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Abstract: The black soil region in Northeast China is one of the major grain-producing areas of China.
Soil erosion in the black soil region caused by natural factors and anthropic activities has attracted
much attention, especially in a rolling hilly region. Compared with natural factors, the land use factor
of cropland encompasses the most easily optimized measures. Jiutai County of Changchun City,
located in the hilly areas of Northeast China, was taken as an example to calculate the soil erosion
modulus using the Revised Universal Soil Loss Equation model. The overall soil erosion status
of cultivated land in the study area was mainly slight and light, the proportion of cultivated land
affected by extremely intensive and severe erosion was relatively small, and the average soil erosion
modulus was 7.09 t·hm−2·a−1 in 2019. In view of spatial distribution characteristics of soil erosion
revealed by the spatial aggregation and hot spot analysis, the most serious soil erosion intensity
was concentrated in the southeast and northeast sloping farmland over 8◦. With the increase in
elevation and topographic slope, the proportion of slight and light soil erosion gradually decreased,
which was closely related to the increase in soil erodibility caused by the space–time migration of soil
organic carbon caused by the interaction of hydraulic and tillage erosion in complex topographic
areas. The Geographically Weighted Regression model was introduced to explore the driving factors
and superposition mechanism of farmland soil erosion in the hilly region of Northeast China. Based
on the relationship between soil erosion and landscape fragmentation, landscape fragmentation was
an important driving force promoting soil erosion, sediment yield, and sediment transport. This
paper is committed to providing a basis for accurately deploying regional soil and water conservation
measures and formulating macro land management policies.

Keywords: agricultural land; land use; soil erosion; RUSLE; hilly region

1. Introduction

Soil erosion has become a major factor driving soil degradation processes [1], affecting
soil and nutrient loss at original sites and accumulation at deposition sites [2,3]. Soil erosion
results in nutrient loss through the denudation of surface soil and soil organic matter, which
not only leads to land degradation and fertility loss but also influences the corresponding
biogeochemical cycles (the siltation and eutrophication of water environment, enhancement
of flooding, and decrease or increase in CO2 emissions) [4]. For example, Hancock and
Wells using a flume experiment suggested that soil organic carbon (SOC) is enriched
in eroded sediment [5]. Soil erosion alters the biological process of SOC mineralization
resulting in the loss of C from the soil to the atmosphere [6]. The disturbance of soil
erosion in the terrestrial carbon cycle also restricts the buffering effect of the soil ecosystem
on climate change and further affects the global ecosystem security [7,8]. China is one
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of the countries with the worst soil erosion phenomenon in the world [9], according to
the Ministry of Water Resources, which issued the second national soil erosion remote
sensing survey results showing that the national soil erosion area reached 3.56 million km2.
Moreover, the problem of soil erosion in the black soil area of Northeast China has attracted
extensive attention [10,11].

Soil erosion is derived from the joint effect of natural and human influencing fac-
tors [12]. Land use is the most important predictor of soil erosion susceptibility, which
can slow down or speed up soil erosion, depending on the specific situation [13]. Irra-
tional land use is one of the substantial factors that accelerate regional soil erosion [14].
Understanding the impact of land use changes on soil erosion is crucial for exploring
the mechanism of regional erosion and identifying the driving forces of anthropogenic
controllable erosion [15–17]. Most studies regarding the response of soil erosion to land
use change focus on the estimation of soil erosion of different land use types [18,19], but an
exploration of the response of land use intensity and landscape fragmentation to soil ero-
sion is lacking. Therefore, building on the spatial characterization of soil erosion patterns
and the identification of erosion hotspots, the impacts of land use intensity and farmland
landscape fragmentation on the spatial differentiation characteristics of arable land soil
erosion were identified, and scientific land management methods were adopted to control
regional soil erosion and improve soil quality, which is conducive to the sustainable use of
land resources and achieving regional sustainable development.

The inherently fertile black soils (Mollisols) account for nearly 6.9% of the Earth’s land
area. Tremendous black soils all over the world are suffering soil erosion and soil degra-
dation due to unreasonable management and prolonged agricultural production [20,21].
However, black soil is also an abundant organic carbon (OC) pool; thus, any loss of black
SOC due to global climate change is likely to produce considerable feedback [22]. The black
soil region of Northeast China is crucial for grain production in China but has been threat-
ened by intensive and extensive soil erosion due to long-term intense cultivation activity
after the transformation from forest to cropland. Therefore, this paper selected the Jiutai
District of Changchun City, which is located in the rolling hilly region of Northeast China.
In the past few decades, although it is an important commodity grain production base in
China, it has experienced severe degradation in physical [23], chemical [24], and biological
properties [25], which provides a platform for examining the separated effects and influence
mechanism of land use change on soil erosion, and is vital for the subsequent sustainable,
optimal management of black soils in Northeast China.

