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Abstract: Traditional villages are historically, culturally, scientifically and aesthetically valuable, and
a beautiful landscape is the primary embodiment of a traditional village environment. Urbanization
and modernization have had a great impact on village landscapes. As an important aspect of
traditional village landscapes, creating beautiful public spaces is an effective way to attract tourists
and improve the well-being of residents. Landscape aesthetic activities are the result of the interaction
between landscape objects and aesthetic subjects. Research on the relationship between the form of
traditional village public spaces and subjective aesthetic preferences has long been neglected. This
research examined 31 public spaces in traditional villages in the Dongshan and Xishan areas in Lake
Taihu, Suzhou. An index system of public spatial forms in traditional villages was created, basic data
of spatial forms were collected using a hand-held 3D laser scanner, and the value of the spatial forms
index was calculated using R language. The scenic beauty estimation (SBE) method was improved,
with the estimation of the beauty of the scenic environment based on VR panorama rather than
traditional photo media. Parameter screening was performed using correlation analysis and full
subset regression analysis, and four models were used to fit the SBE scores and grades. The results
show that the majority of public spaces had lower than average SBE scores, and the four key indicators
of average contour upper height, solid-space ratio, vegetation cover, and comprehensive closure
predicted SBE. In addition, the linear model (R2 = 0.332, RMSE = 64.774) had the most accurate SBE
level prediction and the stochastic forest model (R2 = 0.405, RMSE = 63.311) was better at predicting
specific SBE scores. The model provides managers, designers, and researchers with a method for the
quantitative evaluation of visual landscape preferences and quantitative landscape spatial forms and
provides a reference for the protection and renewal of traditional village landscapes.

Keywords: landscape architecture; spatial form; spatial quantification; scenic beauty estimation
(SBE); point cloud data

1. Introduction

Traditional villages are ecologically, historically, culturally, and aesthetically rich. They
are places where people can escape the hustle and bustle of urban life, return to nature,
and fight off physical and mental fatigue [1–3]. Driven by market economics, cultural
tourism has developed into one of the main approaches for protecting and developing
traditional villages. However, excessive commercial development has had an adverse
impact on some traditional village landscapes. Beautiful scenery is a primary tourist
attraction that also improves the well-being of village residents [4,5]. Therefore, creating
a beautiful scenic environment is an important part of landscape planning and design in
traditional villages. Scenic beauty is the subjective impression of features in the landscape
and is the product of the interaction between the physical features of the landscape and the
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individuals observing those features [6,7]. Therefore, both subjective and objective factors
affect aesthetic perception. Subjective factors include emotional experience, psychological
needs, historical and cultural significance, and spiritual value [8–11], while objective factors
include the physical form, texture, features, and colors of the environment [12–15]. This
paper explores the relationship between objective spatial forms and subjective aesthetic
preference in public spaces in traditional villages in Dongshan and Xishan on Lake Taihu.

At present, much research on public space focuses on the urban perspective, empha-
sizing “collectivity” and “visibility”, which can be understood as gathering places that
promote and facilitate social interaction. There is no clear definition of public space in
traditional villages, and relevant urban public space theories are used for reference. In this
research, public space refers to outdoor open spaces composed of vertical interfaces, top
interfaces and bottom interfaces built of natural and artificial materials. It includes such
spaces as squares, plazas, parks, and pedestrian-friendly streets. These are spaces where
villagers and tourists gather to engage in daily activities, communicate, and relax. “Space”
is created by the interrelation between physical space and the individual who perceives it.
Landscape aesthetic preference refers to an individual’s or group’s differentiated decision-
making. It uses experience, psychological needs, and mental state to evaluate landscapes
that reflect the subject’s aesthetic preferences for the scenic environment [6,16,17]. Existing
research points to a significant correlation between spatial physical form and landscape
aesthetic preference [18–20]. The key to exploring the relationship between these is devel-
oping effective scientific depictions of the physical variables that represent spatial forms
and scientifically measure the landscape aesthetic preferences [15,21,22].

2. Related Works

Most existing studies are based on image data from Worldview, Quick Bird and
Landsat [23–25], through RS, GIS, Fragstats, and other technical platforms [26–28]. Moran’s
index of spatial correlation, landscape pattern index, morphological spatial analysis (MSPA),
and gradient analysis are used for the quantitative study of landscape spatial forms at
regional, urban, and city block or neighborhood levels [29–32]. This type of method
can be used to rapidly obtain the top information data of the space, but the data below
the top occluder are often not collected, or the accuracy is insufficient, and the data are
distorted. Therefore, this approach is not suitable for the quantitative study of spatial forms
at the micro-scale in rural landscapes. Quantitative research on small-scale spatial forms
mainly relies on traditional surveying and mapping, using tools such as tape measures,
perimeter and digital cameras to stay in two-dimensional paper space. The accuracy of
these methods is low. Quantification of forms of public space in traditional villages, unlike
in urban spaces, lacks accurate three-dimensional data sources. Compared to the generally
more regular façades of urban architectural spaces, traditional manual measurement of
smaller-scale village open space is less effective due to a greater abundance of vegetation,
the irregularities of which make surveying and mapping more difficult. Laser scanning
technology has been applied to resolve this problem, based on the principle of laser ranging.
Today, LiDAR is drawing more attention in fields including site inspection and monitoring,
retrofitting applications, cinematography, human–robot interaction-based applications,
and surveillance and monitoring [33–36]. Recording three-dimensional coordinates, the
reflectance and texture information of a large number of dense points on the surface of the
measured object enables fast reconstruction of the measured target 3D model together with
a variety of mapping data, providing an accurate three-dimensional spatial representation.
Three-dimensional laser scanning technology, widely applied in landscape architecture
for the mapping and recording of buildings, vegetation, natural landscapes, and cultural
heritage [16,37–39], is uniquely suited to acquiring accurate three-dimensional spatial
structure data, especially for irregular three-dimensional forms.

