
evaluation index systems for this purpose [15,16]. Xu used a pixel-based model to explore
the coupling mechanism between urbanization and the ecological environment of China
by applying a combination of mathematics and graphics [17]. Yue analyzed the ecological
characteristics of 35 major cities in China and found 18 cities with worsening ecological
quality and 17 cities with better ecological quality. From 1990 to 2015, the very poor levels
of ecological quality were mainly located in high-density buildings with low vegetation
coverage and low soil water content [18]. The primary purpose of Chen’s research was to
fill the Yue et al. gap through theoretical and empirical research on how urban expansion
affects the quality of the ecological environment based on the spatial Durbin model and
panel data of 30 provinces in Mainland China from 2003 to 2018 [19]. Sun made a five-level
classification of ecological environment quality and then discussed the impact of land
use changes on ecological environmental quality [20]. Cao believed that in developing
countries, ecological transfer payment (ETP) is the first choice for solving the dilemma of
environmental governance [21]. Mukesh et al. compared the RSEI and ecological index (EI)
and found that EI may be more effective than RSEI in assessing ecological quality [22]. Wu
found that the quality of the ecological environment was significantly affected by multiple
indicators, and the impact of any two indicators was greater than a single indicator [23].
In addition, since the advent of the Google Earth Engine (GEE) cloud platform for online
geographic computing and analytical processing developed by Google, GEE has been
widely used in the fields of large-scale mapping, land use change analysis, and ecological
environment monitoring.

The above studies provide the basis for the study of ecological environment quality,
but there may also be some shortcomings. Many scholars have proposed a series of meth-
ods for monitoring of environmental quality through remote sensing, but these monitoring
techniques only focus on a single factor for environmental assessment such as using only
the urban heat island index, urban water use and green coverage, and urban impervious
surface coverage [20,21]. In the research on the influencing factors, many scholars mainly
analyzed using a single explanatory variable, basically conducting research around en-
vironmental quality itself, or analyzed the impact of a single variable on environmental
quality [22]. Of course, some scholars have established comprehensive indicators to eval-
uate the RSEI, but there may be obvious deficiencies in the exploration of its influencing
factors [23,24]. For example, the interrelationships of factors were not explored and ana-
lyzed. In the process of explaining changes in environmental quality, none of the above
clearly explains the contribution of environmental quality components to environmental
quality [25]. In addition, these studies have not well explained the impact of each variable
on the environmental quality and the significance of each variable as well as the magnitude
of the impacts.

Given this, this paper took Guangzhou, China, as the research object and used the
principal component analysis method to evaluate the changes in the remote sensing eco-
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logical index in Guangzhou from 2001 to 2020. The R package “Relaimpo” was used to
calculate the contribution of the four constituent indicators to the RSEI. The OPGD model
was used to analyze the influencing factors, the degree of influence, and the interaction
of explanatory variables for the RSEI. We hope this study can provide new clues for the
optimization and improvement of ecological environment quality.

2. Materials and Methods
2.1. Study Area

Guangzhou is located between 112◦57′–114◦3′ E and 22◦26′–23◦56′ N (Figure 1).
Guangzhou belongs to one of the four major cities in China and has strong economic
development strength. The city has 11 districts with a total area of 7434.40 km2. Guangzhou
has a maritime subtropical monsoon climate with an annual average temperature of
20~22 degrees Celsius. It belongs to a hilly area with an altitude of 1210 m. In recent
years, due to the accelerated development of Guangzhou’s urbanization process, large
areas of woodland and land for planting have been reduced. The urban heat island effect is
obvious, as the city’s extreme climate performance is more obvious, and extreme climate
disasters occur frequently.

Figure 1. Location of Guangzhou in China. (a). Location of Guangdong Province in China. Note that:
the map is based on the standard map with the approval number: GS (2019) No. 1825, downloaded
from the Standard Map Service Website of the Ministry of Natural Resources of China, and the
base map has not been modified; (b) Location of Guangzhou in Guangdong Province; (c) Elevation
distribution map of Guangzhou.
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2.2. Data Sources

