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Abstract: The discussion on the formation of Chernozems still has no consensus, and one of the
outstanding questions is the type of the vegetation that supported the persistence of these soils in
Central Europe over the Holocene period. The transformation of Chernozems and related soil types
may be clarified by paleoenvironmental studies, which integrate different investigation techniques
and proxy data. We propose a procedure based on infrared reflectance spectroscopy of soil organic
matter, that presumably contains specific fingerprints from land use and plant cover. A database
of spectra for 337 samples representing vegetation classes (grassland, woodland and arable) and
loess soil types (Chernozem, Phaeozem, Luvisol) was created to build a mathematical model, which
allows to identify the origin of buried soils with unknown history. The comparison confirmed the
applicability of both near-infrared and mid-infrared spectroscopy, with higher statistical affinity of
MIR. A clear disjunction of land use/vegetation classes was proven and allowed reliable association
of the samples from buried soils with grassland/woodland and episodes of arable land use, followed
by prevailing forest vegetation after burial. The findings are consistent with proposed models in
Poland and Czechia, and confirm the potential of spectroscopy techniques in identification of soil
types and their evolution.
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1. Introduction

Chernozems are described as the most fertile soils developed from loess and charac-
terized by the presence of a thick, black humus horizon and secondary carbonates [1–3].
They are located typically in continental climate zones and under steppe vegetation, which
promotes the development of their characteristic features [4]. Such conditions prevail in
the Eurasian Chernozem Belt, mostly situated in the territory of Russia, Ukraine, Moldova,
and Hungary, although small areas of Chernozems are also known in central and western
Europe [5–7]. Presently, European Chernozems are mostly arable soils due to their particu-
larly high productivity [8–11], and only minor areas of these soils are still maintained in
the form of pastures or woodland, consisting mainly of oak and oak-hornbeam [12–15].
The presence of Chernozems in the temperate humid climate zone of Central Europe
generates a discussion about the formation and further evolution of these soils [16]. The
original concepts presumed the presence of Central European Chernozems in areas where
steppe vegetation persisted the longest during the Holocene period [17]. These concepts
considered the succession of deciduous forests as the main factor leading to degradation of
Chernozems [18,19]. Some researchers related the development of Chernozems with large-
scale forest burning in the Neolithic period and accumulation of black carbon in topsoil
horizons [6]. Presently, the most common concepts assume Chernozems development in
Central Europe under open-canopy broadleaf forests or in an open woodland-grassland
landscape created in the course of anthropogenic activity during the Neolithic [12,20,21].
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Studies focused on the origin and transformation of soils in relation to covering vegetation,
may also offer useful proxy information for the identification of agricultural practices,
what has large importance for archeological reconstructions of ancient human activity
and its impact on the environment [22,23]. Typically, reconstructions of environmental
conditions of Chernozem development and existence are based on analyses of vegetation
residues, such as pollen grains, phytoliths and charcoal particles preserved in soil [24].
However, the high biological activity in Chernozems may result in a decomposition of
pollen grains [17,21]. Phytoliths are more resistant for biological decomposition, but relat-
ing the phytolith morphotypes to botanical taxa remains a challenge, therefore the reliability
of the conclusions is severely reduced [25].

A new research possibility was achieved with the development of spectroscopic tech-
niques based on libraries which allows for the prediction of some of soil properties [26,27].
Those models’ functionality is based on techniques such as multiple regression statistics
or machine learning [28]. The performance of those models relies on creating database
calibrated with certain properties and applying it on samples with unknown parameters.
Related techniques are presently used in the area of environmental reconstructions [29–31].
One of the recently proposed and still developing approaches is the use of spectroscopy
in order to determine the evolution of soils in relation to the environment. The main
subject of these analyses is soil organic matter (SOM), inherited from the above-ground
vegetation and soil organisms after their transformation, including humification [29]. The
concept exploits an assumption that SOM contains specific fingerprints originating from
past vegetation that persisted for a long time [32], and thus differentiates the organic matter
developed under various vegetation and environmental conditions. For a detailed insight
into SOM composition, relatively rapid and non-destructive spectroscopic techniques can be
applied [33,34] as complementary or substitutive to chemical fractionation [35,36]. The first
attempts allowed for successful discrimination between various types of organic matter in
similar soils, that may suggest different vegetation cover [31]. Particularly for Chernozems,
the models for vegetation reconstruction in the context of pedogenic processes, based on
spectroscopic methods, have already been published [23,30]. Preliminary studies applied
only the near-infrared (NIR) spectra and explored the paleoenvironmental history of buried
Chernozems based on two referenced vegetation groups: woodland and grassland. Later
approaches extended the analyzed spectrum range, tested the usefulness of mid-infrared
(MIR) spectroscopy and have added a third group of arable land spectra [30]. Although
many reports are available that support the applicability of NIR or MIR techniques in
soil studies, neither of these methods is developed and validated enough to be clearly
considered as an international standard [37].

