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Abstract: With the developments in urbanization and motorization, travel-related carbon emissions
are increasing rapidly. The layout of public service facilities (LPSF) has a direct impact on travel-
related carbon emissions. However, existing public service facility planning methods focus on
population, economy, and other aspects, ignoring the environmental impact. So, how do we optimize
the LPSF to reduce carbon emissions? This paper proposed a method to optimize the LPSF under
the constraint of travel carbon emissions. We selected medical facilities in Changxing County, China,
and applied the method we proposed. We found that (1) the carbon reduction effect was significant—
the total monthly emissions in Changxing were reduced by 26.10%, and the area covered by high
emissions was reduced; (2) the medical facilities in Changxing under a low-carbon goal should
be distributed in the county center and surrounding urban areas in a multi-center form; and (3)
improving the accessibility of facilities can help to form a low-carbon facilities layout. This paper
provides a spatial planning method to guide the specific locations of facilities under low-carbon goals.
It also provides scientific suggestions for low-carbon land-use policies at the county level in China.

Keywords: spatial planning; travel-related carbon emissions; facilities layout optimization; travel
behavior preferences; Chinese county

1. Introduction

Global warming has become a major challenge to the sustainable development of
human society. Various types of gas emissions play a significant role in changing the global
climate including the dramatic growth in energy consumption, CO2 emissions, and air
pollution (e.g., PM2.5) and its associated health impacts [1,2]. The transport sector is the
most rapidly growing sector in terms of energy consumption in China [3,4]. According to
IEA (International Energy Agency) statistics in 2019, China’s total carbon emissions have
exceeded 10 billion tons in the last two years, of which emissions from the transportation
sector have reached approximately 10% or 1 billion tons of China’s total emissions [5]. In
addition, China’s urbanization and household car ownership continue to increase. From
2010 to 2017, emissions from road transport, mostly for residential travel, which accounts
for approximately three-quarters of total transport emissions, increased 3.5-fold in China [5].
The increase in travel-related carbon emissions has posed a significant challenge for the
region’s sustainable development. There are three main approaches to reducing travel-
related carbon emissions: (1) developing mandatory policies; (2) improving energy-efficient
technologies and using more efficient vehicles; and (3) optimizing the road traffic structure
(e.g., road network optimization, travel structure optimization) and implementing a low-
energy spatial layout [6]. Among them, the third approach is a crucial emission reduction
strategy for controlling carbon emissions at the source. Spatial planning can be used in
the third approach through land-use control to help reduce the environmental impact.
Specifically, spatial planning can design a low-energy-consumption space layout and guide
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residents to a low-carbon style of travel. This mechanism lies in the fact that spatial
planning directly or indirectly influences residents’ travel choices through the design of
the spatial layout [7], including the spatial organization of housing, traffic stations, public
service facilities, and so on [8,9]. This further affects travel-related carbon emissions.

Public service facilities are an important component of the spatial planning elements.
They are resources directly or indirectly provided by the government for the public and
shared by all, including public green spaces, pensions, medical treatments, educational
facilities, etc. [10]. Earlier studies have demonstrated that the layout of public service
facilities (LPSF) has an impact on travel-related carbon emissions. Table 1 shows a summary
of the researches on the relationship between the LPSF and travel carbon emissions. Zahabi
et al. found that for every 10% increase in the accessibility of public service facilities in the
built environment, there was a corresponding 5.8% reduction in transportation greenhouse
gases (GHG) [11]. Taking Guangzhou City in China as an example, Ma et al. found that the
poorer accessibility of public service facilities in remote urban areas or newly developed
urban areas usually generates more travel-related carbon emissions [12]. This indicates that
different layouts will lead to differences in the carbon emissions generated by residents
reaching these facilities. That is to say, differences in the LPSF will affect differences in
travel carbon emissions. An unreasonable facilities layout will cause residents to travel
too far or choose high-emission transportation, thus generating more carbon emissions
as a result of their travel. Moreover, public service facilities are expensive to build and
have a long average life span, which will be difficult to change in a short period of time
once a high-carbon-emission-dependent travel pattern is formed [13]. At present, carbon
emissions from travel are growing rapidly and improving travel carbon emissions is an
important issue for low-carbon urban and rural development. Spatial planning can improve
the problem of high travel carbon emissions by optimizing the LPSF. Therefore, the aim
of this paper is to optimize the LPSF to reduce travel-related carbon emissions from the
perspective of spatial planning.

Table 1. The summary of researches on the relationship between the LPSF and travel carbon emis-
sions.

Study Area (Place) Pollutant Types Key Observations Author (Year)

Montreal, Canada transportation greenhouse gas
emissions

For every 10% increase in the
accessibility of public service
facilities in the built environment,
there was a corresponding 5.8%
reduction in transportation
greenhouse gases.

[11] Zahabi et al. (2012)

Guangzhou, China travel-related CO2 emissions

Poorer accessibility of public
service facilities in remote urban
areas or newly developed urban
areas usually generates more
travel-related carbon emissions.

[12] Ma et al. (2018)

Helsinki, Finnish travel-related CO2 emissions

They estimated the travel carbon
emissions generated by residents
arriving at libraries in the Finnish
capital region.

[14] Lahtinen et al. (2013)

Four typical
counties in China travel-related CO2 emissions

They calculated the carbon
emissions of educational and
medical-facility-related trips.

[15] Wang et al. (2021)
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Table 1. Cont.

Study Area (Place) Pollutant Types Key Observations Author (Year)

Shenyang, China travel-related CO2 emissions

They measured the travel carbon
emissions generated by
consumers’ travel to commercial
centers of different levels in the
city of Shenyang.

[16] Li et al. (2016)

Changzhou, China transport-related carbon
emissions

Land-use planning can help
mitigate transport-related carbon
emissions

[17] Zhang et al. (2018)

China CO2 emissions from transport
activities

They proposed a multi-objective
optimization model based on the
classic facility location problem,
which maximizes the reliability of
services and minimizes CO2
emissions from transport
activities.