Guangzhou was used as the research region in this paper, and two Landsat remote sens-
ing images for 2001 and 2020 were used as the primary data source (https://earthexplorer.
usgs.gov/ (accessed on 16 February 2022)). To ensure the comparability of the research, the
selected remote sensing data belonged to similar seasons, the natural underlying surface
elements were in similar states, the cloud amount was controlled at ≤10%, and the data’s
accuracy was high (Table 1). We chose the remote sensing data from these periods mainly
considering the high quality of the data and the special climate characteristics of Guangzhou.
In this paper, the five explanatory variables of the RSEI included precipitation, distance
from the road, slope, soil type, and temperature (Figure 2). Elevation data came from the
Geospatial Data Cloud (https://www.gscloud.cn/ (accessed on 21 February 2022)), and
the road data came from OpenStreetMap (https://www.openstreetmap.org/ (accessed on
18 February 2022)). In ArcGIS v10.2 (ESRI, Redlands, CA, USA), we calculated the distance
from the road using the Euclidean distance tool. The precipitation and temperature data
came from WorldClim v2.0 (http://www.worldclim.org/ (accessed on 11 February 2022)),
and the soil type data came from HWSD v1.2 (http://westdc.westgis.ac.cn/ (accessed
on 13 February 2022)). Land type can be found in Appendix A.2, where the d-plot code
correlates to the soil type.

Table 1. Remote sensing image data information.

Number Imaging Data Satellite/Sensor Track Number Cloud Cover (%)

1 30 December 2001 Landsat-5/TM 122-044 ≤10

2 28 February 2020 Landsat-
8/OLI_TIRS 122-044 ≤10

Figure 2. Cont.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://www.gscloud.cn/
https://www.openstreetmap.org/
http://www.worldclim.org/
http://westdc.westgis.ac.cn/


Land 2022, 11, 1303 5 of 20

Figure 2. Distribution of the detection factors. (a) Distribution of annual average precipitation;
(b) Distance distribution from the road; (c) Distribution of slope; (d) Distribution of soil types;
(e) Distribution of temperature.

2.3. Research Framework

In this paper, the principal component analysis (CPA) method was used to evaluate
the quality of the RSEI. It can objectively determine the weight value to realize the transfor-
mation of four single indicators, namely, the NDVI, WET, normalized differential build-up
and bare soil index (NDBSI), and land surface temperature (LST), which were coupled
to form a comprehensive indicator to objectively evaluate the eco-environmental status
in Guangzhou from 2001 to 2020. In addition, this paper used the R package “Relaimpo”
to explain the probability of the contribution of various factors of environmental quality,
and it can distinguish the relative importance of the relevant regression variables in the
multivariate linear model [24]. Finally, we used the optimal parameter geographic detec-
tor (OPGD) model to optimize the explanatory variable parameters (i.e., average annual
precipitation, distance from the road, slope, soil type, and temperature) to improve the
accuracy of the results of the geo-detector model with the optimal spatial discretization
parameters and spatial scale parameters. It can effectively extract the geographical features
of the explanatory variables and reveal the influencing factors and their changes more
comprehensively and objectively. A flow chart of this study is shown in Figure 3.

2.4. Remote Sensing Ecological Index (RSEI)

The remote sensing ecological index (RSEI) selects four important indicators closely
related to human survival, including NDVI, WET, NDBSI, and LST, to objectively evaluate
the ecological environment [26]. Four index data are usually obtained through remote
sensing data: WET through K− T transformation to characterize wetness indicators; NDVI
characterizes greenness indicators; NDBSI characterizes the dryness index; LST character-
izes the temperature index. In summary, the RSEI can be expressed as a function integrating
the above four indicators, namely:

RSEI =
∫
(NDVI, WET, NDBSI, LST) (1)
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Figure 3. A flow chart of this study.

NDVI is a commonly used index to characterize the growth status of vegetation [27].
Therefore, the greenness index can be expressed by the NDVI, the formula is:

NDVI =
ρNIR − ρR
ρNIR + ρR

(2)

The wetness index in the ecological environment is closely related to the water content
of vegetation and soil; thus, the wetness component can be obtained by K− T transforma-
tion [28], and the formula is:

WET(Landsat5TM) = 0.0315ρB + 0.2021ρG + 0.3102ρR + 0.1594ρNIR − 0.6806ρSWIR1 − 0.6109ρSWIR2 (3)

WET(Landsat8OLI) = 0.1511ρB + 0.1973ρG + 0.3283ρR + 0.3407ρNIR − 0.7117ρSWIR1 − 0.4559ρSWIR2 (4)

where the ρB, ρG, ρR, ρNIR, ρSWIR1, and ρSWIR2 represent the first, second, third, fourth,
fifth, and sixth bands of the sensor’s TM and ETM+ after radiation calibration and the
second, third, fourth, fifth, and sixth band of the OLI, 7-band reflectivity.