The aim of this study was to compare the applicability of two spectral ranges: MIR
(4000–525 cm−1) and NIR (10000–4000 cm−1) for the identification of soil organic matter
origin, in modern and buried chernozemic and related soils developed from loess. We
suppose that the identification of organic matter origin in the subsequent horizons of
soils buried beneath prehistoric barrows may reveal the circumstances of past soil cover
formation, including changes in vegetation, as well as possible ancient agricultural practices.
The study of SOM origins in the mound-forming material may give new insights into
environmental conditions that prevailed after the construction of the barrows.

2. Materials and Methods
2.1. Soil Sampling

To ensure a proper identification of SOM origins in buried soils by NIR/MIR tech-
niques, a library of spectral data for topsoil samples of modern (surface) soils with known
land use and known source of soil organic matter was created. The soils buried under the
studied Neolithic barrows preserved the morphological and physicochemical features of
Chernozems/Phaeozems [38] developed from loess, so the investigation was concentrated
in areas where surface Chernozems/Phaeozems occur, within the loess belt in southern
Poland (Figure 1). The objective of the sampling conducted in years 2019–2021 was to collect
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a large quantity of topsoil samples in three types of the present-day land use/vegetation,
including grasslands, forests, and arable lands. The sampling areas were located in the
Wrocław Plain (south-west Poland), the Miechów Upland (south-central Poland), the Prze-
myśl Foothills and the Hrubieszów Basin (south-east Poland) (Figure 1). The loess belt area
in south Poland is characterized by temperate humid climate, with a mean annual precip-
itation of 500–780 mm, increasing from the east towards the west [39]. Due to leaching,
some of the forest soils in areas dominated by chernozemic soils lost their chernozemic
characteristics (in particular, their topsoil is too light-colored to meet the criteria for cher-
nic/mollic horizons), thus samples of afforested Luvisols [38] developed from loess were
also included in the database, if they retained a humus-rich topsoil horizon.
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Figure 1. (1) Map of the study area in south Poland with: (2) sampling points of arable, grassland
and forest locations, used to create the spectral database, (2A) sampled barrows in the Muszkowice
Forest: M1 (site: Muszkowice 18), M2 (site: Muszkowice 45), (2B) sampled barrows in the Głubczyce
Forest: G1 (site: Lwowiany 22) and G2 (site: Lwowiany 23), and (2C) the sampled barrow (O1) in
Ostrów near the Proszowice Plateau (site: Ostrów 1).

An important part of the sampling process was to ensure that the present vegetation
occupied the studied area for a sufficiently long time. Therefore, the stability of land
management during the last century was verified at the sites selected for sampling using
historical topographic maps (Messtischblatt 1905–1944 on a scale of 1:25,000 and 1:10,000).
This step allowed obtaining an accurate collection of samples with a strong signal from
organic matter derived from presently identified plant cover [40,41]. The surface soil
sampling focused on mineral topsoil layers, where soil has the closest relation to plant
remains derived from the current vegetation. Samples were collected from the depth of
0–10 cm in 10–15 points at each sampling site. Typical cultivated species in arable sampled
lands were wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), corn (Zea mays L.) and
potato (Solanum tuberosum L.). The multispecies grassland vegetation consisted mainly
of meadow foxtail (Alopecurus pratensis), Kentucky bluegrass (Poa pratensis L.), perennial
ryegrass (Lolium multiflorum Lam.), meadow fescue (Festuca pratensis Huds.), field brome
grass (Bromus arvensis L.), and spikelets soft grass (Holcus mollis L.). Forest vegetation in the
sampling sites was limited to deciduous species with a domination of oak (Quercus robur L.),
beech (Fagus sylvatica L.) and hornbeam (Carpinus betulus L.).