[18] Tang et al. (2013)

Incheon, Republic of
Korea vehicle emissions

They proposed a new location
model for high-demand facilities
in urban areas with incorporation
of the traffic congestion and
greenhouse gas emissions costs.

[19] Hwang et al. (2016)

In order to optimize the LPSF under the low-carbon goal, it is first necessary to calculate
the travel-related carbon emissions from residential access to the facilities. Lahtinen et al.
estimated the travel carbon emissions generated by residents arriving at libraries in the
Finnish capital region [14]. Wang et al. calculated the carbon emissions of educational and
medical-facility-related trips [15]. Li et al. measured the travel carbon emissions generated
by consumers’ travel to commercial centers of different levels in the city of Shenyang
and by comparing the results, showed that the carbon emissions generated by residents’
access to different levels of facilities are not the same [16]. These studies mainly account
for the travel-related carbon emissions at the individual level, adopting a ‘bottom-up’
approach in which emissions are estimated from disaggregated attributes, such as travel
distance, mode choice, and mode-specific emission factors [20]. However, studies have
demonstrated that residents’ preferences have a strong effect on their travel behavior [21],
which also affects travel-related carbon emissions. Most of the current studies do not
consider the characteristics of residents’ travel behavior preferences when accounting
for facility-related travel carbon emissions. Therefore, it is necessary to consider the
characteristics of residents’ travel behavior preferences when establishing the calculation
model of travel-related carbon emissions.

To calculate the carbon emissions of facility-related trips, the LPSF can be optimized
under a certain amount of carbon emission constraints. The LPSF has always been a
crucial concern in spatial planning. Some previous studies on the optimization of public
service facility layouts are mostly based on accessibility [22,23], economic costs [24], and
service capacity [25,26]. There are few studies on the LPSF with the goal of reducing
travel carbon emissions, and this paper establishes a relationship between the reduction
in travel carbon emissions and the LPSF. For previous LPSF research from a low-carbon
perspective, on the one hand, some studies have proposed optimization suggestions at the
theoretical level [17,27], which are not enough to provide guidance on specific facilities’
locations. On the other hand, some studies have explored how to build a facility layout
optimization model under low-carbon goals such as Chen et al., who investigated the
logistics facility location model by considering economic costs, services, and CO2 emissions
simultaneously [28]. Tang et al. proposed a multi-objective optimization model based
on the classic facility location problem, which maximizes the reliability of services and
minimizes CO2 emissions from transport activities [18]. Hwang et al. proposed a new



Land 2022, 11, 1200 4 of 24

location model for high-demand facilities in urban areas with the incorporation of the
traffic congestion and GHG emission costs [19]. These studies have developed a variety of
methods for optimizing the LPSF. The most widely used is the location-allocation model.
The p-median model, as one of the location-allocation models, has been shown to be more
efficient and effective in solving the LPSF problem [29,30]. However, these LPSF studies
from a low-carbon perspective ignore the residents’ travel preferences, which may have an
impact on the optimization results of facilities’ locations, thereby affecting related planning
and policy formulation.

In this study, we make methodological advances on previous work. By considering
the characteristics of residents’ travel behavior preferences, we improve the bottom-up
calculation approach to facility-related travel carbon emissions and the p-median model for
facilities’ layout optimizations. This helps to enhance the accuracy of the location results.
Based on this, we propose a spatial planning method to optimize the LPSF under the
constraints of the carbon emissions of facility-related trips. This provides a more precise
calculation method for facility-related travel carbon emissions. In addition, it makes up
for the lack of spatial planning tools available for planners to guide the specific locations
of facilities under low-carbon goals. At the same time, the method is also applicable to
other regions and other types of public service facilities. However, it should be noted
that the settings for the facilities’ location criteria for the different types of facilities need
to be analyzed according to the specific case as this method cannot be applied across
the board. Furthermore, it seems that there is limited research that focuses on the LPSF
from a low-carbon perspective at the county level. It can be said that the relatively slow
development of county-level towns in China is largely attributable to the unreasonable
allocation and location of public service facilities in those towns [15]. Therefore, this study
tested the proposed method in a county in China. Changxing is an economically developed
representative county of China and will play an important role in the region’s sustainable
development. Therefore, we selected Changxing County, Zhejiang Province, China, as
the study site and their medical facilities as representative of public service facilities and
then applied the proposed method. Then, we completed an optimized plan for the layouts
of the medical facilities with significant carbon-reduction benefits. This provides a more
incisive analysis of the integration of travel carbon emissions and the optimization of the
LPSF. Furthermore, it can provide an innovative spatial planning method for reducing
travel-related carbon emissions as well as scientific suggestions for low-carbon land-use
planning and sustainable policies at the county level in China, that is, in the low-carbon
planning of facilities’ layouts, attention should be paid to improving accessibility, which
can help to form a low-carbon facilities layout pattern. The rest of the paper is organized
as follows. We establish the methodology in Section 2 and present the study area and
data in Section 3. The analysis of these results is illustrated in Section 4, and Section 5
provides a summary of the conclusions of this study and possible real-world applications
of the method.

2. Methodology
2.1. Methodological Framework

In order to answer the question “How to optimize the LPSF to reduce travel-related
carbon emissions”, we first designed the application scenario of optimization as follows:
under the goal of minimizing travel-related carbon emissions, the total number of facilities
remained unchanged, but the facilities’ scales were allowed to be adjusted, and then the
LPSF was optimized. Based on this, we proposed a two-step low-carbon optimization
method for the LPSF (TS-LC-LPSF). TS-LC-LPSF included two steps: calculating travel-
related carbon emissions under a specific facilities layout pattern and optimizing the LPSF
with the goal of minimizing facility-related travel carbon emissions. The method integrated
different mathematical models and GIS functions (Figure 1).



Land 2022, 11, 1200 5 of 24

Figure 1. The framework of TS-LC-LPSF.

