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Abstract: Non-native plants can reduce grassland biodiversity, degrade wildlife habitat, and threaten
rural livelihoods. Management can be costly, and the successful eradication of undesirable species
does not guarantee the restoration of ecosystem service delivery. An alternative to the eradication
of invasive species in rangelands is to target the restoration of diversity and heterogeneous plant
structure, which have direct links to ecosystem function. In this study, we evaluate patch-burn
grazing (PBG) with one and two fires per year and variably stocked rotational grazing in Poa pratensis-
and Bromus inermis-invaded grasslands using traditional (cover) and process-based (diversity and
vegetation structural heterogeneity) frameworks in central North Dakota, USA. Within 3–4 years
of initiating management, we found little evidence of decreased Poa pratensis and Bromus inermis
cover compared to continuous grazing (Poa pratensis F3,12 = 0.662, p = 0.59; Bromus inermis F3,12 = 0.13,
p = 0.13). However, beta diversity increased over time in all treatments compared to continuous
grazing (tPBG1 = 2.71, tPBG2 = 3.45, tRotational = 3.72), and variably stocked rotational treatments had
greater increases in spatial heterogeneity in litter depth and vegetation structure than continuously
grazed pastures (tvisual obstruction= 2.42, p = 0.03; tlitter depth = 2.59, p = 0.02) over the same time period.
Alternative frameworks that promote grassland diversity and heterogeneity support the restoration
of ecological services and processes in invaded grasslands.

Keywords: patch-burn grazing; heterogeneity; grassland ecosystem processes

1. Introduction

Grasslands are important repositories of biodiversity and sources of income, providing
myriad ecosystem functions and services. However, the extent of grasslands worldwide
has declined substantially due to land use change, placing a large burden on those that
persist. Remaining grasslands are impacted heavily by non-native plant invasion, which
alters the plant–pollinator networks, reduces vegetation diversity and structural complexity,
and drives ecological state conversion [1–6]. As the problem of grassland invasion has
gained visibility, landowners and managers have realized the urgency and importance of
managing to control invasive species’ impacts.

Invasive species control measures are numerous and have achieved varying degrees
of success. For example, while the targeted application of herbicides can be effective, many
invasive plants have similar physiological characteristics to native species, increasing the
risk of off-target mortality [7]. Mechanical control is labor intensive and often infeasible at
broad scales due to the cost and the necessity of frequent repeat treatments [8]. The use
of exotic natural enemies to control invasive plants has achieved success in some cases,
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but full control is rare, and natural enemies have the potential to become invasive species
themselves [9]. Though varied in scope, cost, and mechanism, these techniques inherently
rely on abundance measures of the invasive species in question to determine success.

Using invasive species abundance and percent coverage as the measures of success in
controlling non-native species is intuitively appealing, but these metrics may not closely
align with higher-level management goals. On one hand, they are straightforward and
objective, and are correlated with properties such as propagule pressure and invasive
regime resilience [10,11]. In addition, the logical link between techniques such as targeted
herbicide application or mechanical removal and the abundance or cover of undesirable
species is clear. But on the other hand, percent cover is essentially a proxy measurement,
whereas the true objective of process-based management is to mitigate the undesirable
effects of invasive species on rangeland systems. Direct invasive species control can actually
diminish grassland function if native plants do not recover to replace them [12]; in fact,
many introduced species initially restored function to the degraded ecosystems they were
brought into [13]. In these cases, it is possible to successfully eradicate invasive species
while also having a neutral or negative impact on important ecological characteristics,
such as biodiversity and community stability [14,15]. Instead of controlling invasive
species directly by reducing their coverage or abundance, some managers have pursued
alternative goals, such as targeting the restoration of invaded grassland function through
the reinstatement of ecological processes.