Beneath the barrows selected for this study buried soils were present, with thick, dark
horizons (mollic or chernic), thus classified as Chernozems or Phaeozems, depending on
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the presence and depth of the layer enriched with secondary carbonates. Barrows M1
and M2, located in the Muszkowice Forest in SW Poland (Figure 1(2A)), are associated
with the Late Neolithic Funnel Beaker culture (ca 3500 years BC) [21]. Barrows G1 and G2
located in the Głubczyce Forest (SW Poland) (Figure 1(2B)) [20] along with kurgan O1 in
Ostrów in south central Poland (Figure 1(2C)) are also dated to the Funnel Beaker culture
(4th millennium BC). Samples for analyses were taken from the humus horizons of buried
soils. In some cases (barrows M1, G1, G2 and O1) samples were also collected from the
mound horizons, with the exception of the uppermost eluvial layers. These mounds were
built using ancient topsoil gathered (heaped) from the immediate vicinity, thus may provide
additional information about land use/vegetation at the time of the barrow construction
and in subsequent time periods [21].

2.2. Sample Preparation and Statistical Analysis

In total, 337 topsoil samples of arable, forest and grassland soils were included in the
database and used to develop the statistical model which consist of 164 samples from forest,
38 samples from grassland and 135 samples from arable location. From the buried soils,
26 samples were collected. After air drying, samples were crushed to pass a 2 mm mesh.
Particle size distribution was determined using sieve and hydrometer method. Soil pH
was measured in water suspension at a ratio 1:5 (v/v) using Mettler Toledo SevenMulti
pH-meter (Greifensee, Switzerland). Calcium carbonate content (as a CaCO3 equivalent)
was estimated by gravimetric method with Scheibler apparatus [42,43]. The content of soil
organic carbon (SOC) was measured using dry-combustion method with CS-MAT analyzer
(Ströhlein, Kaarst, Germany) after carbonate removal with 10% HCl solution [44].

For the spectral analyses, all samples were additionally ground and dried at 37 ◦C for
one day, to avoid interference signals from variable soil moisture. Scanning of samples was
performed in two spectral ranges: mid-infrared (MIR) and near-infrared (NIR). MIR spectra
were recorded in the spectral range 4000–400 cm−1 with a Nicolet iZ10 FT-IR spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA). For the NIR analysis, samples were scanned
in the spectral range 10000–4000 cm−1 with Cary 5000 UV-Vis-NIR spectrophotometer
(Agilent, Santa Clara, CA, USA). The resolution of recorded spectra was 2 cm−1 in case of
MIR and 4 cm−1 for NIR. It allowed to create a data matrix with 1800 and 1500 columns
for MIR and NIR spectral ranges, respectively. The number of variables (columns) in the
databases was reduced down to 359 and 376 columns for MIR and NIR, respectively. The
process of database reduction assumed rejecting every n-th column, until their number has
been reduced to the level comparable with the number of cases (rows). This pretreatment
was necessary for Canonical Variate Analysis (CVA), which requires the number of variables
to be similar or lower than the number of samples [23,41].