First, we introduced the characteristics of residents’ travel behavior preferences to
improve the traditional bottom-up analysis method and combined travel distances and
carbon emission factors to complete the calculation of travel-related carbon emissions
under the layout of specific public service facilities, which was the premise for the layout
optimization. Second, we simulated the public service facility layout optimization under
the constraints of travel carbon emissions. With the goal of minimizing travel-related carbon
emissions, incorporating travel behavior preferences improves the p-median model. Then,
we used MATLAB to obtain the optimal LPSF. It was integrated into the GIS environment
to form the spatial visualization. Furthermore, with the spatial analysis function of GIS,
the suitability evaluation of the candidate areas for the optimal site selection was carried
out. By establishing the suitability evaluation criteria, the final optimization plan was
determined by a comprehensive evaluation using the AHP method and the entropy method.
Our proposed method was then applied to the medical facilities in Changxing, Zhejiang
Province, China.

2.2. Step 1: Calculation of Travel-Related Carbon Dioxide Emissions

The calculation methods for travel carbon emissions generally fall into two categories,
top-down and bottom-up methods [31,32]. The top-down method is based on the fuel
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types consumed by the various modes of transport and CO2 emission factors for each fuel
type [33–35]. However, this method requires detailed information on the types of fuel
consumed by the various modes of transportation and their consumption data. It is suitable
for the macroscopic estimation of the carbon emissions of an entire region [36]. Therefore,
this approach is not suitable for the low-carbon assessment of spatial planning and the
identification of emission hotspots. In the bottom-up approach, emissions are estimated
using the travel mode, vehicle kilometers traveled, and CO2 emission factors [37,38], which
can capture the impact of the temporal and spatial characteristics of traffic flow on carbon
emissions. Therefore, this paper extended the traditional bottom-up measurement method
to calculate travel-related carbon emissions.

The traditional bottom-up approach to calculating travel-related carbon emissions
was based on the following formula:

CE = Dkij × ak, (1)

where CE denoted the total travel-related carbon emissions and Dkij represented the travel
distance from origin i to destination j using k types of transportation. This paper used
the travel distance from residential point i to public service facility point j using k type
of transportation. By building an OD matrix based on the probability of residents’ travel,
which was a table of all travel between the origins and destinations in the transportation
network [39], we can obtain the travel distance; αk denoted the carbon emission factor of
the k types of transportation modes.

Considering that the residents of each residential point have different travel choices
when obtaining facilities, that is, the residents of each residential point have preferences
when choosing facilities [40,41], this is referred to as “residents’ travel behavior preferences”
in the following. This paper introduced residents’ travel behavior preferences based on
the traditional bottom-up measurement method. Therefore, we took each residential
point (M = 1, 2, . . . , m) and chose a different public service point (N = 1, 2, . . . , n). The
probability of the travel behavior of each residential point was represented by the following
quantified formula:

TBij = PijWiZkFi, (2)

where Pij represented the probability that residential point i chose to travel to facility j to
access services; Wi represented the population at residential point i; Zk represented the
share of k types of transportation; and Fi represented the frequency of monthly travel.

The Huff model is used for the calculation of the travel probability Pij. The Huff model
expresses the travel probability of a residential point to a particular facility point, which
was calculated as follows [42]:

Pij =
Qj/dβ

ij

∑n
j=1(Qj/dβ

ij)
, (3)

where Qj was the service capacity score of the facility (which can delineate the level of
facilities), which was used to explain the probability of residents choosing different levels of
facilities, dij denoted the travel distance between the residential and public service facilities,
and β denoted the distance friction coefficient. It was shown that when β took the value
of 2, it better reflected the decaying effect of the attractiveness of public service facilities
with increasing distance [43]. Therefore, this paper used β = 2. Qj/dβ

ij denoted the number
of service resources that residential i can obtain at facility j under the effect of distance

attenuation.
n
∑

j=1
(Qj/dβ

ij) then denoted the total amount of service resources that residential

i may access.
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Based on this, the bottom-up measurement approach was extended. We proposed a
model to measure travel-related carbon emissions under the layout of public services.

CE = ∑
i∈M

∑
j∈N

DkijαkTBij, (4)

CE = ∑
i∈M

∑
j∈N

DkijαkPijWiZkFi, (5)

The measurement model was able to account for carbon emissions generated by a
residential point arriving at different levels of facilities and by the different modes of
transportation. Based on this, we can analyze the carbon emissions of facility-related trips.

2.3. Step 2: Low-Carbon Layout Planning of Public Service Facilities

To simulate the changes in public service facility layouts with the constraint of travel
carbon emissions, we adopted the improved p-median model with the objective of min-
imizing the total carbon emissions to optimize the locations of public service facilities.
The p-median model is mainly used to solve the location-allocation problem, which was
proposed by Hakimi in 1964 [44]. The main idea of the location-allocation problem is
to use the mathematical programming method to build a location optimization model
under a set of constraints to seek the maximum or minimum objective function so as to
select the optimal facilities layout location from a batch of candidate locations according
to the optimization goal. The purpose of the p-median problem is to locate p facilities
and allocate demand points in a network so that the total sum of the weighted distances
between the demand points and their corresponding assigned facilities is minimized [45]. It
measures the effectiveness of the elements by determining the total travel costs between the
demand point and the target point and is widely used in siting decisions for various types
of facilities such as commercial and medical facilities [46,47]. In this paper, the Huff model
was incorporated into the traditional p-median model to reflect residents’ travel behavior
preferences. Then, we obtained a method for optimizing the LPSF with the constraint of
carbon emissions of facility-related trips.

Its objective function is

MinZ = ∑
i∈M

∑
j∈N

DijWiXjPij, (6)

where Z denoted the travel distance; and since the carbon emission factors of various
transportation modes in the same region are fixed, the travel distance can be used as the
constraint objective instead of the travel carbon emissions, i.e., the objective condition can
be converted from requiring the minimum travel carbon emissions to the minimum travel
distance. Dij was the travel costs between residential point i and facility point j (this is
the travel distance); Wi was the demand of the residential point, i.e., the population; Xj
represented the facility candidate point; and Pij represented the probability of residential
point i choosing to travel to facility point j.