In this paper, Jiutai County of Changchun City, located in the black soil region of
Northeast China, was taken as an example area to carry out the soil erosion modulus using
the Revised Universal Soil Loss Equation (RUSLE) and then to recognize the erosion hot
spots. The Geographical Weighted Regression (GWR) model was introduced to discuss
the key driving factors and superposition mechanism of farmland soil erosion in the hilly
region of Northeast China and to analyze the control mechanism of land use intensity
and landscape fragmentation index on farmland soil erosion. This paper is committed to
providing a basis for accurately deploying regional soil and water conservation measures
and formulating macro land management policies.

2. Materials and Methods
2.1. Study Area, Soil Sampling and Analysis

Jiutai County of Changchun City is located in typical low mountain and hilly ter-
rain, roughly between 43◦50′ N–44◦ 31′ N latitude and 125◦24′ E–126◦29′ E longitude.
The coverage area of Jiutai County has reached about 3 km2 and belongs to the monsoon
climate zone. The soil in the study site is classified as Mollisols with a texture of clay loam
(USDA, Taxonomy).

As the SOC data used in the calculation of the soil erodibility factor in the RUSLE
model used in this paper were obtained through remote sensing inversion, to ensure
accuracy, the collection range of soil samples was expanded (Figure 1). A total of 240 soil
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plots were collected by a shovel with depths of 0–30 cm. At each sampling plot within a
radius of 2 m, five sites, four sampling points at the corners, and one sampling point at the
center of the sampling plot, were selected. The soil samples within the five sampling sites
were mixed and placed in a sealed plastic bag to indicate the soil properties of each plot
while the spatial coordinates of the plot center were recorded in GPS (Garmin Etrex32X,
Bern, Switzerland).
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Figure 1. Distribution map of sampling points.

The collected soil samples were dried continuously in an oven at 60 ◦C for 72 h until
constant weight and ground through a 2 mm sieve. The next steps were removing the
plant roots and other substances from the sample and further grinding it through a 100 µm
screen to determine the SOC content. The determination method of the total carbon content
of the soil samples was the dry firing method using a VarioMax CN analyzer (Elementar
GmbH, Berlin, Germany). For the soil samples with evident reactions under the treatment
of 10% HCl solution, the inorganic carbon content was determined by the pressure calcium
meter method. Finally, the SOC content was obtained by subtracting the inorganic carbon
content from the total carbon content.

2.2. Data Sources

The Sentinel-2 (S2) remote sensing image data used in this paper were from the
European Space Agency and the United States Geological Survey website during 2018–2020.
L1C multispectral image data with good quality and less than 10% cloud cover were selected
and the Sen2Cor plug-in (ESA released to produce L2A data) was used for atmospheric
correction to determine the range of bare cultivated land and SOC inversion. A seamless
mosaic tool was employed to merge the multispectral images through Environment for
Visualizing Images software. The NDVI is utilized in numerous studies due to its simple
estimation, easy availability, and cancellation of noise that is caused due to solar angle,
topographic illumination, and clouds [26–28]. In this paper, the normalized difference
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vegetation index (NDVI) was computed by the S2 remote sensing image dataset established
above to represent the vegetation cover condition.

NDVI = (Band8 − Band4)/(Band8 + Band4) (1)

The time node representing 2019 was selected to calculate the erosion triggering factors
and amounts of soil erosion. The rainfall from 1986 to 2015 was provided by WorldClim
with a spatial resolution of 5 km. Soil texture data were obtained from the 250 m × 250 m
rasterized SoilGrids dataset with soil depths of 0–30 cm. The soil data at depths of 0–30 cm
were estimated via the weighted depth average method. To determine the terrain factor
in the RUSLE model, ALOS DEM data, which have a spatial resolution of 30 m and are
derived from NASA EARTHDATA, were selected. On this basis, topographic raster data
such as slope gradient, slope length, and slope aspect in the study area were obtained by
QGIS 3.10 software.