A process-based approach to rangeland conservation centers on restoring spatial het-
erogeneity and biodiversity by mimicking pre-colonial disturbance processes [16]. Specifi-
cally, the Great Plains grasslands were structurally diverse ecosystems: spatially-patchy
fires attracted native ungulates (primarily bison, Bison bison) that focused their grazing on
high-quality forage in new burns, maintaining short-stature vegetation with ample bare
ground [17]. Focused grazing pressure on recently-burned areas allows fuel to accumu-
late in unburned portions of the landscape, increasing the likelihood of subsequent fires.
Through time, this creates a shifting mosaic of vegetation structure that increases niche
diversity and maintains intact grassland systems [18,19]. Extensive research has shown
that these benefits can be realized using prescribed fire and cattle grazing (patch-burn
grazing, PBG) as proxies for the interaction between precolonial fire and native ungulate
grazing (pyric herbivory) [17,20–22]. Furthermore, restoring this native disturbance regime
has shown promise in invasive species management. For example, patch-burn grazing
reduced cover and restored ecological function by promoting structural heterogeneity in
sericea lespedeza- (Lespedeza cuneata) invaded tallgrass prairies [23]. However, the degree
to which pyric herbivory has the potential to meet each definition of control success (re-
ducing/eliminating invasive cover versus restoring ecological processes) in C3-dominated
grasslands remains unknown.

Poa pratensis and Bromus inermis are two invasive C3 grass species that have caused
large changes to the ecosystem structure and function in the Northern Great Plains. Initially
brought as a forage species in the 18th and 19th centuries [3], each has proliferated due
to wet climate cycles, strong competitive ability, the promotion of ‘rest is best’ grazing
practices, and the removal of historic disturbance regimes [24–26]. Today, 10% of the Great
Plains grasslands are dominated by these two species [27], with coverage in the Northern
Great Plains states reaching as high as 86% [3]. These invasions are associated with
impacts such as lower grassland pollinator diversity and floral resource availability [28],
limited livestock forage availability during times of drought [29], and altered microbial and
arthropod communities [26]. Efforts to reduce invasive grass cover in the Northern Great
Plains have been marginally successful, with a consensus among rangeland managers that
C3 non-native species are likely here to stay [24]. However, by focusing limited available
resources on the restoration of ecosystem function and process in the context of plant
invasions, we may still be able to achieve the desired outcomes [23].

In this study, we evaluated the effects of restoring ecological disturbance on the abun-
dance of undesirable species using process-focused grazing. Specifically, we investigated
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whether pyric herbivory (implemented via patch-burn grazing) and modified rotational
grazing were effective at reducing the cover of Poa pratensis and Bromus inermis, enhancing
biodiversity, and restoring structural heterogeneity compared to conventional livestock
management practices (continuous grazing). As the use of fire in range management does
not have broad support in the Northern Great Plains [30], we sought to determine if we
could mimic the heterogeneity-creating effects of fire and grazing without the use of fire via
a modified rotational grazing system with variably stocked paddocks. We hypothesized
that while pyric herbivory might not immediately reduce the cover of Poa pratensis and
Bromus inermis, it would increase the contrast in vegetation structure among patches, which
is an important proxy for biodiversity [31]. We hypothesized that modified rotational
grazing would generate more heterogeneity in vegetation structure and biodiversity than
continuous grazing, but less than patch-burn grazing. Our results inform future manage-
ment efforts, cultivating focused and realistic objectives by which to measure the success of
invasive species control.

2. Materials and Methods
2.1. Study Site

We conducted our study from 2017 to 2020 at the Central Grasslands Research Ex-
tension Center in the prairie pothole region of North Dakota, USA (99◦25′ W, 42◦42′ N).
The region was historically dominated by native C3 grasses, such as Nassella viridula (Trin.
Barkworth), Heterostipa comata (Trin. & Rupr.), and Pascopyrum smithii (Rydb.), but now
Poa pratensis and Bromus inermis comprise the majority of vegetation cover [32,33]. Com-
mon forbs include Solidago spp., Asclepias spp., and Cirsium spp., while Symphoricarpos
occidentalis (Hook.) is the dominant woody species [33]. Common non-native forb species
include Artemisia absinthium (L.), Melilotus officinalis (L.), and Medicago sativa (L.). During
the growing season (1 May to 1 September), daytime average temperatures are 17.32 ◦C and
precipitation totals average 28.6 cm [33]. Growing season average daytime temperatures
and precipitation during the study period were: 2017: 17.3 C, 22.6 cm; 2018: 18.6 C, 38.7 cm;
2019: 16.3 C, 33.4 cm; 2020: 18.1 C, 20.4 cm [34]. Dominant ecological sites included loamy,
sandy, shallow gravel, thin loamy, and very shallow [34].