Set the constraints as follows.
(1) The total number of facilities:

∑
j∈N

Xj = P, (7)

(2) The relationship between the residential points and facility points:

Xj ∈ {0, 1} , j ∈ N, (8)

Yij ∈ {0, 1}, i ∈ M, j ∈ N, (9)

Yij ≤ Xj, i ∈ M, j ∈ N, (10)
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∑
j∈N

Yij = 1, i ∈ M, (11)

(3) The levels of the facilities:

Qj ≥ 0 , j ∈ N, (12)

(4) The travel distance between residential points and facilities points did not exceed
the tolerable distance of the residents:

DijYij ≤ D0, i ∈ M, j ∈ N, (13)

Equation (7) indicated that the total number of facilities to be configured in the study
area is constant at P.

Xj was a binary decision variable for facility candidate points, and Equation (8) meant
that when Xj equaled 1 (Xj = 1), a facility was allocated at j and when it equaled 0 (Xj = 0),
no facility was allocated at j.

In Equation (9), Yij indicated whether the facility candidate served the residential
point, using 1 to indicate that facility point j served residential point i and 0 to indicate that
facility point j did not serve residential point i.

Equation (10) indicated that residentials can only be linked to facility candidates that
provided services.

Equation (11) indicated that only one facility candidate can be selected for a residential point.
Equation (12) indicated that each facility candidate has a service capacity score, which

determined the level of the facility.
Equation (13) indicated that the travel distance between the residential and the facility

points must not exceed the tolerable distance D0. This paper assumes that beyond a certain
distance, residents will give up on trying to reach a facility.

After the optimized plan of public service facilities under the carbon emission con-
straint was obtained in the simulation, there was a possibility that the results were located in
a zone that was not suitable for placing public service facilities. Therefore, we analyzed the
suitability evaluation of the public service facility layout as an auxiliary decision-making
tool in the optimization model [48]. In this paper, the evaluation criteria influencing the
suitability of public service facility layout construction were summarized as follows: traf-
fic convenience, urban development level, population distribution, and distance from
flammable and explosive sites. The influencing factors of the suitability evaluation analysis
presented in this paper are for reference only and can be appropriately supplemented or
modified for specific problems.

2.4. Processes of Optimization

Figure 2 illustrates the process of the TS-LC-LPSF. The current LPSF is a “current
situation”. After completing the TS-LC-LPSF, the “optimized plan” formed was the result
of the low-carbon LPSF.

In the process of the low-carbon layout planning of public service facilities, first, the
locations of public service facilities were determined and then the travel-related carbon
emissions were obtained based on “Step 1”. Then, “Step 2” was used to optimize the
locations of public service facilities under the constraint of travel carbon emissions. Finally,
based on the facility layout pattern of the optimized plan, “Step 1” was used again to obtain
the travel-related carbon emissions of the optimized plan.
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Figure 2. Process of the TS-LC-LPSF and results.

To verify the carbon emissions reduction effect of the optimized plan, we compared
the current situation with the optimized plan to examine the sustainability performance of
the facility layouts in the optimized plan. Before doing so, we first compared the locations
of the facilities before and after optimization. Based on this, the emissions reduction
effect after optimization was illustrated, including (1) in a comparison of the quantitative
structure of carbon emissions, where the quantitative structure of carbon emissions was
obtained by substituting the travel distances for different situations; (2) in a comparison of
the spatial distribution of the carbon emissions that was fed back into the carbon reduction
of each street or township by the distribution of per capita carbon emissions, which was
obtained by pooling the travel carbon emissions for each residential point and applying the
inverse distance weight (IDW) method; and (3) in a comparison of the carbon-reduction
potential of the current situation and the optimized plan. The carbon-reduction potential
defined in this paper referred to travel carbon emissions generated beyond the residents’
tolerance time (or tolerable distance), which was calculated as the difference between the
total carbon emissions and the carbon emissions within the tolerable time of residents
(obtained by substituting the tolerable distance). A comparison of emission reduction
effects is presented in detail in the Results section.

3. Study Area and Datasets
3.1. Study Area

We selected Changxing as the study area for the TS-LC-LPSF. It is a county-level city
located in northeastern Zhejiang Province in China. We selected Changxing’s medical
facilities as the study object (Figure 3). There are several reasons for the selection. First,
counties in China are facing rapid urbanization and motorization and the construction
of public service facilities in counties is much less developed than in cities, with much
lower accessibility and higher travel costs for residents to access services. By optimizing
the LPSF in counties and improving the service efficiency of the facilities, it is more practi-
cally meaningful for reducing travel-related carbon emissions [49]. Second, Changxing is
located in the Yangtze River Delta region of China, which is an economically developed
representative county and will play an important role in the construction of low-carbon
cities and counties in the future [50]. Third, medical facilities are the most basic public
service facilities to ensure human health and safety. This means that even if it takes a certain
amount of time, residents are bound to use some mode of transportation to access the
service [3]. Using the medical facilities in Changxing as an application object has realistic
application significance.
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Figure 3. Study area.

3.2. Datasets

In this paper, the process of establishing the TS-LC-LPSF required the use of data on
the residents’ travel behavior, spatial data, and carbon emission factors of travel modes.
All data represented the situations in 2017.

Among them, travel behavior data were obtained through questionnaires. The survey
contents included basic information, such as place of residence, destination, travel time,
etc.; travel behavior such as travel mode, travel frequency, and travel route; and residents’
preferences when choosing medical facilities and the tolerance time for residents to arrive
at those facilities. The survey method was to select four schools in the urban area of the
county and one school in the suburban area in October 2018 and 100 questionnaires were
distributed to each grade in each school. The questionnaires were distributed to families and
students and parents were asked to answer together. A total of 3000 questionnaires were
distributed, of which 2790 questionnaires were returned and the questionnaire response
rate was 93%.