Based on the first national detailed land survey in 1996 and the unified land survey
database in 2019, the land use maps were visually interpreted by using the images from
the United States Geological Survey. The accuracy of land use classification was above
90%, and the Kappa coefficient was approximately 0.85. The land use data of the above
two years provided the basis for social and economic data, such as the proportion of
residential area and road network density, and land use conditions, such as land use
intensity and land use landscape fragmentation in the GWR model. The land use intensity
mentioned above refers to the efficiency of land resource utilization. In this paper, land use
intensity was quantitatively described as four different grades according to land use types
(Table 1). Considering the possibility of multiple land use types distributed in the same
grid cell, multiple values of land use intensity are in the same grid cell. Therefore, the land
use intensity analysis model should be adopted to calculate the comprehensive land use
intensity index of the grid cell as follows:

Qj = 100×
(

n

∑
i=1

qi × pi

)
(2)

where Qj refers to the comprehensive index of land use intensity of the jth grid unit, n is
the number of land use intensity grading, qi refers to the Grade I land use intensity index in
the grid unit, and pi is the ratio of the Grade I land use intensity to the total area of the grid.

Table 1. Land use intensity assignment of different land use types.

Land Use Types Unused Land Forest, Grassland and Water Arable Land Construction Land

Land use intensity grading index 1 2 3 4

In this paper, “construction land” refers to the land used for building buildings, structures, land as a production
base, and living place.

Landscape fragmentation is an index of landscape fragmentation in the landscape
pattern index, which can reflect the complexity of landscape spatial structure and the
degree of human interference to the landscape to a certain extent. In this paper, patch
density, edge density, and aggregation index were calculated by Fragstats 4.2 software.
The comprehensive index of cultivated land landscape fragmentation degree was obtained
after the weight of three indices was calculated by the analytic hierarchy process.

2.3. RUSLE Model

RUSLE, which has been widely applied in multiple previous studies [29–31], is a
statistical relationship model for predicting the amount of soil erosion, which can correlate
the amount of soil erosion and its influencing factors (such as climate condition, soil
properties, topography conditions, vegetation cover, and human activities), and can be
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flexibly modified in terms of the local conditions of influencing factors [32]. Five factors are
used in the RUSLE model to estimate the annual average soil loss [33] as follows:

A = R × K × LS ×C × P (3)

where A indicates the annual average soil erosion modulus (t hm−2 a−1), R is the rainfall
erosivity factor (MJ mm hm−2 h−1 a−1) linked to the amount of rainfall, and K is the soil
erodibility factor (t hm2 h hm−2 MJ−1 mm−1), which is closely related to soil properties.
L and S are the slope length and the slope gradient factor, respectively, C is the vegetation
cover management factor, and P is the erosion control practice factor. Many researchers in
the Northeast Black Soil Region have established local applicable methods for calculating
the factors of the RUSLE model [34,35].

2.3.1. Rainfall Erosivity Factor (R)

R characterizes the source power of the rain to create erosion. R was calculated
using the method of Zhang and Fu (2003) [36], which is defined using daily rainfall data
as follows:

R = εXα (4)

where R indicates the mean rainfall erosivity factor (MJ mm hm–2 h–1 a–1); X indicates the
average annual rainfall (mm); ε and α are model parameters, ε = 0.0668, α = 1.6266; and the
determination coefficient is 0.828.

2.3.2. Soil Erodibility Factor (K)

K represents the soil vulnerability to erosion, which indicates the soil sensitivity to
denudation separated under raindrop splash, fluctuation, and transportation by runoff.
K is sensitive to the texture, structure, OC, hydraulic properties, and wettability of the soil.
Many methods for calculating K are available, but the most generally used is the EPIC
model based on the soil texture and SOC data [37–39]:

K =

{
0.2 + 0.3exp

[
−0.0256SAN

1− SIL
100

]}
×
(

SIL
CLA + SIL

)0.3

×
(

1− 0.25C
C + exp(3.72− 2.95C

)
×
(

1− 0.7Sn1

Sn1 + exp(−5.51 + 22.9Sn1

)
(5)

where SAN, SIL, and CLA indicate the sand (0.05–2.0 mm), silt (0.002–0.05 mm), and clay
(<0.002 mm) contents (%), respectively, and C is the SOC content (%), Sn1 = 1− SAN/100.
By multiplying by the coefficient 0.1317, K can be expressed as an SI metric (t hm2 h hm−2

MJ−1 mm−1).
SOC data: S2 remote sensing image data during 2018–2020 were used to construct

the bare cropland SOC inversion model. Ten bands covering visible bands (Band2, Band3,
and Band4), red-side bands (Band5, Band6, and Band7), near-infrared bands (Band8,
Band8A), and shortwave infrared bands (Band11, Band12) were used as an explanatory
variable for SOC prediction. The SOC data were the dependent variable in spectral mod-
eling. Coordinate information was used to link soil SOC data from sampling sites with
remote sensing spectral information. Model calibration and validation were carried out
in R 4.0.3. To evaluate the uncertainty of SOC prediction, different datasets were used
for model calibration and cross-validation in 100 repeated simulations. The coefficient of
determination (R2) and root mean square error (RMSE) of the measured and predicted
values were used to evaluate the performance of the model.