Our treatment structure consisted of four replicates (65 ha each) of four grazing
treatments. Two treatments employed patch-burn grazing, and were designed to mimic
the historic disturbances of wildfire and bison grazing. The first was burned once a year
(1/4 pasture, 16.2 ha) in the dormant season (late April–early May; hereafter PBG1). The
second was burned twice a year (1/8 pasture, 8.1 ha, 16.2 ha/year total; hereafter PBG2) in
the dormant season and the late growing season (late August–late September). For each,
fire return intervals were set at four years to mimic pre-colonial fire regimes.

We designed a modified rotational grazing treatment to determine whether grazing
management could restore ecological function without the use of fire. Each modified rota-
tional grazing pasture was divided into four paddocks with interior fencing. Each paddock
was stocked for varying lengths of time each year, with the goal of generating heterogeneity
in vegetation structure and reducing grazer selectivity. The stocking durations in the modi-
fied rotational paddocks for each year were 0 days (rested, 0% vegetation removal), 21 days
(moderate, 20–40% vegetation removal), 50 days (full, 40–60% vegetation removal), and
77 days (heavy, 60–80% vegetation removal), divided between two intervals each year with
40% of the days grazed during the first rotation and 60% grazed during the second rotation.
Grazing intensities rotated between paddocks each year (e.g., heavily-stocked paddocks
transitioned to rest the following year) so that each paddock would receive each grazing
intensity over a four-year period. Finally, the continuous grazing treatment represented
traditional grazing practices with no fire or interior fencing.

Stocking rates in all treatments were between 2.26 and 2.31 animal unit months per
hectare to achieve forage use rates of 40–50% removal of standing crop. The first year of
data collection marked the beginning of patch-burn implementation, so we were able to
monitor changes over time as pastures transitioned from unburned to a full cycle. Due
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to weather constraints, two of the PBG2 dormant season burns were not conducted in
2018 and all four were not conducted in 2019. The modified rotational treatment was
first implemented in 2018, so results only represent three years of this treatment. Patch-
burn treatments were randomized, but continuous grazing treatments were sited due to
management restrictions (i.e., this area was in an easement that restricted management
with fire and additional fencing) and the rotational treatment was added retroactively.
Vegetation sampling transects were distributed across all major ecological sites in each
pasture. Refer to Appendix A for further explanation of treatment layout.

2.2. Data Collection

We conducted vegetation surveys each year during the peak of the growing season
(early- to mid-July). For each pasture replicate, we established two parallel 150 m transects
in each patch (1/8 pasture, 8.1 ha). Transect pairs were 30 m from each other. We estab-
lished 10 vegetation monitoring points along each transect (every 15 m, 20 points total per
1/8 pasture). At each sample point, we measured visual obstruction using a Robel pole,
using an average of 4 readings taken from a height of 1 m at a distance of 4 m in each
cardinal direction [35]. Robel readings incorporate information on vegetation height and
density into a measurement of vegetation structure [36]. We then deployed a 0.5 m2 frame
at each plot and measured litter depth in each corner using a ruler. Finally, we estimated
the cover of vegetation groupings using the cover class midpoints of the Daubenmire cover
class scale ([37]; 0%, 3%, 15%, 38%, 63%, 85%, 98%). We classified vegetation into the
following groups: Bromus inermis, Poa pratensis, native C3 grasses, non-native C3 grasses
(excluding Bromus inermis and Poa pratensis), native C4 grasses, non-native C4 grasses,
native legumes, non-native legumes, native forbs, non-native forbs, native woody plants,
non-native woody plants, bare ground, and standing dead vegetation. All observers were
trained in methodology and plant identification each year, and observers calibrated cover
estimations to each other to ensure consistent results.

2.3. Data Analysis

To assess the success of grazing management in controlling non-native C3 grasses,
we first focused on evaluation using traditional metrics (i.e., changes in the cover of
undesirable vegetation groups and/or cover of desirable vegetation groups). We made
univariate comparisons of functional groups at the start and end of the study (change
relative to continuous grazing) using linear mixed models with pasture as a random effect
(R Core Team 2022). We then performed a nonmetric multidimensional scaling analysis
on vegetation composition to determine vegetation community trajectories of pastures
over time using the vegan package with Bray–Curtis distance measures [38,39]. We plotted
vectors in the ordination space corresponding to the movement of pasture centroids from
the beginning to the end of the study.