In the regional environment, buildings and bare soil are important underlying surface
factors that cause the ground to dry out. Taking the average of the building index (IBI) and
the soil index (SI), the NDBSI represents the dryness index [29], and the formula is:
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NDBSI =
IBI + SI

2
(5)

I =
[

2ρSWIR1
ρSWIR1 + ρNIR

− ρNIR
ρNIR + ρR

− ρG
ρG + ρSWIR1

]
/
[

2ρSWIR1
ρSWIR1 + ρNIR

+
ρNIR

ρNIR + ρR
+

ρG
ρG + ρSWIR1

]
(6)

SI =
(ρSWIR1 + ρR)− (ρNIR + ρB)

(ρSWIR1 + ρR) + (ρNIR + ρB)
(7)

The surface temperature that characterizes the heat index can be obtained by correcting
the brightness temperature [30]. After radiometric calibration, the radiance Lλ can be
converted to the brightness temperature, T , according to the calibration parameters, k1
and k2, the formula is:

T =
k2

ln
(

K1
k 6

10

+ 1
) (8)

The brightness temperature, T, must be corrected by a specific emissivity to be con-
verted to the surface temperature [31], the formula is:

LST =
T

1 + λT
ρ ln ε

(9)

where λ = 11.5 µm; ρ = 1.428× 10− 2 m·k; ε is the surface emissivity.
In this study, principal component analysis (PCA) was used to evaluate the remote

sensing ecological indicators in Guangzhou. Based on the characteristics of the original
data of the four indicators (i.e., NDVI, WET, NDBSI, LST), the weight value was determined
automatically and objectively to realize the transformation of multiple single indicators
coupled into a comprehensive indicator, which avoided subjective arbitrariness, and the
process was relatively simple [32–34]. Before conducting the principal component trans-
formation, range standardization was performed on the four indicators first to avoid the
imbalance of the indicator weights. We performed PCA transformation on new images by
data fusion and to compute PC1. To make the ecological environment quality proportional
to the value, it was necessary to further transform in order to obtain the initial ecological
index RSEI0. The formula is as follows.

RSEI0 = 1− {PC1[
∫
(NDVI, WET, NDBSI, LST)]} (10)

Finally, it was necessary to standardize the range of RSEI0 to obtain the remote sensing
ecological index (RSEI), which has a value range of [0, 1]. The formula is as follows.

RSEI =
RSEI0 − RSEImin

RSEImax − RSEImin
(11)

In the formula, the closer the RSEI value is to 1, the better the quality of the ecological
environment, and vice versa, the worse the quality of the ecological environment.

2.5. Analysis of the Relative Importance of the RSEI

The R package “Relaimpo” was used to estimate the relative importance of the NDVI,
WET, NDBSI, and LST to the RSEI. The “relative importance” in the multiple regression
model refers to the quantification of the contribution of a single regression variable to the
overall multiple regression model [35–37]. Generally, as long as all regression variables
were uncorrelated, there is no problem with the evaluation of relative importance in a
linear model; the contribution of each variable was the R2 of a single regression, and all
the individual R2 values add up to the entire model’s R2. However, the contribution of
the RSEI’s influence degree will be affected by the influence of the climatic environment
in different time bands, which may lead to correlation. However, the “LMG”, “Betasq”,
“Genizi”, and “CAR” methods in “Relaimpo” can distinguish the relative importance of
related regression variables in a multivariate linear model. The calculation process of this
method is relatively complicated, but it can better distinguish the relative importance of
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related variables and has been widely used [37–39]. The specific process of this method is
as follows:

SeqR2((M\S)) = R2(M ∪ S)− R2(S) (12)

SeqR2
({

xk}\Sk(r)) = R2({xk} ∪ Sk(r)
)
− R2(Sk(r)) (13)

LMG(xk) =
1
P ∑P−1

j=0 (∑S ⊆ {X1, . . . , Xp}\{Xk}
n(S) = j

seqR2({Xk}\S)(
p− 1

i

) ) (14)

where SeqR2((M\S)) is the regressor in the additional R2 set S when the regressor in set M
is added to the model, and seqR2({xk}\Sk(r)) is allocated in order. LMG (xk) given to the
regressor xk represents the contribution of the variables to the multiple linear regression
model [35,36].

β̂k,standardized = β̂k

√
Skk√
Syy

(15)

In the formula, Skk and Syy, respectively, represent the empirical variance of the
regression equation Xk and the response y. As long as one only compares the regressions
within models for the same response y, the division is by

√
Syy . The square of the

standardized coefficient is recommended as a measure of relative importance [40,41].
Genizi proposed a variable importance measure [42], and the formula is as follows.