2.3.3. Slope Length and Steepness Factor (LS)

LS is an acceleration factor that reflects the effects of slope length and slope gradient
on soil erosion. The estimation method proposed by McCool (1989) [40] and Liu et al.,
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1994 [41] was comprehensively adopted and applied in the black soil area of Northeast
China. The calculation formula is as follows:

S =


10.8sinθ + 0.03, θ < 5◦

16.8sinθ − 0.5, 5◦ ≤ θ ≤ 10◦

21.9sinθ − 0.96, θ > 10◦
(6)

where θ denotes the slope angle (◦).

L =

(
λ

22.13

)m
(7)

m =


0.2, θ ≤ 0.5◦

0.3, 0.5◦ < θ ≤ 1.5◦

0.4, 1.5◦ < θ ≤ 2.5◦

0.5, θ > 2.5◦
(8)

where m and λ are the slope length index and the slope length (m), respectively. Among
them, 22.13 is the slope length of the standard plot. The LS factors were calculated by the
DEM data, and the specific calculation process was achieved by using ArcGIS 10.3 software.

2.3.4. Cover and Management Factor (C)

C represents the erosion control ability of different surface cover types [42]. In the
RUSLE model, C is calculated from various subfactors, namely, prior land use, canopy
cover, surface cover, surface roughness, and soil moisture [43]. In this paper, the following
calculation method was selected for estimating C factor using vegetation cover value [44]:

V =
NDVI − NDVImin

NDVImax + NDVImin
(9)


C = 1, 0 ≤ V ≤ 0.001

C = 0.6508− 0.34361 log V, 0.001 < V ≤ 0.783
C = 0, V > 0.783

(10)

where V is the vegetation cover, calculated by retrieval NDVIs derived from the S2 images;
NDVImax is the maximum value (NDVI value of pure vegetation pixel), and NDVImin is
the minimum value (NDVI value of pure bare soil pixel).

2.3.5. Support Practice Factor (P)

P represents an inhibiting factor that reflects the effects of support practices (such as
terracing and contour tillage) on soil erosion [45]. Based on previous research results and
the actual situation of the research area, the p value of the whole research area was set to
1 in this paper.

2.4. GWR Model

First, before regression weighted analysis, the need for soil erosion risk research and
land use factor analysis were considered, and spatial grid units were taken as the basic unit
of the study to achieve the purpose of information space statistics. Now, the whole research
area was divided into 3 km × 3 km grid cells, and each grid cell was assigned a unique
identifier, totaling 445 spatial grid cells.

GWR analysis was first presented by Brunsdon [46] and has been widely used by
society and natural scientists [47–49]. The GWR model has been mostly applied in urban
planning [47,50], environmental science studies [49], geological and geographical remote
sensing [51], agricultural sciences [52], and geosciences in some cases [53].
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GWR offers better spatial variation as a local function among dependent and indepen-
dent variables compared with OLSR as a general trend in the entire study area. The general
GWR is defined by the following equation [46]:

Zi = α0(xi, yi) +
p

∑
k=1

αk(xi, yi)wik + εi i = 1, 2, . . . , n (11)

In this paper, Zi is the explained variable and represents the soil erosion risk index
of the ith grid unit. The coordinate of the target region i is (xi, yi), which represents the
coordinate of the center point of the ith grid cell. α0(xi, yi) is the intercept term, K is the
explanatory variables value, and αk(xi, yi) is the first K regression parameter of the ith
sampling point and represents the regression parameter of the ith grid cell. wik is the
observed value of explanatory variable wk at position (xi, yi), εi is the random error of the
ith sampling point.

In the GWR model, the calculation of the spatial weight matrix is the core content,
which represents the spatial dependence of data. The calculation of the weight matrix is
closely related to the type and bandwidth of the kernel function. In this paper, Bi-Square
function, which has more computational advantage when facing regression analysis with a
high degree of data dispersion, was selected. The calculation formula is as follows:

Wij = e
(dij/b)2

2 (12)

Wij =

{(
1−

(
dij/b

)2
)2

0, dij > b
, dij ≤ b (13)

where b is the bandwidth, that is, the parameter for calculating the weight value based
on the spatial distance; dij is the actual spatial distance between observation point j and
sampling point i.