The spatial data included location data of current residential sites, facility sites, and
roads. The location data of the residential points in Changxing were provided by the
Changxing Construction Bureau and include all the residential points involved in the
questionnaire, that is, the spatial distribution of the samples (Figure 3). The POI (point-
of-interest) data of 25 medical facilities were obtained from the Pulse Data website (https:
//www.metrodata.cn/ (accessed on 3 March 2020)). To obtain the OD matrix of the
travel distance by residents, speed data for the roads were needed so the speeds of all the
roads during two time periods, 9:00–10:00 and 14:00–15:00, were recorded on Monday,
Wednesday, and Saturday, respectively, and the average speed for each class of road was
finally obtained. According to the resident travel time obtained from the questionnaires
multiplied by the corresponding speed data, the OD matrix of the resident travel distance
was established.

The carbon emission factors of the transport mode referred to the results of the
TREMOVE model and the relevant literature [51]. Since the carbon emission factors of
electric bicycles vary in different areas, the carbon emission factors of electric bicycles were
calculated in this paper based on the energy-use efficiency of electric vehicles and the

https://www.metrodata.cn/
https://www.metrodata.cn/
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carbon emission factors of electricity production in Zhejiang Province, and the calculation
method is shown in the Appendix A. The data involved in this study and their types,
values, and sources are shown in Table 2.

Table 2. Datasets used in the analyses.

Type Subtype Value Source

Travel behavior

Facility level Level 1 Level 2 Level 3

Tolerance time
(min) 12 12 25 The average of the

questionnaire results

Tolerance distance
(km) 9.66 4.48 4.48

The calculation of the
road traffic network

datasets

Frequency of travel
(times/month) 0.44 0.44 0.6 Questionnaire

Population of
residential (104) 63.32 Changxing Public

Security Bureau

Spatial data

Locations of
medical facilities 25 medical facilities

https:
//www.metrodata.cn/
(accessed on 3 March

2020)

Locations of
residentials 277 residentials Changxing Construction

Bureau

Road Average
speed (km/h)

highway 80

Changxing
Transportation Bureau

national road 45
provincial road 40

county/township road 45
county center main road 15

county center submain road 15
town road 25

village road 35

Carbon emission
factor

car 135 g CO2/person-km [51] Chai et al., 2011

bus 35 g CO2/person-km [51] Chai et al., 2011

motorcycle 113.6 g CO2/person-km TREMOVE model *

electric bicycle 28.14 g CO2/person-km The results of this paper

* Full documentation on TREMOVE II model can be found on www.TREMOVE.ORG (accessed on 25 March
2020).

For the assignment of the suitability evaluation indicators for the locations of the
medical facilities, we combined the analytic hierarchy process (AHP method) [52] and
entropy method [53] and finally obtained the results of the suitability evaluation (Table 3).
For the evaluation criteria of each evaluation factor, see Table A1.

https://www.metrodata.cn/
https://www.metrodata.cn/
www.TREMOVE.ORG
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Table 3. Candidate location suitability evaluation indicators for medical facilities.

Evaluation
Criteria

Traffic
Convenience

Urban
Development

Level

Population
Distribution

Distance from Flammable and Explosive
Sites

Evaluation
Indicators Accessibility

Distance
from All
Levels of

Roads

Town
System
Level

Population
Density

Distance
from

Refueling
Stations

Distance
from

Chemical
Companies

Distance
from

Fireworks
Distribution

AHP 0.3317 0.0594 0.1229 0.4421 0.0212 0.0199 0.0028
Entropy method 0.0113 0.0462 0.1422 0.6436 0.1323 0.0127 0.0117

Combination 0.2738 0.0752 0.1833 0.7376 0.0955 0.0235 0.0092

4. Results

Due to the different attractiveness of the different levels of facilities to residents [54,55],
it was necessary to divide the levels of the medical facilities based on the comprehensive
evaluation score of the facility service capacity. An evaluation system containing 11 indica-
tors was constructed from three aspects: the number of technicians, medical equipment,
and diagnostic and treatment capacity (Table 4). The medical facilities selected in this
paper were those with comprehensive diagnosis and treatment services, excluding special-
ized medical facilities, such as dental and orthopedic hospitals. Due to the limitation of
the data acquisition, level one medical facilities, such as health offices and small clinics,
were not included and only medical facilities at township-level health centers and above
were considered.

Table 4. Evaluation indicators of the levels of Changxing medical facilities.

Factors Variable Indicator Items

Health technical personnel

X1 Number of practicing physicians
X2 Number of practicing assistant physicians
X3 Number of registered nurses
X4 Number of pharmaceutical personnel
X5 Number of inspectors
X6 Number of imaging staff
X7 Number of other health technicians

Medical equipment X8 Number of beds
X9 Number of managers

Availability of diagnosis and
treatment services

X10 Total number of patients
X11 Number of discharged patients

The scores were obtained using indicator analysis, and the service level of the medical
facilities in Changxing was divided into three levels comprising three level three medical
facilities, eight level two medical facilities, and fourteen level one medical facilities. Level
three obtained the highest score, and the evaluation results of the levels of the Changxing
medical facilities are shown in Table 5.
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Table 5. Evaluating results of the level of Changxing medical facilities.