2.3. Preparing the Reference Library of MIR/NIR Samples

The obtained MIR and NIR datasets required preprocessing before application of statis-
tical analysis. Mathematical pretreatment was carried out using Unscrambler
10.4 software (CAMO Software, Oslo, Norway) in order to increase the differentiation
between analyzed groups [30]. All spectra were treated with standard normal variation
procedure (SNV) to standardize data (zero mean, variance = 1) and to reduce the influence
of soil variables, such as particle size distribution or SOC content. Then, to maximize
the amount of available information and to enhance discrimination between groups of
samples, the derivative operation was applied on datasets. For both sets of data the 1st and
2nd derivative order was applied, based on recommendations from other authors [31,41].
Finally, the transformed spectra were processed by Canonical Variate Analysis (CVA) using
the Systat 13.2 (Cranes Software, Chicago, IL, USA), separately in MIR and NIR datasets.
It resulted in a transformation of multi-variable spectra into single values of canonical
scores. Additionally, it enabled to allocate samples into groups/classes based on the scores
calculated from the multiple variables recorded in MIR and NIR spectra. The disjunctions
between classes were determined based on Mahalanobis distance, which is often used to
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determine the distance between discriminated groups [45]. Moreover, after the application
of CVA analysis, the transformed MIR and NIR datasets were statistically described by
coefficient of variation parameter (CV) (Table 2). Coefficient of variation was calculated as
standard deviation of datasets, divided by its mean values and expressed as percentage [46].

3. Results and Discussion
3.1. Standard Soil Properties

The basics soil parameters were measured in samples according to land use and
soil type. The lowest pH of topsoil layers was identified in the forest soils (mean 5.1),
while the highest in arable soils (mean 7.1) (Figure 2a). In turn, the SOC content was
significantly lower in arable soils (mean 1.4%) than in forest and grassland soils (mean
4.2–4.3%) (Figure 2b). Considering soil types, the highest pH values were recorded for
Chernozems with mean value 7.5, while the most acidic conditions occurred in Luvisols
(mean 4.7). Chernozems and Phaeozems contained on average 2.4–2.5% of SOC, while
Luvisols had considerably higher SOC content with mean value of 3.8%. The findings of
other authors confirm similar trends in arable and forest chernozemic soils in south-east
Poland [14,47]. The pH of the buried soils fell between the pH reported for modern Luvisols
and Phaeozems (Figure 2c) and was close to topsoil pH of the modern forest soils. SOC
content in the buried soils was significantly lower than in other soil types (Chernozem,
Phaeozem and Luvisol) (Figure 2d); however, it was similar to SOC content in arable soils
(Figure 2b).
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Figure 2. Basic properties of the soils under study sorted according to land use: (a) pH, (b) SOC,
and soil type: (c) pH, (d) SOC. Boxes: standard error, central line: mean values, whiskers: standard
deviation. Land use: ARA—arable, GRASS—grassland, FOR—forest. Soil type: CHE—Chernozem,
PHA—Phaeozem, LUV—Luvisol, BUR—buried soils.

3.2. Mahalanobis Distances for NIR and MIR Spectral Range

Figure 3 illustrates clearly higher scores of Mahalanobis distances for samples with
different land use in MIR spectral range (Figure 3a,b) in comparison to NIR (Figure 3c,d)
for respective derivates. Mahalanobis distances for examined samples of the CVA analysis
on MIR and NIR spectra are summarized in Table 1. Comparing the values of Mahalanobis
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distance for MIR spectra between the 1st and 2nd derivative, it can be noticed that, in
general, higher values were obtained after application of the 2nd derivative (up to 59.2
for canonical score 1 and 35.9 for canonical score 2), whereas for the 1st derivative the
Mahalanobis distance did not exceed 25.7 for canonical score 1 and 25.1 for canonical
score 2. The same dataset analysed in NIR range revealed remarkably lower distances
that did not exceed 9.4–13.1, depending on the applied 1st or 2nd derivative. Those
observations suggest that under the same conditions and with identical treatment, the
NIR range seems to be less accurate to classify samples into groups, based on the land
use that greatly influences the kind of SOM. Studies of other authors on NIR datasets
provide similar values of Mahalanobis distances [23,29,41]. Using a methodology similar
to applied in this paper (standardization and 1st derivative), Strouhalova obtained the
Mahalanobis distances around 9.4 [29] and 17.5 [23] in the grassland and forest Chernozems,
respectively, and she did not record significant differences after data transformation to
the 2nd derivative. Ertlen [27], in turn, for more heterogeneous forest and meadow soils
obtained a Mahalanobis distance around 12.2 for the NIR dataset. Considering these results,
the MIR range seems to be more suitable, in mathematical terms, for the discrimination of
samples based on land use.
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Discrimination of samples using CVA statistics was also conducted according to
the reference soil groups (Phaeozem, Chernozem, Luvisol) (Table 1, Figure 4). This is
new approach implemented in recent peloenvironmental reconstructions based on spec-
tral libraries [30]. In case of MIR, the highest values of Mahalanobis distances were ob-
tained for Chernozems-Luvisols classes, up to 49.2 for the 2nd derivative and 19.4 for the
1st derivative. The discrimination between examined groups was not that clear in case of
the NIR range, as the distances between sample groups according to the soil type did not
exceed 11.0–12.2, although the results were higher for the 2nd derivative order. Considering
these findings and remembering that high Mahalanobis distance is essential for reliable
sample differentiation, the second derivative order provides better disjunction of classes
for both spectral ranges. However, it is worth mentioning that for the MIR range also the
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1st derivative provides good disjunction between sample groups. The other authors [23,29]
preferred the 1st derivative for NIR spectra, but as shown in Figures 3 and 4, the differ-
ences between the 1st and 2nd derivative for NIR are much smaller than those for MIR.
Summarizing the results for soil types, the obtained data indicate, in mathematical terms,
an overall advantage of MIR spectra over NIR.