In terms of optimal bandwidth selection, this paper adopted the AIC criterion with
a higher optimization degree but a relatively complex calculation compared with the
cross-validation method. The calculation formula is as follows:

AICc(b) = 2n ln σ̂ + n ln 2π + n
(

n + tr(S)
n− 2− tr(S)

)
(14)

where n is the number of sample points; σ̂ is the maximum likelihood estimate of the
variance of the random error term, σ = RSS

n−tr(S) . The predicted amount of soil erosion in
2019 was used as the dependent variable with a spatial scale of 3 km × 3 km. The selection
of explanatory variables considered the three aspects of nature, social economy, and land
use that affect soil erosion. Finally, nine explanatory variables were selected to construct
the explanatory index system, namely, elevation (X1), slope (X2), precipitation (X3), SOC
content (X4), vegetation coverage (X5), change in the proportion of residential areas (X6),
change in road network density (X7), change in land use intensity (X8), and change in
landscape fragmentation degree of cropland (X9). X6–X9 indicators indicate the change
values, which refer to those change values from 1996 to 2019. The impact of land use
intensity and land use landscape fragmentation on the spatial distribution of soil erosion
was further studied from the perspective of land use.

In this paper, SPSS 22.0 software was used to conduct preliminary data tests on the
nine explanatory variables through the tolerance and variance inflation factor (VIF), and the
calculation formula is as follows:

VIF =
1

1− R2
i

(15)

where R2
i is the square value of the determination coefficient. The larger the VIF is,

the smaller the tolerance between explanatory variables.
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3. Results and Discussion
3.1. SOC Inversion Based on Multi-Temporal S2 Remote Sensing Image and Composite Soil Pixels
3.1.1. Determination of the Scope of Bare Cultivated Land

NDVImax and NDVImin composite data were established using S2 remote sensing
image series data. To determine the critical threshold of bare soil, the NDVI characteristics
of farmland, forest, and construction land were statistically calculated. According to
the 2019 land use type map, 2000 validation points were randomly selected from each
land use category, and the NDVI values of these sampling points were extracted from
the NDVI composite data. For the NDVImin combination, the NDVI value representing
farmland was between 0.10 and 0.24, which can be clearly distinguished from the forest
area. The NDVImax value of construction land was generally lower than that of farmland
and forest. Therefore, “NDVImax > 0.75” excluded the construction land area and the range
of bare soil was delimited by combining “NDVImax > 0.75” and “0.10 < NDVImin < 0.24”
(Figure 2).
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of bare cultivated land identification in part of (b) map.

To determine the optimal time window, the first step was to use the planting period of
the main crops in the study area determined in the FAO crop calendar. In the second step,
according to the investigation of 100 bare croplands in the study area, an NDVI threshold
of 0.10–0.24 was set and used to remove green vegetation pixels, which was consistent with
the study of Shi et al., 2020 [54]. The third step was that NDVI alone was not sufficient
to extract bare land pixels, and the Natural Burn Ratio 2 (NBR2) [55] threshold was used
to remove soil pixels contaminated by crop residues. The time evolution map of the
NDVI in 2019 was plotted with the 2000 cultivated land sampling points mentioned above.
Considering that although a similar NDVI distribution occurred in April and October,
corn straw remained in the field after the crop harvest in October, so determining the
NBR2 threshold was necessary to remove soil pixels further contaminated by crop residue.
By comparing the distribution of NBR2 values in the two periods, the NBR2 threshold
of 0.075 was used. Castaldi et al., 2019 showed that an NBR2 value of 0.075 was the
most appropriate threshold for building a good SOC prediction model [55]. In addition,
a study in northern Germany found that this threshold guaranteed a relatively high bare soil
coverage, indicating that the NBR2 = 0.075 threshold was suitable for various environments.
The above study proved that NBR2 = 0.075 was practical for removing noise pixels affected
by environmental pollution. In this paper, NDVI and NBR2 thresholds were combined to
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perform the extraction of bare cropland for each single-date data image in a predetermined
optimal time window. Then, the processed single-date images were filled into the range of
bare farmland, and the multitemporal bare soil composite data were obtained by averaging
the reflectance of bare soil repeatedly occurring in each pixel.