We then defined beta diversity as the space occupied by pastures in the ordination
space (i.e., multivariate dispersion [40]). We calculated the distance to pasture centroids
and used this metric for beta diversity calculations, as this measure represents the av-
erage variability in functional group composition among patches (1/8 pasture) for each
pasture [40]. Differences in beta diversity among treatments were then evaluated using a
homogeneity of dispersion test (‘betadisper’ in vegan) [39,40]. We then focused our analysis
on attributes that are indicative of ecosystem functioning and service delivery, specifically
structural attributes (litter cover, litter depth, bare ground, and visual obstruction), beta
diversity, and spatial heterogeneity. First, changes in structural attributes over time relative
to continuous grazing were carried out using linear models, similarly to the vegetation
group comparisons. We defined spatial heterogeneity of vegetation structure as the degree
of difference among patches for bare ground cover, litter cover, litter depth, and visual
obstruction. We accomplished this using a random effects-only modeling approach using
patch ID as a random effect with structural attributes as the response variable [41]. This
method obtains the amount of variance attributable to the patch term (1/8 pasture) for
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each treatment. We chose this metric to quantify spatial heterogeneity as opposed to the
coefficient of variation (CV) because CV scales with the mean of the response, whereas we
were interested in the absolute variance structure (i.e., small absolute differences in mean
structure among recently-burned patches receive high importance in CV calculations) [42].

3. Results

Bromus inermis was 2–3 times more abundant on continuous grazing pastures com-
pared to the other treatments, indicating likely pre-treatment site differences (Figure 1).
Differences over the study period did not vary between treatments (F3,12 = 0.13, p = 0.13;
Figure 2). Poa pratensis cover was similar across all treatments at the beginning of the study,
and did not change over time (F3,12 = 0.662, p = 0.59; Figures 1 and 2).
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Figure 2. Changes to the cover of Bromus inermis and Poa pratensis in patch-burn treatments with
one burn/year, two burns/year, continuous grazing, and modified rotational grazing systems from
the beginning to the end of treatment implementation at the Central Grasslands Research Extension
Center in Streeter, ND. Error bars represent one standard error.
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Native C3 grass cover did not change over the study period (F3,12 = 1.80, p = 0.20;
Figure 3).
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Figure 3. Changes to the cover of vegetation functional groups of native and exotic species in patch-
burn treatments with one burn/year, two burns/year, continuous grazing, and modified rotational
grazing systems from the beginning to the end of treatment implementation at the Central Grasslands
Research Extension Center in Streeter, ND. Error bars represent one standard error.

Native forb cover declined over time in modified rotational grazing treatments rela-
tive to continuous pastures, while it increased in the PBG1 treatment (tRotational = −3.66,
p < 0.01; tPBG1 = 2.47, p = 0.03; Figure 3). Native legumes and C4 grasses did not exhibit
ecologically significant differences in cover over the study period (Flegumes 3,12 = 0.793,
p = 0.52; FC4 3,12 = 1233, p = 0.34; Figure 3). Native woody cover did not change relative to
continuous grazing pastures over the study period (F3,12 = 0.09, p = 0.96; Figure 3). Non-
native C3 (e.g., Elymus repens L. Agropyron cristatum L. Gaertn.) did not change significantly
relative to continuous pastures, though we saw marginal increases in modified rotational
pastures (F3,12= 2.31, p = 0.13; tRotational = 2.09, p = 0.06; Figure 3). Exotic forbs (e.g., Cirsium
arvense L., Artemisia absinthium L.) decreased in all treatments, with no differences relative
to continuous pastures (F3,12 = 0.88, p = 0.48; Figure 3). Exotic legumes (e.g., Melilotus offici-
nalis and Medicago sativa), decreased in patch-burn treatments relative to control pastures
(t = −2.69, p = 0.01; Figure 3). Exotic C4 grasses and woody plants constituted a minority of
the vegetation cover across all the treatments, so we were not able to assess their changes.

Overall, the composition of patch-burn pastures changed towards more cover by
native species following the treatment application (Figure 4). The composition of modified
rotational pastures was largely stable over time, while the composition of continuous
grazing pastures was not consistent (Figure 4).