Table 1. Mahalanobis distance for various variants of the CVA analysis.

MIR 1st
Derivative

MIR 2nd
Derivative

NIR 1st
Derivative

NIR 2nd
Derivative

Canonical Scores Score 1 Score 2 Score 1 Score 2 Score 1 Score 2 Score 1 Score 2

Land Use

Arable-grassland 20.6 23.1 37.3 35.9 3.3 9.4 12.0 10.9

Arable-forest 25.7 2.0 21.9 14.0 7.6 1.0 9.6 2.2

Forest-grassland 5.1 25.1 59.2 21.9 4.5 9.4 2.4 13.1

Soil type

Chernozem-Phaeozem 12.5 16.2 25.0 15.0 4.4 6.3 0.9 8.3

Chernozem-Luvisol 5.9 19.4 49.2 5.5 11.0 3.1 11.3 6.9

Luvisol-Phaeozem 18.4 3.2 24.2 9.5 6.6 3.2 12.2 1.4
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3.3. Coefficient of Variation for NIR and MIR Spectral Range

In addition to the aforementioned distances between the groups of examined samples,
the dispersion of the samples within the groups may be another important parameter
that potentially influences the reliability of discrimination. Coefficient of variation (CV)
is a statistic used to show the variability of results [48]. In general, high values of CV
indicate large variability within the sample group [49,50]. Overall, the CV values for NIR
are remarkably higher, compared with MIR for respective derivates (Table 2). For the NIR
1st derivative the values were up to 774% and for the 2nd derivative up to 369%. This
indicates a particularly high dispersion of samples around their mean values, which may
adversely affect the efficiency of the model in determining the past vegetation in samples
of unknown origin. On the contrary, low values of CV were recorded for the MIR spectral
range, particularly in case of the 2nd derivative, where the values did not exceed 20%.
Although in some cases the 1st derivative MIR has better performance than the second one
(e.g., canonical score 1 for arable land or canonical score 2 for Chernozems), the general
tendency is in favor of the 2nd derivative order, where most of the CV values were lower
than their 1st derivative counterparts, indicating less dispersion of the samples.

Table 2. Coefficient of variation (CV) for land use and soil groups after CVA analysis, based on
Figures 3 and 4.