3.1.2. SOC Inversion

A scatter plot was made by a one-to-one correspondence of the “GGplot2” function
in R4.0.3 software, as shown in Figure 3. Figure 3c reveals the verification results of the
PLSR model based on bare soil composite data developed by the multitemporal S2 remote
sensing spectrum improved compared with the PLSR model based on single-date S2 re-
mote sensing data, and the SOC prediction model developed by multitemporal bare soil
composite data performed better. R2 = 0.53 (2018), 0.59 (2019), and 0.51 (2020) increased to
0.62 (multitemporal), and the RMSE remained almost unchanged. In this paper, the mathe-
matical relationship between spectral information and soil composition was used, but the
effects of agricultural activity factors on the modeling effect were ignored, which is also
an aspect where further research needs to be improved. Figure 3c,d reveal that compared
with the modeling training dataset, the accuracy test results obtained from the independent
validation dataset decreased, R2 decreased from 0.62 to 0.49, and RMSE increased from
0.17 to 0.23, possibly due to the decreased sample numbers and narrow range of SOC
content. Therefore, the prediction results were affected to a certain extent.

Figure 3. PLSR model validation results and spatial distribution of SOC based on multi-temporal
S2 remote sensing spectral data set. (a) Spatial distribution map of SOC; (b) Spatial distribution of
standard deviation of SOC; PLSR model validation results based on (c) modeling training data sets;
(d) independent validation data sets; (e) the complete data set.

A total of 80 soil samples (including 35 independent validation sampling points) were
collected in the study area. After evaluating the model performance using the complete
soil spectral dataset of 80 groups, Figure 3e shows that the prediction accuracy improved
with the increase in the number of sampling points (R2 increased from 0.49 to 0.61, RMSE
from 0.23 to 0.21). Compared with the best performance evaluation result (R2 = 0.32,
RMSE = 0.68) in Nascimento et al., 2021 [56] of digital SOC mapping based on remote
sensing images, the SOC prediction based on multitemporal S2 remote sensing images in
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this paper had a more accurate prediction accuracy. Furthermore, the practicability of SOC
prediction based on multitemporal remote sensing pixels was illustrated.

3.2. Spatial Mapping of Soil Erodibility Factor and Soil Erosion Risk

The soil texture was fine, and the calculated value of the soil erodibility factor was
small (0.0168–0.0203 t hm2 h hm−2 MJ−1 mm−1). Clearly, the southeastern region of the
study area had a higher SOC content and lower predicted results of soil erodibility factors
than the northwestern region.

The SOC spatial distribution data based on S2 high-resolution remote sensing images
can improve the spatial resolution of the soil erodibility factor map (Figure 4). Based on
the amplification effect of the spatial distribution of the K value (Figure 4), the K value
calculated by the SOC data inversion based on S2 can reflect the spatial heterogeneity
characteristics of the K value, which is important for refining the spatial difference char-
acteristics of soil erosion. Additionally, proper agricultural practices would maintain
sufficient SOC and aggregate structures to help control the development of soil erosion [57].
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Using the remote sensing inversion techniques, erosion factor calculation equation,
and RUSLE model, soil erosion and the interfering factors in the study area in 2019 were
assessed and mapped, which provided available information to serve as a primary reference
for soil and water conservation management. Based on the soil erosion classification
standard in the Technical Standard for Comprehensive Control of Soil and Water Loss in
Black Soil Area (SL446-2009) promulgated by the Ministry of Water Resources of China,
the soil erosion degree was divided into six grades (Table 2 and Figure 5). From the size
of the area eroded, the soil erosion of bare farmland in the study area was mainly slight
and light, which accounted for 31.99% and 51.25% of the total area of cultivated land,
respectively. Moderate erosion followed, accounting for 11.14% of the total area of bare
cultivated land. The proportion of cultivated land with extremely intense and severe
erosion was 2.83%. In terms of spatial distribution, the cropland with serious soil erosion
was mainly distributed in the sloping farmland with higher elevation and more gullies
(southeastern and northeastern hilly areas). In the flat area (central and western regions)
where the river flowed, the soil erosion of cultivated land was light, mainly with slight
erosion and light erosion. Soil erosion maps can be used as a basic document for rational
land planning to avoid potential water and soil losses effectively. The sloping grasslands in
the low mountain and hilly area had a high risk of soil and water loss, which required the
implementation of effective management and control measures.
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Table 2. Statistical results of different soil erosion intensities of cropland.