Beta diversity was initially higher in the continuously grazed pastures compared to
both PBG and modified rotationally grazed pastures (Figure 5). However, beta diversity
in the continuous pastures declined over time, and all the pastures had comparable beta
diversity after treatment implementation. By this measure, beta diversity increased over
time relative to the control in both patch-burn and modified rotational pastures compared to
continuous grazing (tPBG1 = 2.71, tPBG2 = 3.45, tRotational = 3.72, p < 0.01 for all comparisons;
Figure 5).
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Leg = Legume.
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Figure 5. Changes in beta diversity (group area in ordination space) over time under four grazing
regimes at the Central Grasslands Research Extension Center in Streeter, ND. Error bars represent
one standard error.

Bare ground increased over the treatment duration relative to continuous pastures
in PBG1 pastures (t = 2.91, p = 0.01; Figure 6). Litter cover decreased over the course
of the study in PBG2 and modified rotational treatments relative to continuous pastures
(tPBG2 = −2.00, p = 0.07; tRotational = −2.64, p = 0.02; Figure 6). Litter depth increases also
occurred in all the treatments, but increases were not different relative to the continuous
pastures (F3,12 = 0.06, Figure 6). Robel pole values did not change significantly over the
study period (F3,12 = 0.51; Figure 6).
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Spatial heterogeneity was greatest in the PBG1 treatment compared to the other three
treatments, and remained high throughout the study period (Figure 7). Litter cover spatial
heterogeneity was again highest in PBG1 pastures at the beginning of the study period,
but values were similar between PBG1 and continuous pastures by the end of the study
(Figure 7). Heterogeneity in Robel height and litter depth tended to be low in PBG2 and
continuous pastures (Figure 7). Modified rotational pastures had low spatial heterogeneity
at the beginning of the study period, but heterogeneity increased over time, rivaling
heterogeneity levels in PBG1 pastures by the completion of the study (Figure 7). Changes
in spatial heterogeneity over time were not different relative to continuous grazing for bare
ground and litter cover. However, visual obstruction and litter depth spatial heterogeneity
increased in the rotational treatment relative to continuous pastures (tvisual obstruction= 2.42,
p = 0.03; tlitter depth = 2.59, p = 0.02).
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4. Discussion

Determining rangeland conservation management success in working landscapes
requires simple, well-defined metrics [43]. While a logical goal for managers dealing with
non-native species invasions may be to reduce or eliminate the cover of said species, the
recalcitrance of many species to control measures [44] suggests it is more appropriate
to evaluate alternative measures focused on enhancing ecosystem function and service



Land 2022, 11, 1135 9 of 14

delivery. Following 3–4 years of alternative grazing management that included prescribed
fire, we found little evidence of the lower cover of dominant non-native grass species.
However, we did observe greater beta diversity in vegetation structure following patch-
burn grazing and modified rotational grazing and greater spatial heterogeneity in modified
rotational grazing compared to continuously-grazed pastures. Given the associations of
vegetation diversity and structural heterogeneity with ecosystem service delivery and
ecological function, managers should consider broader goals beyond simple cover decrease
or eradication when facing non-native plant species invasions.

Areas heavily invaded by Poa pratensis and Bromus inermis typically have more con-
tinuous vegetation cover, a thick thatch layer, and deep litter [45,46]. Though dense
vegetation structure is important for some grassland wildlife species (e.g., LeConte’s spar-
row, Ammodramus leconteii [47]), bare ground and sparse vegetation may be limiting in
C3 grass-invaded rangelands [48]. Conventional management often seeks to reduce bare
ground due to concerns of erosion and reduced forage [17], but more recent frameworks
recognize the importance of sparsely vegetated areas for wildlife movement, foraging,
burrowing, and basking, as well as critical habitat for imperiled plant species, such as Pen-
stemmon haydenii [49,50]. PBG1 increased the area of bare ground compared to continuous
grazing systems, increasing the availability of a limited resource for wildlife. Modified
rotational grazing and PBG2 also decreased litter cover over the study period, providing
more areas of lower vegetation structure. Patch burning removes litter and sets back woody
cover through burning and subsequent herbivory, while modified rotational grazing may
reduce grazer selectivity through high stocking density, forcing cattle to graze away areas
with high litter [51,52]. It is also important to note that in a patch-burn system with rotating
disturbances (and theoretically in our modified rotational system), any particular area of
bare ground should be transitory, preventing the degradation that occurs in long-term
‘sacrifice areas’ under conventional grazing strategies [53]. Though bare ground as a limit-
ing resource is a common phenomenon in conventionally grazed rangelands, it is likely
particularly severe in Poa pratensis-invaded sites. Further research is needed to fully assess
the limiting effects of excess structure on Poa- and Bromus-invaded systems with respect to
livestock and wildlife.