∅G(Xj
)
= ∑d

k=1 ((p
1
2 )jk(p−

1
2 pXY)k)

2
(16)

where p
1
2 is the symmetric and positive definite with the square root of the matrix uniquely

defined by p
1
2 . Genizi’s metric provides a decomposition, which is converted to ∑d

j=1 ∅G(Xj
)
= Ω2

and then converted to the square edge correlation in the case of uncorrelation, and it obeys
orthogonality guidelines. Contrary to ∅HP(Xj

)
, the “Genizi” measure is also nonnegative

by construction, ∅G(Xj
)
≥ 0 [43].

Y∗std = ωTδ(X) = ∑d
j=1 ωjδj(X) (17)

δ(X) = p−
1
2 V−

1
2 (X− µ) = p−

1
2 Xstd (18)

The Markov correlation, standardized predictor, and Var(δ(X)) = I; therefore, the
CAR score,ω, is the weight that describes the influence of each decorrelation variable in
predicting the standardized response [40]. In addition, for Corr(Xstd, Y) = PXY, the CAR
score was the correlation between the response and decorrelation covariates.

ω = Corr(δ(X), Y) (19)

2.6. Optimal Parameter Geographic Detector (OPGD)

The OPGD model includes five parts: factor detector, parameter optimization, interac-
tion detector, risk detector, and ecological detector. The parameter optimization included
two parts: spatial discretization optimization and spatial scale optimization [25,28,44].

2.6.1. Factor Detector

As the core part of geographic detector, the factor detector revealed the relative impor-
tance of the explanatory variables through Q statistics [45–47]. The Q statistic compares the
dispersion variance between the observed value of the entire study area and the variable
level, and the Q value of each explanatory variable is calculated as follows:

Qx = 1−
∑M

j=1 Nx,jσ
2
x,j

Nxσ2
x

(20)



Land 2022, 11, 1303 9 of 20

where Qx and σ2
x are the number and variance of observations in the entire study area, and

Nx,j and σ2
x,j are the number and variance of the internal observations (j = 1, 2, . . . , m) of

the subregion of variable x. A larger Q value means that there was a stronger explanatory
power, because the difference in the subregions was small. In a geographic detector, at least
two samples are required for each formation in order to calculate the average and variance.

The F test was used to determine whether the changes between the observed value
and the stratified observation value were significantly different, because the transformed Q
value can be tested with a noncentral F distribution [48].

F =
N −M
M− 1

Q
1−Q

∼ F(M− 1, N −M; δ) (21)

where M is the number of subregions, N is the number of observations, and δ is the
noncentral parameter [49].

δ =

[
∑M

j=1 Y2
j − 1

N

(
∑M

j=1 Yj
√

Nj

)2
]

σ2 (22)

where Yj is the average value of observations in the jth subregion of the variable. Therefore,
given the significance level, the null hypothesis, H0 : σ2

x = σ2
x,j, can be checked by the

following formula, F(M− 1, N −M; δ), in the distribution table [50].

2.6.2. Parameter Optimization

Parameter optimization included spatial discretization optimization and spatial scale
optimization. In this study, the OPGD model chose the best combination of the discretiza-
tion method and the number of interruptions of each geographic variable as the optimal
discretization parameter [25,51]. The Q value calculated by the factor detector was used to
determine the best parameter combination. It provided a set of decomposition methods
and a combination of the number of interrupts for each continuous variable to calculate the
respective Q value [52].

2.6.3. Interaction Detector

The interaction detector determines the interaction influence of two overlapping space
explanatory variables based on the relative importance of the interaction calculated with
the Q value of the factor detector. Spatial interaction is the superposition of two spatial
explanatory variables. The interaction detector explores the influence of the interaction
condition on the dependent variable through the comparison between the Q value of the
interaction and the two univariates [53,54].

2.6.4. Risk Detector

The risk detector was used to test whether the spatial pattern represented by the
average value was classified as a subarea of categorical or hierarchical variables. The
difference between the average values of subregions η and k was tested by the t-test [55].

tYη−Yk
=

Yη −Yk√
S2

η

Nη
+

S2
k

Nk

(23)

where Yη and Yk are the average values of the observations of the subregions η and k; S2
η

and S2
k are the variances; Nη and Nk are the number of observations [56].