Serial Number Hospital Name Service Capacity
Composite Score Grade Delineation

1 Changxing People’s Hospital 10,001.000 3
2 Changxing Hospital of Traditional Chinese Medicine 5998.897 3
3 Medical Health Group Changxing Hospital 3046.554 3
4 Changxing Maternal and Child Health Center 2985.480 2
5 Changxing Guotai Rehabilitation Hospital 2527.579 2
6 Urban community health centers 2204.076 2
7 Siuan Township Health Center 1934.307 2
8 Changxing Second Hospital 1856.652 2
9 Peace Town Health Center 1773.256 2

10 Lincheng Health Center 1621.701 2
11 Changxing Pheasant State Hospital 1589.449 2
12 Jipu Town Health Center 1165.906 1
13 Painted Brook Street Health Service Center 1013.162 1
14 Hongxingqiao Town Health Center 1011.859 1
15 Xiaopu Town Health Center 616.592 1
16 Lijiaxiang Town Health Center 587.295 1
17 Shuikou Township Health Center 506.829 1
18 Lushan Township Health Center 489.776 1
19 Hongqiao Township Health Center 432.515 1
20 Meishan Township Health Center 377.918 1
21 Baekhyan Health Center 363.325 1

22 Changxing Minfu Hospital of Traditional Chinese
Medicine 306.782 1

23 Sopoikan Health Center 298.035 1
24 Lee’s Lane Rehabilitation and Care Hospital 211.679 1
25 Sanshi Cement Company Staff Hospital 57.767 1

According to the TS-LC-LPSF, the three levels of the medical facilities in Changxing
were applied (the current situation of the medical facilities layout is shown in Figure 4), and
we obtained an optimized facility layout plan that met the conditions of the application
scenario. The comparison between the current situation and the optimized plan was carried
out as described in 2.4, including (1) a comparison of the layout patterns; (2) a comparison
of carbon emission structures; (3) a comparison of carbon emission spatial distributions;
and (4) a comparison of carbon reduction potential. By the comparative analysis, the
effectiveness of the TS-LC-LPSF and the carbon reduction effect of the optimized plan were
tested.

Through the “Step 2” method, the layouts of the medical facilities in Changxing were
optimized under the constraint of minimum travel carbon emissions and we obtained the
optimized plan. In the process of changing the layouts, the layouts of the medical facilities
in the optimized plan were based on the current situation, and the current medical facilities
were adjusted in four ways: demolish, construct, relocate, and merge. Then, we obtained
the layouts of the medical facilities after optimization. Figure 5 represents the changes in
the medical facility layouts of the optimized plan compared to the current situation. Among
them, blue triangles indicate the medical facilities to be demolished, yellow pentagons
indicate the new medical facilities to be constructed, red arrows indicate the relocation of
the medical facilities, and green circles indicate the two levels of the medical facilities to be
merged in the current situation.

4.1. Changes in the Locations of Medical Facilities

Based on the comparison between the current situation and the locations of the
medical facilities in the optimized plan, we analyzed the differences in the layouts of
the medical facilities before and after optimization. The layout of the level one medical
facilities was adjusted more significantly than those of the other levels (Figure 5a), including
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three facilities that were relocated, two facilities in Hongxingqiao Township and Shuikou
Township that were demolished, two new facilities that were built in Si’an Township and
Heping Township in the suburbs, and three in the southern suburbs that were merged based
on the level two medical facilities so that the two levels were combined. This indicates
that the construction of the level one medical facilities is redundant and that there are
more underutilized medical facilities, indirectly causing excess carbon emissions from
unreasonable travel. For the level two medical facilities (Figure 5b), three relocations were
made mainly in urban areas where the facilities are more densely distributed. As mentioned
earlier, three of them were combined with level one medical facilities, which helped to
improve the utilization of the facilities by residents, thus rationalizing the travel structure
and reducing travel carbon emissions. For the level three medical facilities (Figure 5c), one
relocation and one new construction were adjusted. Specifically, one medical facility was
relocated from Zhicheng Township in the central city to Hongxingqiao Township in the
southern suburbs and there was one new facility in Meishan Township in the northwest
suburbs. The adjustment results of dispersing from the urban area to the suburban area
also show that the current layouts of the medical facilities are too concentrated in the
central urban area. This means that residents located in the suburban area have to travel
longer distances if they want to access the services of the level three medical facilities,
which results in higher carbon emissions. Overall, in the optimized plan, the layouts of the
medical facilities in Changxing become more decentralized in space compared to reality,
which allows residents to have more equal opportunities to access the different levels of
medical facilities.

Figure 4. Three levels of medical facility layouts in Changxing in the current situation.
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Figure 5. (a–c) Changes in the locations of medical facilities.

4.2. Changes in the Quantitative Structure of Carbon Emissions

To test the low-carbon performance of the TS-LC-LPSF and the optimized plan, first, an
analysis was carried out from the perspective of the quantity of travel carbon emissions. The
comparison between the current situation and the optimized plan was carried out on four
aspects: the total carbon emissions, the carbon emissions from accessing the different levels
of medical facilities, the carbon emissions from using different modes of transportation,
and the per capita carbon emissions.

The structure of travel carbon emissions was significantly improved in the optimized
plan compared to reality (Figure 6). In terms of the total amount, the total carbon emissions
were obviously reduced, with monthly carbon emissions from medical travel decreasing
from 243.56 tons of CO2 in the current situation to 179.97 tons of CO2 in the optimized plan.
The total carbon reduction reached 63.58 tons, which is 26.10% of the current situation’s
carbon emissions.

In terms of carbon emissions from access to the different levels of medical facilities,
carbon emissions decreased with the level of medical facilities in the current situation.
The travel-related carbon emissions to the level three medical facilities were 166.59 tons,
accounting for 69% of the total carbon emissions. This means that the layout planning of the
level three medical facilities in Changxing largely influences the total carbon emissions and
is the main source of carbon emissions. After optimization, the structure of carbon emissions
continued to decrease with the level of medical facilities, and the carbon emissions from
travel to access the different levels of facilities all decreased. Among them, the total monthly
carbon reduction for the level three medical facilities was 40.627 tons, which contributed the
most to the carbon emissions reduction from the medical travel of residents in Changxing,
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reaching 63.90%. The carbon emission reduction for level two medical facilities was 18.691
tons, with a contribution rate of 29.40%. The total carbon reduction for level one medical
facilities was 4.263 tons, with a contribution rate of 6.70%.

Figure 6. Changes in the quantitative structure of travel-related carbon emissions.

In terms of carbon emissions from the various modes of transport, in the current
situation, car travel accounted for more than 50% of carbon emissions and was the main
source of carbon emissions, followed by buses and electric bicycles. After optimization, the
carbon emissions generated by the different modes of transportation decreased. Among
them, the carbon emissions from cars decreased the most, with a reduction of 55.51 t
CO2 and a decrease ratio of 26.21%. This indicates that changing the LPSF can lead
residents to change their travel behavior and reduce their reliance on high carbon emission
travel patterns.