Soil Erosion
Intensity Grade

Soil Erosion Modulus/
t hm−2 a−1 Area/km2 Proportion of Total

Arable Land/%

1. Slight ≤2 697.44 31.99
2. Light 2–12 1117.43 51.25
3. Moderate 12–24 242.93 11.14
4. Intense 24–36 60.70 2.78
5. Extremely Intense 36–48 24.18 1.11
6. Severe >48 37.51 1.72
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Xu and Zhang (2020) [29] showed that the spatiotemporal characteristics in soil ero-
sion could only be uncovered more accurately by spatially quantifying different change
methods of triggering factors and their relative importance. Figure 6 shows that topo-
graphic factors have the greatest influence on the spatial distribution of soil erosion, and the
spatial distribution of topography factors would help explain the change in soil erosion,
so the relationship must be determined. According to statistics, with increasing altitude,
the proportion of slight and light soil erosion gradually decreased, while the proportion of
extreme intensity and severe erosion gradually increases. With the increase in terrain slope,
the proportion of slight and light soil erosion gradually decreased, while the proportion
of extreme intensity and severe erosion gradually increases. The most serious soil erosion
intensity was concentrated in the southeast and northeast sloping farmland over 8◦. Finally,
overall, soil erosion on the sunny slope was slightly more serious than that on the shady
slope possibly because the sunny slope was the windward slope of the southeast monsoon,
and the soil water evaporation was larger than that on the shady slope, resulting in a lower
soil water content, which reduced the vegetation coverage and made soil erosion more
likely. LS was the leading factor of regional soil erosion. Therefore, better spatial optimal
allocation of land use is needed to avoid steep areas prone to erosion [29,58]. Arable land
was widely distributed in the flat regions with much lower LS factors than in grasslands
and forests. The cultivated land distributed around the forestland faced the soil erosion
risk due to the terrain and became unstable cultivated land. When the study area was
larger, future soil erosion risk from spatial and temporal changes in precipitation should be
considered and evaluated by using the future climate change prediction models. The K
at the field scale can be calculated by more accurate soil attribute data, which would be
needed in water and soil conversation planning.
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3.3. Land Use Factor Analysis of Cropland Soil Erosion Based on the GWR Model

Table 3 shows that the VIF of the independent variables was less than 5 and the
condition index was less than 30, which proved that the nine explanatory variables selected
passed the multicollinearity test.

Table 3. Multicollinearity test results of independent variables.

Type Layer Explanatory Variables
Collinearity Test Results

Tolerance VIF

Natural conditions

Elevation (X1) 0.94 1.07
Slope (X2) 0.67 1.49

Precipitation (X3) 0.44 2.27
SOC content (X4) 0.50 1.99

Vegetation coverage (X5) 0.79 1.27

Socioeconomic
conditions

Change in the proportion of
residential areas (X6) 0.92 1.09

Change of road network density (X7) 0.88 1.14

Land Use conditions
Change of land use intensity (X8) 0.93 1.08

Change of landscape fragmentation
degree of cropland (X9) 0.98 1.02

The preliminary statistics of the regression coefficients of each explanatory variable of
soil erosion in the GWR model (Table 4) showed that the plus or minus statistical values of
the regression coefficients proved the existence of both positive and negative correlations
between the explanatory variables and the soil erosion of cultivated land in different
grid cells.

Table 4. Statistical result of regression coefficients of explanatory variables.

Explanatory Variables Minimum Upper
Quartile Median Average Lower

Quartile Maximum Standard
Deviation

Elevation −1.89 −0.05 0.08 −0.01 0.20 1.01 0.45
Slope 4.03 5.54 5.94 6.18 6.46 9.04 1.09
Precipitation −1.76 −0.92 −0.55 −0.56 −0.17 0.63 0.51
SOC content −2.56 −0.72 −0.47 −0.56 −0.30 0.29 0.49
Vegetation coverage −0.57 0.06 0.16 0.24 0.41 1.54 0.35
Change in the proportion of
residential areas −1.42 0.17 0.83 0.69 1.19 3.01 0.69

Change in road network density −0.67 0.00 0.11 0.10 0.20 1.46 0.30
Change of land use intensity −1.98 −0.68 0.49 0.46 0.62 1.39 0.37
Change of landscape
fragmentation degree of cropland −1.92 −0.37 −0.16 −0.17 0.25 1.04 0.59
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Chaplot et al., 2005 [59] found that the influence of land use change on soil erosion is
greater than that of climate factors, especially in regard to rill erosion. Simonneaux et al.,
2015 [60] showed that the increase in soil erosion caused by land use change is much greater
than that caused by climate change in Morocco. Compared with forests, farmland has a
lower interception rate, resulting in a higher runoff [61].