2.6.5. Ecological Detector

The ecological detector was used to test whether one explanatory variable had a greater
impact than another variable. The significance of the different effects of the explanatory
variables was tested with the F statistic [57].
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F =
Nx
(

Ny − 1
)

∑Mx
j=1 Nx,jσ

2
x,j

Ny(Nx − 1)∑
My
j=1 Ny,jσ

2
y,j

(24)

where Nx and Ny are the number of observations; Mx and My are the number of subre-

gions; ∑Mx
j=1 Nx,jσ

2
x,j and ∑

My
j=1 Ny,jσ

2
y,j are the sum of variances in the subregions of variables x

and y [58].

3. Results
3.1. Principal Component Analysis of Ecological Indicators

Through PCA analysis, the ecological environment quality of the four indicators in the
study area was analyzed, and the contribution rate of the eigenvalues of the first principal
component (PC1) was much larger than that of the eigenvalues of the other three principal
components (Table 2). The proportion of the eigenvalues of the first principal component
in the two years was more than 80%, which indicates that the first principal component
analysis method had a significant effect and was representative of the calculation of the
remote sensing ecological index. The values of the other principal components fluctuated,
indicating that the information on the four ecological indicators was incomplete. Table 2
reveals that both the NDVI and WET in PC1 were positive, which indicates that the
NDVI and WET had a positive effect on the ecological environment. The LST and NDBSI
indices were both negative, indicating that LST and NDBSI had negative impacts on the
ecological environment.

Table 2. Principal component analysis results of indicators.

Year Indicator PC1 PC2 PC3 PC4

2001

NDVI 0.6488 0.1954 0.4313 0.5957
WET 0.3282 0.7035 0.4436 0.4478

NDBSI −0.6070 −0.4453 −0.3223 −0.5739
LST −0.3208 −0.5182 −0.7165 −0.3395

Eigenvalue 0.8197 0.2769 0.1995 0.0974
Percent (%) 81.2400 10.7300 6.1500 1.8700

2020

NDVI 0.4837 0.2436 0.5166 0.7065
WET 0.8748 0.1567 0.2606 0.4083

NDBSI −0.0268 −0.4362 −0.8156 −0.5780
LST −0.2475 −0.5321 −0.2375 −0.3741

Percent (%) 82.5500 13.3600 3.1700 0.9300
Eigenvalue 0.6954 0.3596 0.0417 0.0014

3.2. Temporal and Spatial Changes in Ecological Environment Quality

Referring to related studies [18,59], we divided Guangzhou’s RSEI into four grades
(i.e., 0~0.25—bad; 0.25~0.50—good; 0.50~0.75—very good; 0.75~1.00—excellent). The
spatial distribution of the graded remote sensing ecological indices is shown in Figure 4.
Figure 4 reveals that the overall quality of the ecological environment in Guangzhou has
improved from 2001 to 2020, and the area of bad ecological environment quality level
has decreased. This area was mainly distributed in the southern part of Guangzhou. The
area of good grade and excellent grade ecological environment quality level increased
significantly, and this area was mainly distributed in the northern part of Guangzhou. The
terrain in the southwest and south of Guangzhou is low and flat, most of which are plain
terrain areas, and this area is an area with fast economic development in Guangzhou. The
urbanization process in these areas is faster, the urban building density is high, the road
traffic density is high, and the population is relatively dense; thus, the ecological level is
relatively low. The northern part of Guangzhou has higher terrain, is mostly mountainous
terrain, has high vegetation coverage, low urban building density, and relatively high
ecological environment quality.
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Figure 4. Distribution map of the ecological environmental quality from 2001 to 2020.

In ArcGIS v10.2, the changes in the area and proportion of different ecological envi-
ronment quality levels in Guangzhou from 2001 to 2020 were calculated (Table 3). Table 3
reveals that the area with a bad ecological environment quality level decreased from
719.2413 km2 in 2001 to 660.4146 km2 in 2020, with an area reduction of 58.8267 km2, and
the proportion of the decline was 0.81%. The area with a good ecological environment
quality level increased from 1762.1784 km2 to 2247.3468 km2, an increase of 6.72%. The
area with a very good ecological environment grade decreased from 2961.3069 km2 in 2001
to 2334.8574 km2, a year-on-year decrease of 8.68%. The area with an excellent ecological
quality level increased from 1778.8311 km2 in 2001 to 1978.9389 km2 in 2020, an increase
of 200.1087 km2.

Table 3. Area and proportion of different grades of ecological environment quality.