A comparison of the per capita carbon emissions before and after optimization shows
that there was also a significant decrease in per capita carbon emissions (Table 6). After
optimization, the monthly per capita travel carbon emissions generated from medical visits
to level three medical facilities decreased by 22.14%, level two medical facilities by 32.33%,
and level one medical facilities by 16.76%.

Table 6. Comparison of per capita carbon emissions.

Per Capita Travel Carbon Emissions by Class Monthly Average CO2
(kg/Person)

Rate of Reduction in Per
Capita CO2

Average travel carbon emissions from
visits to level 1 medical facilities

current situation 0.095
22.14%

optimized plan 0.074

Average travel carbon emissions from
visits to level 2 medical facilities

current situation 0.032
32.33%

optimized plan 0.022

Average travel carbon emissions from
visits level 3 medical facilities

current situation 0.012
16.76%

optimized plan 0.010
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From the different aspects of the characteristics analysis, it can be seen that using the
TS-LC-LPSF to optimize the medical facility layout pattern in Changxing has a significant
effect on controlling and weakening travel carbon emissions.

4.3. Changes in the Spatial Distribution of Carbon Emissions

In addition to the changes in the quantitative structure of travel-related carbon emis-
sions, the spatial distribution of travel-related carbon emissions can also indicate the
low-carbon performance of the optimized plan. If the area covered by the high value of the
per capita travel carbon emissions shrinks, it indicates that travel-related carbon emissions
are reduced (Figure 7).

In terms of the spatial distribution of carbon emissions, the medical facilities in the
current situation are mainly concentrated in the central part of the city. However, high
values of per capita carbon emissions occur mainly at the junctions between streets, such as
the junction between Meishan Township and Shuikou Township and the junction between
the four townships of Meishan, Xiaopu, Lin Cheng, and Si’an. In addition, there are
southern regions far away from other regions (Figure 7a). This shows that the current
layouts of the medical facilities do not provide sufficient service coverage to residents at
the junctions of streets and in the southern area, and the level of medical facility supply
is insufficient. This resulted in unequal access to medical facility services for residents
thus generating higher carbon emissions. In the optimized plan (Figure 7b), by optimizing
the layouts of the medical facilities, the coverage of medical facilities in the northwest
and southwest areas of the county is improved. Meanwhile, the average travel distance
is reduced, thus reducing travel-related carbon emissions. It can be seen that the high
value of per capita carbon emissions in the optimized plan is significantly reduced. The
hotspots of per capita carbon emissions change from a piecewise distribution to a pointwise
distribution, indicating that optimizing the layouts of the medical facilities has a significant
effect on reducing carbon emissions.

Figure 7. Changes in the spatial distribution of per capita carbon emissions (a) current situation (b)
optimized plan.

4.4. Changes in Travel-Related Carbon Reduction Potential

As mentioned above, the carbon reduction potential refers to the carbon emissions
generated beyond the residents’ tolerance time in this paper (Figure 8). By optimizing the



Land 2022, 11, 1200 18 of 24

layouts of the medical facilities, if the carbon reduction potential of travel-related carbon
emissions decreases, medical facilities will reach more residential locations. This results in
a reduction in travel carbon emissions generated beyond the residents’ tolerance time, and
then the optimization is proven to be effective.

Figure 8. Changes in carbon reduction potential.

In reality, the carbon reduction potential for the level three medical facilities was
94.93 tons, which represented 57.65% of the total carbon emissions from travel to level
three medical facilities. The carbon reduction potential of the level two facilities accounted
for 80.42% of the total level two carbon emissions and the carbon reduction potential of
the level one facilities accounted for 70.37%. The carbon emission reduction of the three
levels of medical facilities through optimization was more than 50% of the carbon emission
reduction. The carbon reduction potential of the level three medical facilities was the largest.
This indicates that the potential to reduce carbon emissions by improving the efficiency of
medical facility services and reducing the average travel distance through facility layout
optimization is very large.

In the optimized plan, the total carbon emissions generated beyond the residents’
tolerance time were reduced from 154.81 tons to 67.52 tons. With a decrease of 56.39%, the
optimization effect is obvious. The most significant optimization effect was the portion gen-
erated by residents’ travel to level three medical facilities, which decreased from 94.93 tons
to 31.25 tons, a decrease of 67.08%. The carbon reduction potential of the different levels of
facilities all had a reduced proportion of the total (level three, 24.81%; level two, 71.80%;
level one, 55.94%). All these comparisons show that the carbon reduction effect is more
obvious after improving the layout patterns of the medical facilities.

In general, by comparing the current situation and the optimized plan, it was found
that the carbon reduction effect was significant. In terms of quantity, the monthly travel
carbon emissions decreased from 243.56 tons of CO2 in the current situation to 179.97 tons
of CO2 in the optimized plan, a decrease of 26.10%. In terms of space, the area covered
by the high value of per capita travel carbon emissions in the optimized plan shrank. In
terms of the changes in the layout of the medical facilities, the layout in the optimized plan
was relatively dispersed in space compared to the current situation. This improves the
accessibility of facilities. It shows that the medical facilities in Changxing County under
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a low-carbon goal should be distributed in the center and surrounding urban areas in
a multi-center form. Therefore, to meet the basic standards in the low-carbon planning
of the layout of facilities, attention should be paid to improving the service equality for
residents and the accessibility of facilities, which can help to form a low-carbon facilities
layout pattern. The results confirm that the TS-LC-LPSF method has significant effects on
reducing travel carbon emissions. However, when using this method, it should be noted
that different layout standards need to be set for different types of facilities.