MIR 1st
Derivative

MIR 2nd
Derivative

NIR 1st
Derivative

NIR 2nd
Derivative

Canonical Scores Score 1 Score 2 Score 1 Score 2 Score 1 Score 2 Score 1 Score 2

Arable 9.3 243 15 14 30 197 22 369

Forest 6.3 37 6.3 14 23 195 20 52

Grassland 11 4.5 2.5 2.8 774 13 10 7.1

Chernozem 21 6.8 3.7 12 20 28 22 369

Luvisol 14 81 24 20 65 51 20 52

Phaeozem 8.4 22 4.7 20 18 75 10 7.1

3.4. Selection of Recommended Analytical Approach

Considering the parameters mentioned above, it can be noticed that all of the proposed
treatments allowed to distinguish clear groups of samples, both for soil type and land use.
However, the most suitable variants seem to be MIR 2nd and 1st derivatives, because of
the highest Mahalanobis distances between obtained classes of land use and soil types,
what permits clearer disjunction of examined samples. A similar conclusion can be drawn
considering the coefficient of variation, where the lowest values and thus the lowest
variability of results were observed in the mentioned variants which were MIR 2nd and
1st derivatives. However, there is difficulty in a clear indication which MIR derivative
order should be recommended as a standard approach—the majority of results confirm
the advantage of the 2nd derivative order, but in some cases the 1st derivative had better
performance. Due to the lack of clarity which derivative order is preferable as a standard,
we followed the suggestions of other authors [23,29,41] that the best discrimination of
samples may be obtained after application of the 1st derivative, and we choose this variant
for further conclusions.

3.5. Land Use of Buried Soils

Consequently, the discrimination of samples from buried soils with unknown origin
of organic matter was performed with the MIR dataset and application of the 1st derivative
order. The analysis allowed to plot these samples on a workspace, with groups clustered
according to land use (Figure 3) and soil type (Figure 4). For a clear presentation of data and
in order to avoid overlapped results on the graphs, the canonical scores were presented in
Table 3. Following the CVA analysis, it seems that most of the buried soils have grassland
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or arable origin. Malacological analyses performed on buried Chernozems indicate steppe
vegetation as a main type of environment for Chernozems [51]. The deepest layers of
buried humus horizons have signals of arable vegetation (G1, M1 and O1) or grassland
(G2). The only signal from forest vegetation was recorded in profile M2, however it was
allocated between forest-grassland groups. On the other hand, the upper layers of all
the buried topsoils have mostly clear signals from either grassland or arable vegetation,
although in some cases the signal was beyond the space of prediction and there was no
possibility to assign the sample unequivocally to any of the three classes (O1). Moreover,
the analysis allowed to identify vegetation types for some layers of the barrow mounds
covering the buried soils. In the majority of cases these samples reproduced the signals
from the buried parts of the profiles and indicated grassland vegetation (G1, G2 and O1),
forest vegetation (in the upper layers of barrow mound G1) or the samples were beyond
the space of prediction to draw any conclusions (data not included). The presence of
forest vegetation in close distance to kurgans might have influence on their physical and
chemical properties what is also reflected on spectral images [52,53]. The obtained results
are consistent with the recently proposed models of Chernozem development in Poland and
Czechia [20,21] and evidence of landscape ‘openness’ during the Neolithic period in Central
Europe [54–58]. Theories concerning the origins and development of Chernozems assumed
that they are generally associated with grassland or mixed grassland-woodland types of
vegetation [59]. The proposed model was refined by expanding the Chernozem database
with samples collected from arable soils [30], since prehistoric cultivation can also be
expected in buried chernozemic soils [58] and tillage may provide different organic matter.
Furthermore, of particular interest is that all investigated buried soils show an episode of
cultivation, recorded typically ‘above’ the grassland stage. Recent findings suggest that in
SW Poland, the formation of chernozemic soils may have started in the early Holocene and
past human activity (from the Neolithic onwards) played an important role in enabling
their patchy preservation until the present-day [20,21]. Although, investigation of these
anthropogenic treatments and determination of their role in preservation of Chernozems or
their transformation into other types of soil is still not fully explained [60,61]. Our evidence
of agricultural practices in the buried soils requires further corroboration; however, the
fragments of charcoal found in the Ab horizon beneath the Neolithic barrow in Muszkowice
(here: M2) link with vegetation clearance practices for agricultural purposes [21].