Quality Level
2001 2020

Area (km2) Proportion (%) Area (km2) Proportion (%)

Bad 719.2413 9.9600 660.4146 9.1500
Good 1762.1784 24.4000 2247.3468 31.1200

Very Good 2961.3069 41.0100 2334.8574 32.3300
Excellent 1778.8311 24.6300 1978.9389 27.4000

3.3. Analysis of the Relative Importance of the RSEI

Based on the relative importance analysis models of LMG, Betasq, Genizi, and CAR
in the “Relainpo” package in the R software, this paper analyzed the contribution rate of
the remote sensing ecological index indicators to the ecological index in 2001 and 2020
respectively (Figure 5). Figure 5 shows that the results of the four relative importance
models in 2001 and 2020 all showed that the NDVI had the largest contribution to the ESRI
in Guangzhou, while the NDBSI had the smallest contribution to the ESRI. This means that
the NDVI does have an important effect on the RSEI, while the NDBSI has a weaker effect
on it.

Figure 5a shows that the four ecological indicators in 2001 had different degrees of
contribution to the RSEI in Guangzhou. In 2001, the ecological indicator with the largest
contribution to the RSEI was NDVI. The results of the four models of LMG, Genizi, Betasq,
and CAR showed that the contribution rates of NDVI to the RSEI were 49.35%, 50.08%,
50.14%, and 50.57%, respectively. Secondly, the influencing factor that has a greater impact
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on the RSEI was WET. The results of the four models of LMG, Genizi, Betasq, and CAR show
that the contribution rates of WET to the RSEI were 32.54%, 21.06%, 31.04%, and 32.76%,
respectively. The impact of LST on the RSEI was relatively small, and its contribution rate
was approximately 15%. In addition, the results of the four models all showed that the
NDBSI had a weak effect on the RSEI, and its contribution rate was less than 5%.

Figure 5. The relative importance of the RSEI. (a) Results of relative importance in 2001; (b) Results
of relative importance in 2020.

Figure 5b shows the distribution of the impact of the four ecological indicators on the
RSEI in 2020. Compared with 2001, the contribution rate of WET to the RSEI increased
significantly. Specifically, except for the contribution rate shown by the Betasq model
which dropped by 3.07% compared with 2001, the other three models all showed that its
contribution rate increased by approximately 20%, indicating that WET had a stronger
impact on the RSEI in 2020. The contribution of LST to the RSEI increased in the Betasq
model, and the other three models all showed a decrease of approximately 5%. This
generally reflects that the contribution rate of LST to the RSEI was small and had a slight
downward trend, but we cannot ignore its influence. Compared with the contribution rate
of NDBSI to the RSEI in 2001, it was still the smallest ecological indicator, and the four
models all showed that the contribution rate of the NDBSI to the RSEI was less than 4%.
This shows that the impact of the NDSBI on the RSEI in Guangzhou was relatively stable,
and the contribution rate fluctuated little.

3.4. Analysis of the OPGD

First, we used the OPGD model to analyze the spatial explanatory variables of the
remote sensing ecological index. The OPGD model needs to use optimal parameterization
to discretize these five explanatory variables [25]. The discretized results are shown in
Figure 6. We utilized the optimal parameterization to effectively turn the five explanatory
variables into stratigraphic variables, which were equivalent to categorical variables in
geographic detectors.

Figure 7 shows the comparison of the effects of each variable of the RSEI at different
spatial unit scales. Figure 7 reveals that the values of the five variables, including annual
average precipitation, temperature, slope, road, and soil, increased from 5 to 20 km space
units, showing a clear upward trend. In addition, the 90% quantile value reached a
maximum value when the space unit reached 20 km, while beyond the 20 km space unit
there is a decreasing characteristic. Therefore, in this study, we use 20 km as the scale unit
for spatial stratified heterogeneity analysis.
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Figure 6. Optimization results of spatial data discretization parameters.

Figure 7. Comparison of the scale effects for spatial units and 90% quantiles of the
explanatory variables.

Second, we used factor detectors to analyze the impact of individual explanatory
variables on the remote sensing ecological index. The results show that the maximum Q
value of the soil type on the remote sensing ecological index image was 0.1360, followed by
a precipitation Q value of 0.1341, and the road Q value with the least impact was 0.0155
(Figure 8).