In this paper, the changes in the proportion of residential area, road network density,
and land use intensity, for which the median and mean regression coefficients were positive,
explained that the relationship between the above three indices and the cropland soil ero-
sion degree was positively correlated in most grid cells (Figure 7), that is, the increase in the
proportion of residential area had a positive influence on the soil erosion severity. The me-
dian and mean values of the regression coefficients of farmland landscape fragmentation
change were both negative, indicating that the soil erosion degree of farmland decreased
with the increase in the explanatory variables of farmland landscape fragmentation change
in most grid cells.
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The increase in the proportion of residential area, the intensity of land use, and the
fragmentation degree of the cultivated land landscape all had a remarkable impact on the
soil erosion pattern of surrounding cultivated land to varying degrees (Figure 7). Among
them, the proportion of residential area and the fragmentation degree of the cultivated
land landscape had the widest impact on the areas with high erosion risk. Therefore,
optimizing the development and protection pattern of territorial space with appropriate
land regulation means avoiding the further aggravation of soil erosion is necessary.
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An increase in residential areas and land use intensity meant an increase in imperme-
able surface area. In the construction, a large number of materials, such as cement, asphalt,
and concrete, were used to cover the soil surface to form an impermeable surface. Accord-
ing to the research, under the conditions of runoff and precipitation, the runoff coefficient
of a completely impermeable surface was more than 0.9, that is, almost all precipitation
was transformed into surface runoff. The intensification of surface runoff under rainstorm
conditions increased the pressure of urban drainage, and the capacity of drainage pipelines
usually had difficulty meeting the discharge of a large amount of surface runoff in a short
time, resulting in serious surface ponding, especially in low-lying areas. In the area where
the land use degree increased, the proportion of impermeable surfaces increase, resulting
in an increase in the overall surface runoff in the area. The degree of soil and water loss
was more serious in summer with heavy rainfall because the study area is in the monsoon
climate area [12]. Wang et al., 2022 found that compared with the western region of the
black soil region, the eastern region where the study area is located has a humid climate,
and water is the main erosive agent [62].

The area selected in this study belonged to a rolling hilly region with a small area of
suitable cultivated land in low mountain and hilly areas, and the overall uphill cultivated
land showed the characteristics of high spatial dispersion. To obtain the minimum survival
guarantee, only by continuously expanding the cultivated land area, which leads to more
barren mountains that are not suitable for farming being reclaimed into cultivated land,
accelerates the dispersion and fragmentation of farming space. Compared with natural
factors, the land use factor of cropland encompassed the most easily optimized measures.
The degree of landscape fragmentation played a positive role in soil erosion. Therefore,
to control soil and water loss, the land use pattern can be optimized by enhancing the
control effect of the dominant landscape, improving patch uniformity, enriching landscape
types, reducing the physical connection between patches, strengthening the aggregation
degree of landscape patches, and reducing fragmentation. On a deeper level, as a typical
social dominant area, the low hilly agricultural area should always pay attention to the
balance/synergy between social services and ecological functions, so as to lay a foundation
for sustainable land use in the black soil area [63].

4. Conclusions

In 2019, the overall soil erosion status of cultivated land was mainly slight and light,
the proportion of cultivated land affected by the extreme intensity and severe erosion was
relatively small, and the average soil erosion modulus was 7.09 t·hm−2·a−1. The spatial
distribution characteristics of soil erosion based on the results of spatial aggregation and
hot spot analysis found that the most serious soil erosion intensity was concentrated
in the southeast and northeast sloping farmland. With the increase in elevation and
topographic slope, the proportions of slight and light soil erosion gradually decreased
while the proportions of extreme intensity and severe erosion gradually increased, which
was strongly linked to the increase of soil erodibility caused by the space-time migration
and erosion of SOC caused by the interaction of hydraulic and tillage erosion in complex
topographic areas.

Based on the relationship between soil erosion and landscape fragmentation using the
GWR model in a rolling hilly region, the findings revealed that landscape fragmentation
was an important driving force promoting soil erosion, sediment yield, and sediment
transport. On this basis, sloping farmland with a high fragmentation degree was effectively
integrated to prevent soil erosion in marginal farmland. The prevention and control of
soil erosion in hilly areas should be based on the premise of rational utilization of land
resources, and the situation of “governing and destroying at the same time” should be
completely changed. The finding of this paper can be used as a basis for decision-making
in a rolling hilly region, and provide useful information for designing land use planning to
regulate the effect of land use change and other soil erosion factors. Land use planning and
water and soil conservation planning should be combined to provide a scientific basis for
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the sustainable land use of land resources and the coordinated development of man-land
relationships in hilly areas.
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