5. Conclusions and Discussion

In this paper, we proposed an optimization method that takes into account the char-
acteristics of residents’ travel behavior preferences for the LPSF to reduce travel-related
carbon emissions. It is an efficient and quantitative spatial planning method and tool for
low-carbon LPSF. It makes up for the defect where planning designers can only rely on the
emission estimation results to compare different planning options and thus develop control
measures. Based on this, we applied this method to the medical facilities in Changxing
County, Zhejiang Province, China, as an example and the conclusions and discussion are
as follows:

(1) Using the TS-LC-LPSF method to optimize the layouts of the medical facilities, the
carbon reduction effect of the optimized plan is significant. The carbon reduction effect
of the optimized plan is specifically expressed as the total monthly travel-related carbon
emissions in Changxing being reduced by 26.10%. The area covered by the higher per
capita carbon emissions has shrunk. The carbon reduction potential is reduced by 56.39%,
indicating that the coverage of the facilities serving residents has improved. These results
confirm the effectiveness of the TS-LC-LPSF in achieving sustainable land use and planning
and can provide scientific and reasonable policy recommendations for spatial planning to
reduce travel-related carbon emissions.

(2) Under the constraint of minimizing travel-related carbon emissions, the layouts
of the optimized plan are more dispersed in space compared with the current situation
and are not concentrated in the urban center. It indicates that the layouts of the medical
facilities in Changxing County under the low-carbon goal should be distributed in the
center and surrounding urban areas in a multi-center form. This is consistent with the
conclusion of Wang et al., who agree that the decentralized arrangement of facilities in a
multi-center form can improve the accessibility of those facilities, give residents more equal
opportunities to use the facilities and be effective in reducing travel carbon emissions [15].
Therefore, the low-carbon spatial layout planning of the public service facilities should
focus on improving the accessibility of those facilities as it is beneficial to the formation of a
low-carbon layout pattern.

This paper aims to provide innovative technology for a sustainable LPSF from the
perspective of spatial planning. It provides scientific suggestions and an operational
planning tool for sustainable land-use policy and low-carbon spatial planning. Currently,
more and more county-level towns in China are choosing to urbanize at their original
locations to ease the pressures on large cities and promote their own development. In the
process, the planning of public service facilities is key. Compared with other studies, it
was found that existing planners mostly plan for service facilities based on population,
economy, and other aspects, ignoring the environmental impact [56]. This could make
public services too distant for some residents, leaving residents to use energy-intensive
transportation. Other studies that consider environmental impacts encourage more non-
motorized travel and shorter travel distances through spatial planning strategies, but this
is not guidance for the specific locations of facilities [57]. So, we have proposed a method
to guide the specific locations of public service facilities under low-carbon goals in order
to provide more targeted and operational suggestions. This method can also be applied
to the low-carbon planning of public service facility layouts in other regions and other
types of public service facilities (the classification of facility levels and the selection of
suitability evaluation indicators need to be analyzed on a case-by-case basis). In addition,
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A limitation of the study is that the travel characteristics data used in this paper are mainly
from questionnaires, which may cause the residents’ perceptions of their travel times to be
inaccurate. The collection of large amount of data in the future is likely to greatly improve
the accuracy of calculating travel-related carbon emissions.
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Appendix A

Electric bicycle carbon emission factor = (electricity consumption for 1 km travel ×
electricity carbon emission factor)/average number of passengers. The electricity carbon
emission factor adopted the average power carbon emission factor of East China regional,
which was 0.7035 (kg/kWh). Referring to Zhejiang Province Electric Bicycle Announcement
Directory, the average electric consumption of 100 km is 1.5 kWh/60 km and the average
passenger loading rate is 1.6. So, we obtained the electric bicycle carbon emission factor in
Changxing to be 28.14 g CO2/person-km.
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Table A1. Evaluation criteria and results of influencing factors.

Criteria Traffic
Convenience

Urban
Development Level

Population
Distribution Distance from Flammable and Explosive Sites

Evaluation
Indicators Accessibility Distance from All Levels of

Roads Town Level Population
Density

Distance from
Refueling Stations

Distance from
Chemical

Companies

Distance from
Fireworks

Distribution

Value Criteria Criteria Criteria Criteria Criteria Criteria Criteria

5 24.79~30.87 min

distance to national and provincial
roads ≤ 500 m or distance to

county road and village road ≤
300 m or distance to town road ≤
250 m or distance to county center

road ≤ 200 m

Central area of
county: Zhicheng

Town, Huaxi Town,
Longshan Town,

Taihu Town

>30,000
person/km2 >3000 m >5000 m >3000 m

4 30.87~36.95 min

distance to national and provincial
roads 500 m~1500 m or distance to

county road and village road
300~900 m or distance to town
road 250~500 m or distance to
county center road 200~400 m

Level 2 township:
Si’an Town

10,000–30,000
person/km2 1000–3000 m 4000–5000 m 1000–3000 m

3 36.95~43.02 min

distance to national and provincial
roads 3000~5000 m or distance to

county road and village road
1500~3000 m or distance to town
road 1000~1500 m or distance to
county center road 800~1200 m

Level 3 township:
Meishan Town,
Heping Town

5000–10,000
person/km2 500–1000 m 3000–4000 m 500–1000 m
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Table A1. Cont.

Criteria Traffic
Convenience

Urban
Development Level

Population
Distribution Distance from Flammable and Explosive Sites

Evaluation
Indicators Accessibility Distance from All Levels of

Roads Town Level Population
Density

Distance from
Refueling Stations

Distance from
Chemical

Companies

Distance from
Fireworks

Distribution

Value Criteria Criteria Criteria Criteria Criteria Criteria Criteria

2 43.02~49.10 min

distance to national and provincial
roads 3000~5000 m or distance to

county road and village road
1500~3000 m or distance to town
road or distance to county center

road 800~1200 m

Ordinary town 1500–5000
person/km2 300–500 m 2000–3000 m 300–500 m

1 49.10~55.17 min

distance to national and provincial
roads > 5000 m or distance to

county road and village road >
3000 m or distance to town road >

1500 m or distance to county
center road > 1200 m

others ≤1500 person/km2 50–300 m 1000–2000 m 100–300 m

0 / / / / ≤50 m ≤1000 m ≤100 m
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