Third, we used a risk detector to determine the means of risk for variables within the
space and to test whether the means of risk differ significantly for various regions of the
space (Figure 9). Figure 9a shows that the annual average precipitation had the greatest
impact on the RSEI when the average annual precipitation was 146~147 mm. When the
annual average temperature was between 21.0 and 21.9 ◦C, the effect of temperature on the
RSEI was most obvious. Soil types had obvious positive effects on the RSEI, and soil types
68~78 had a significant effect on the RSEI. However, when the soil types were 78~85, it had
a significant negative impact on the RSEI. The impacts of slope on the RSEI were all positive
stimuli, and when the slope was between 8.88◦ and 20.20◦, it had the greatest impact on the
RSEI. The positive effect of the slope on the RSEI was weakest when the slope was between
0◦ and 1.50◦. Next, this paper analyzed the impacts of distance from the road on the RSEI.
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Figure 9a shows that when the distance from the road was between 0.0176 and 0.0253, the
road had the most significant impact on the RSEI, while it had the least impact on the RSEI
when it was between 0.0253 and 0.0329. Figure 9b reflects whether a single factor had an
impact on the RSEI in this interval. In the figure, N means no impacts, and Y means it had
impacts on the RSEI. Taking the precipitation factor as an example, Figure 9b reveals that
when the precipitation was in the two ranges of 0~140 mm and 153~163 mm, the effect of
precipitation on the RSEI was extremely weak. However, when the precipitation was in the
two ranges of 140~144 mm and 153~163 mm, the precipitation had a significant impact on
the RSEI.

Figure 8. The impact of a single factor on the RSEI.

Figure 9. Cont.
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Figure 9. (a) Mean value of the RSEI; (b) risk detector results.

Fourth, the article performed interactive detection of the influencing factors, and the
specific results are shown in Figure 10a. It reveals that the interaction between soil type
and the annual mean temperature had the most obvious effect on the RSEI, and the Q value
of their interaction effect was 0.1903. The second largest interaction effect on the RSEI was
soil type and average annual precipitation, and the Q value of their interaction effect was
0.1789. The two factors, road and annual mean precipitation, had the smallest interaction
effects on the RSEI, with Q values of 0.0828.

Figure 10. (a) Results of interaction probe; (b) results of the ecological probe.

Finally, the analysis of the ecological detector was carried out, and the specific results
are shown in Figure 10b. The figure shows that the combination of the annual mean
precipitation variable and the other four variables does not produce a situation where
precipitation has a greater impact on the RSEI than any other variable. Soil type and annual
mean temperature do not show that one variable has more significant impacts on the RSEI
than the other. In addition, any two variables in other variables have different degrees of
influence on the RSEI.

4. Discussions

In this study, we quantify the RSEI of Guangzhou in 2001 and 2020 by principal
component analysis, and the results are divided into four grades. The area with a bad
grade for ecological environment decreased, and the areas with a very good and excellent
grade of ecological environment increased significantly, perhaps because of the influence
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of environmental protection policies [60]. In addition, the concept of “lucid waters and
lush mountains are invaluable assets” was first proposed in 2005. The Chinese government
proposed to establish and practice the concept of “lucid waters and lush mountains are
invaluable assets”, adhere to the basic national policy of saving resources and protecting
the environment, and resolutely prohibit a series of human activities that damage the
natural environment. In future urban planning, we need to continue to strengthen urban
environmental governance and pay attention to the inhibitory effect of vegetation coverage
on the destruction of the ecological environment in urban development [61].

Based on the analysis of the R package “Relaimpo”, the results show that the con-
tribution rate of the NDVI and WET to the RSEI increased year by year, and the area of
green space in Guangzhou increased during the research period. According to statistics
in 2020, the total area of green land was 147,048 km2, and the area of park green land was
30,189 km2. On the other hand, we also found that the contribution rate of LST to the RSEI
was also increasing. This may be due to the high population density in the southwest
area of Guangzhou and the continuous expansion of the urban impervious construction
area [62]. This urban physical environment exacerbates the urban heat island effect, and it
also stimulates the effect of LST on the RSEI to a certain extent [63]. Therefore, we should
attach importance to the addition of urban green belts, build urban green spaces, and
moderately control the expansion of construction land to reduce the negative impact of LST
on the RSEI.