Though patch burning and modified rotational grazing did not appreciably reduce the
cover of Poa pratensis or Bromus inermis compared to continuous grazing, we saw increases
in native forb cover in pastures under PBG1 management. While these results may seem
contradictory at first, it is important to consider the mechanisms by which these non-native
C3 grasses suppress competitors. Both species—Poa especially—form a deep layer of litter
and thatch, which decreases soil temperatures and alters hydrological functioning and
native plant competitive dynamics [3,54]. Reducing litter enhances forb expression [55],
even if Poa pratensis itself is not killed by fire or grazing. Forb increase makes more floral
resources available for pollinators [33], in turn enhancing an important ecosystem function
despite a lack of non-native grass control. Increased native forb cover may also represent
additional floral resource benefits, as introduced species, such as alfalfa and yellow sweet-
clover, are relatively unattractive to native pollinators [56,57]. The reason for declines in
forb cover in modified rotational pastures is currently unclear.

It is important to note that our results constitute responses to heterogeneity-based
management practices within short timescales. Future work should consider changes to
the structure and function of grasslands following long-term management in invaded
systems. For example, a patch-burn study in invaded tallgrass prairie was ineffective at
generating structural heterogeneity upon initial treatment application, but was able to
achieve process-based management goals following additional rounds of treatment and
stocking rate adjustments [58]. Although in our study the modified rotational system had
low initial levels of beta diversity and spatial heterogeneity, these values mostly increased
over time, particularly in spatial heterogeneity of vegetation structure and litter depth,
indicating that this treatment may not have reached full effectiveness during the three
years of study. However, small increases in invasive C3 grasses and decreases in forb
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cover in the modified rotational treatment during the study period may warrant caution.
It is also possible that, by using cover class categories instead of absolute percentages,
we failed to capture slight declines in Poa pratensis and Bromus inermis cover over time.
Future studies should consider alternate measures of cover and structure at a variety of
spatial scales to fully capture structural responses to grazing treatments over short and
long timescales [59,60].

As many managers recognize the impracticality of eradicating alien species in heavily-
invaded areas, a new focus has become enhancing the functioning of altered landscapes to
mimic the desired properties of uninvaded landscapes [61]. Though we did not directly
measure ecosystem service delivery, numerous studies have linked vegetation structural
heterogeneity to the diversity of many taxa reviewed in [16], temporal stability in livestock
forage resources, and improvements to livestock forage quality [62]. Concurrent studies
in these experimental pastures additionally found benefits of patch-burn grazing to avian
diversity and nest densities [34,47], livestock forage quality [63], and floral resource di-
versity and abundance [33] associated with changes in vegetation structure following the
implementation of heterogeneity-based management practices. Even in situations when
complete eradication of Poa pratensis and Bromus inermis may be undesirable or logistically
infeasible, it appears to be possible to generate heterogeneity—and some of the associated
ecological service delivery—through grazing management.

5. Conclusions

These results show that despite minimal changes in Poa pratensis and Bromus inermis
following three to four years of vegetation management, patch-burn grazing and modified
rotational grazing with variably stocked paddocks generated increases in beta diversity,
increased bare ground, decreased litter cover, and increased heterogeneity compared
to continuous grazing. Many studies have already recommended that heterogeneity in
vegetation structure should be a paramount goal in range management due to its influence
on biodiversity and ecosystem services; this work extends the paradigm to the practical
management of invaded landscapes. While we do not suggest that invasive C3 grass
eradication efforts are not worthwhile, we show that the restoration of ecosystem structure
and functioning is possible without eradicating non-native species per se. With limited
resources in the face of unprecedented rates of ecosystem change and increasing demands
on natural systems, process-oriented control measures based on simple structural metrics
show the potential to guide range management efforts towards the restoration of desired
grassland function in invaded landscapes. Our results allow future work to consider
alternative metrics to measure the success of invasive species management, as well as
the direct correlations between structural heterogeneity and ecosystem service delivery in
invaded systems.
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