3.6. Identified Type of Buried Soils

Moreover, it was suggested in other study to supplement the interpretation of soil
transformation by identifying the most probable soil type (Chernozem, Phaeozem or
Luvisol) [33]. However, for soil types, the CVA analysis was not as precise as it was
for land use, and some soil horizons were difficult to include in any class (Table 3). In
general, the deepest buried horizons tended to have indications typical of Chernozems or
Phaeozems, or the signal was derived from both of them (G1, G2, M2 and O1). This also
corresponds with grassland or arable type of land use. The signal of grasslands derived
from steppe vegetation is considered as typical in case of Chernozems as a main factor of
their origin [62]. Moreover, the possibility of Chernozems transformation into Phaeozems
or Luvisols during Holocene period was considered by some authors [6,14,63]. The upper
parts of buried soils in these profiles usually belonged to Phaeozems or had a mixed
Phaeozems/Luvisol signal. However, in profile M1 the deepest horizons were assigned to
Luvisol, with an arable land use signal, while the overlying layers had either Phaeozem
or even Chernozem signals (Table 3). For the lowermost barrow mound layers, it was
possible to identify signals similar to those obtained for the buried horizons: Phaeozem
(G1), Phaeozem and Chernozem (G2) and Luvisol (M1). The upper horizons of the barrow
mounds almost exclusively have signals characteristic for Luvisols. Presence of this type of
soil is typical for forest environments, where the samples of upper parts of barrow mound
were collected [64].



Land 2022, 11, 1294 10 of 13

Table 3. Mid-infrared canonical scores for studied buried soils and barrow mound horizons, according
to predicted past land use and soil type.

Horizon Depth (cm) Position in Barrow

Vegetation Cover
Canonical Scores

Soil Type
Canonical Scores Predicted

Vegetation
Predicted
Soil Type

Score 1 Score 2 Score 1 Score 2

Głubczyce Forest G1

A(E)b 60–70 barrow mound 18.0 7.2 1.3 16.4 FOR/GRASS PHA/LUV
Ab1 70–80

buried soil

18.1 6.8 −29.4 7.6 FOR/GRASS LUV
Ab2 80–90 −9.2 31.0 19.8 21.1 GRASS PHA
Ab3 90–100 5.8 38.4 35.0 5.0 GRASS PHA
AB1 100–110 −16.7 49.0 −48.2 14.6 n.i. n.i.
AB2 110–123 −15.0 −22.7 18.4 7.6 ARA PHA

Głubczyce Forest G2

A 110–120 16.6 62.0 −22.5 16.2 n.i. LUV
AB 120–134

barrow mound
15.5 39.1 20.0 −7.8 GRASS PHA/CHER

Ab1 140–150

buried soil

42.4 26.4 26.9 27.3 GRASS PHA
Ab2 150–160 −15.0 −5.5 8.8 −3.7 ARA PHA

Ab2/Abw 160–170 −17.9 −8.5 56.5 11.8 ARA n.i.
ABw 170–180 12.2 30.7 64.5 75.8 GRASS n.i.
BA 180–190 29.0 18.3 16.7 −13.7 GRASS PHA/CHER

Muszkowice Forest M1

BC 52–54 barrow mound 31.3 57.6 −7.4 6.0 n.i. LUV
Ab 54–75

buried soil
−22.4 −25.3 −10.1 −13.7 ARA LUV/CHER

ABw1 75–84 2.2 8.9 9.8 13.2 ARA/GRASS PHA
ABw2 84–94 −17.7 −5.3 −8.6 4.7 ARA LUV

Muszkowice Forest M2

Abt1 88–100

buried soil

9.4 25.5 57.5 24.3 GRASS n.i.
Abt2 100–110 −1.8 −4.0 1.4 14.1 ARA PHA/LUV

ABbt1 110–115 3.4 26.8 37.9 10.2 GRASS n.i.
ABbt2 115–120 10.7 14.4 15.6 7.9 GRASS/FOR PHA
BAbt1 120–125 −40.5 0.7 9.5 −6.0 n.i. PHA/CHER

Ostrów O1

Ah2 30–45 barrow mound 41.0 38.0 34.9 50.5 GRASS n.i.
Ahb1 50–70

buried soil
−36.9 −14.2 −64.8 −10.4 n.i. n.i.

Ahb2 70–85 −25.5 15.1 48.4 −48.5 GRASS/ARA n.i.
ABwk 85–100 −27.9 1.9 −35.3 −24.1 ARA CHER

Canonical scores for vegetation cover are pictured in Figure 3, for soil type in Figure 4. Land use: ARA—arable,
GRASS—grassland, FOR—forest, Soil types: CHER—Chernozem, PHA—Phaeozem, LUV—Luvisol, n.i.—not
identified. Grey color in table—barrow mound, white color—buried soil.