The OPGD model reveals the geographic features and information among these
variables by optimizing the parameters of five single-factor explanatory variables and
optimizing the spatial scale of the RSEI spatial discretization degree. It can more compre-
hensively explain the relationship between explanatory variables and dependent variables,
and to a certain extent can provide decision support and basis for planning and design.
The identification of geographic attributes can support more accurate and effective RSEI
spatial control and protection modes and the exploration of the RSEI spatial heterogeneity.
Through the factor detector, we found that the soil type had the greatest impact on the
RSEI, followed by the annual average temperature, slope, annual average precipitation, and
roads. The results show that suitable soil types can improve the growth of vegetation [64]
and control the local climate environment in Guangzhou. A series of urban constructions
have changed the soil properties of the land to a certain extent. It will affect the growth
of vegetation and indirectly affect the level of the RSEI. By analyzing the analysis of the
detector, we find that the significance of different variables to the RSEI will vary with the
change of the interval. Among them, the effects of different sections on the RSEI were
not consistent. For example, interaction explains the effect of two variables on the RSEI
under the condition that one variable affects the RSEI. This provides a reference basis for
us to make smart decisions to resolve the impact of synergistic effects on the RSEI under
multifactor conditions.

5. Conclusions

In this article, the PCA method is used to comprehensively analyze the RSEI of
Guangzhou from 2001 to 2020, and the OPGD model is used to explore the influencing
factors of the RSEI. The main conclusions are as follows.

(1) From 2001 to 2020, the quality of the ecological environment in Guangzhou has
significantly improved. The area of the excellent level of ecological environment quality has
expanded from 1778.8311 km2 in 2001 to 1978.9389 km2 in 2020. The area with a bad level
of ecological environment quality has dropped from 719.2413 km2 in 2001 to 660.4146 km2

in 2020.
(2) Based on the analysis of the R package “Relaimpo”, we find that NDVI and WET

contributed more to ESRI in Guangzhou, while NDBSI and LST contributed relatively less
to ESRI. The results of the relative importance analysis show that WET’s contribution to
Guangzhou’s RSEI has increased from 2001 to 2020. During this period, the Betasq model
showed that the contribution rate of WET decreased by 3.07%, and the LMG, Genizi, and
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CAR models all indicated that the contribution rate of WET increased by more than 20%
in 2020.

(3) The results of the OPGD model show that soil type have the greatest influence
on the RSEI in single factor analysis, and the Q value is 0.1360. The factor with the least
influence on the RSEI is the road, and the Q value is 0.0155. The influence degree and
significance of the five factors on the RSEI in different intervals are different. The annual
average precipitation has the greatest impact on the RSEI when it is 146~147 mm, and
when it breaks through this range, its influence begins to gradually decline. The interaction
detector shows that the interaction force of the two variables, annual mean temperature,
and soil type, have the strongest effect on the RSEI, with a Q value of 0.1903. The least
interaction on the RSEI are the two factors of road and annual average precipitation, and
the Q value is 0.0828.

Based on the remote sensing data in Guangzhou from 2001 to 2020, this paper used the
principal component analysis method to establish a remote sensing ecological index coupled
with the main information of four ecological indicators to evaluate the environmental
quality. The OPGD model is used to analyze and discuss the influencing factors of the
RSEI and their interactions. This research may provide some reference for future urban
environmental monitoring, management, and sustainable governance, but the article still
has some deficiencies. For example, this paper resampled the annual precipitation and
temperature data in order to keep the data resolution as consistent as possible. However,
this will inevitably lead to some biases between the research results and the actual situation.
In addition, the impact of economic development, cultural and technological construction,
and tourism planning on the environment was not included in the RSEI evaluation. In
the indicators, the research results may have some deviations from the actual situation.
Therefore, the above deficiencies can be further considered to further improve the accuracy
and comprehensiveness of ecological environment quality in future research.
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Appendix A

Appendix A.1

Table A1. Results of the “Relaimpo” package of the R software.

Year Item LMG Betasq Genizi CAR

2001

WET 0.3254 0.2161 0.3104 0.3276
NDVI 0.4935 0.5615 0.5008 0.5057
NDBSI 0.0217 0.0260 0.0184 0.0007

LST 0.1594 0.1965 0.1703 0.1660

2020

WET 0.4936 0.2180 0.4859 0.4953
NDVI 0.4299 0.5785 0.4373 0.4546
NDBSI 0.0007 0.0007 0.0008 0.0007

LST 0.0757 0.2028 0.0761 0.0494
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Appendix A.2

Table A2. Land type.

NO. Name

18 Lakes and freshwater
27 Tide soil
38 Brown lime
40 Yellow soil
44 Rice soil
50 Yellow–red Soil
62 Riverine sand
65 Mizuna rice
68 Red soil
72 Grey tide soil
78 Crimson soil
80 Submerged rice
84 Urban area
85 River
90 Rice rinsing

102 Saline rice
107 Coastal wind and sand
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