4. Conclusions

The concept of Chernozems origin is related to the assumption that this soil group
develops under steppe vegetation while afforestation should initiate processes of their
degradation. As a result, the recent reconstructions of Chernozems in pedological studies
usually lead only to theoretical conclusions about their past. Only direct insight into SOM
using spectroscopic techniques allowed to provide analytical results and thus confirm
the applicability of this methodology in paleopedological reconstruction of past land use
and vegetation cover in buried soils. A comparative analysis of data obtained from NIR
and MIR spectroscopies for chernozemic soils based on Mahalanobis distances and CV
approaches indicated that higher affinity of MIR spectroscopy and the 1st or 2nd deriva-
tive order of data transformation was found for sample discrimination. The analysis was
successfully extended from binary (grassland/forest) to a tri-component scheme (grass-
land/forest/arable). The results showed that the origin of the studied Neolithic buried
chernozemic soils, is mostly related to grassland or grassland/arable vegetation. Moreover,
a reliable discrimination among three soil types (Chernozems, Phaeozems, and Luvisols)
was obtained, which confirms a large potential of MIR and NIR spectroscopies in the non-
destructive identification and classification of soils. In case of soil types, the discrimination
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analysis assigned the deepest horizons of buried soils to either Chernozem/Phaeozem
class or in some cases to Luvisol, while the uppermost layers of the barrow mounds were
almost exclusively assigned to Luvisols. Overall, spectroscopy techniques seem to be useful
tools for the identification of organic matter origins in buried soils. In combination with
other methods (such as archaeobotany and micromorphology) they can be applied to study
ancient vegetation cover not only in pedological research, but also in archeology.
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52. Błońska, E.; Lasota, J.; Gruba, P. Effect of Temperate Forest Tree Species on Soil Dehydrogenase and Urease Activities in Relation

to Other Properties of Soil Derived from Loess and Glaciofluvial Sand. Ecol. Res. 2016, 31, 655–664. [CrossRef]
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Luvisol to Chernozem? A Discussion about the Relationships and Limits of the Two Types of Soils. A Case Study of the Soil
Catena of Hrušov, Czechia. Geografie 2020, 125, 473–500. [CrossRef]

http://doi.org/10.1111/ejss.13085
http://doi.org/10.1016/j.soilbio.2014.12.019
http://doi.org/10.1007/s11368-018-1935-1
http://doi.org/10.1016/S0169-7439(99)00047-7
http://doi.org/10.2478/ssa-2019-0023
http://doi.org/10.1080/00401706.1992.10484973
http://doi.org/10.2174/157341112800392571
http://doi.org/10.1016/j.earscirev.2016.01.012
http://doi.org/10.1007/s11284-016-1375-6
http://doi.org/10.1007/s11284-016-1430-3
http://doi.org/10.1016/j.quaint.2013.06.014
http://doi.org/10.1016/j.revpalbo.2017.06.002
http://doi.org/10.1016/j.quaint.2016.11.017
http://doi.org/10.1080/14614103.2018.1424981
http://doi.org/10.1016/j.geoderma.2014.08.020
http://doi.org/10.1097/01.ss.0000064892.94869.3a
http://doi.org/10.1016/j.quaint.2010.11.022
http://doi.org/10.1007/s11200-008-0017-z
http://doi.org/10.1016/j.geoderma.2006.01.011
http://doi.org/10.37040/geografie2020125040473

	Introduction 
	Materials and Methods 
	Soil Sampling 
	Sample Preparation and Statistical Analysis 
	Preparing the Reference Library of MIR/NIR Samples 

	Results and Discussion 
	Standard Soil Properties 
	Mahalanobis Distances for NIR and MIR Spectral Range 
	Coefficient of Variation for NIR and MIR Spectral Range 
	Selection of Recommended Analytical Approach 
	Land Use of Buried Soils 
	Identified Type of Buried Soils 

	Conclusions 
	References