The most used landscape preference evaluation is the scenic beauty estimation (SBE).
This method, proposed by Daniel and Boster, is based on the psychophysical paradigm [40].
It is widely used in national parks, agricultural landscapes, urban habitats, mountain
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landscapes, and rural landscapes, and has been shown to effectively mirror landscape
aesthetic preferences [4,5,41–44]. Given time costs, economic costs, and operability, most
studies use landscape photographs as the evaluation medium [5,40,42,43]. Research shows
that panoramic photos have a better evaluation effect than traditional photos which, limited
by visual angles, cannot effectively capture panoramic space [45,46]. In addition, shooting
angle and content are greatly shaped by the personal preference of the photographer.
Panoramic photos currently tend to assume the form of static extended images, with
distortion found in some angles. By virtue of virtual reality technology and VR equipment
that can deliver a dynamic panorama, this research effectively makes up for the deficiencies
of the static display of traditional and panoramic photos by maximizing the physical
morphological characteristics of the landscape [47]. Many studies have demonstrated the
consistency of landscape aesthetic preference judgment based on photographic materials
and site evaluation [5,43,44]. However, some researchers have objected to the use of
photographic materials as evaluation media, arguing that photographs can only record
visual sensations [48,49]. Given that the purpose of this research was to explore the
relationship between landscape aesthetic preference and spatial form, we believe that
panoramic shooting from the center of the scenic environment can capture all the physical
morphological characteristics of the landscape. Therefore, SBE based on VR panoramic
photos is a reliable method for the evaluation of the landscape preference for public spaces
in traditional villages [50]. Most landscape preference modeling studies adopt a regression
model based on principal component analysis, built by a single method and lacking
precision comparison [5,51]. This research, however, on the basis of principal component
analysis and correlation analysis, uses full subset regression to screen the optimum index.
Quantitative analysis was conducted by virtue of a linear model, nonlinear model, machine
learning model, and neural network model, and accuracy of the model results was verified
to meet a variety of measurement criteria.

This study included the construction of an index system of traditional village public
space morphological characteristics, and these characteristics were quantitatively analyzed.
To improve the traditional SBE method, a relationship model between the objective mor-
phological characteristics of space and subjective aesthetic preference was constructed. This
provided a reference for traditional village landscape planning, management, and practice.
This research makes four contributions to the field.

(1) An index system of the morphological characteristics of public space in traditional
villages was established from spatial limiting factors (bottom-surface factor, vertical factor,
and top-surface factor), providing a basis for the quantification of spatial forms.

(2) A 3D laser scanner was used to obtain basic data, and R language was used to
quantify the morphological index, which improved quantification accuracy.

(3) The SBE method was improved, and traditional photo evaluation was replaced by
a VR panoramic evaluation, thus improving evaluation accuracy.

(4) Morphological variables that have a significant impact on SBE were screened to fit
four SBE prediction models to meet different types of needs.

3. Materials and Methods
3.1. Research Area

Dongshan and Xishan are ancient towns, located on the east bank of Taihu Basin and
west of Suzhou City. The region has a long history and the largest number and greatest
concentration of traditional villages in Jiangsu Province. Dongshan is a peninsula extending
into Taihu Lake, surrounded by water on three sides, with a total area of approximately
96 km2. In 2017, it had a permanent population of approximately 58,000. Xishan is
an island in Taihu Lake, with an area of approximately 83.42 km2. In 2017, it had a
population of approximately 45,600 people. The area has a subtropical monsoon humid
climate. Coupled with the adjustment effect of Taihu Lake, it has warm and humid micro-
climate characteristics, four distinct seasons, sufficient rainfall, and suitable light. The
vegetation layers of Dongshan and Xishan are clear. At the highest altitude is a mixed
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area of conifers and broad-leaved trees and the foothills contain fruit forests and crop
planting areas. Due to their pleasant climate, beautiful environment, rich historical relics,
and deep cultural heritage, Dongshan and Xishan attract both domestic and international
tourists. Yangwan Village, Wengxiang Village, Dongcun Village, and Zhili Village, four
representative traditional villages at the national level, were selected as the objects of
this research. Yangwan Village has a permanent population of more than 3600 people,
Wengxiang Village has approximately 1000 residents, Dongcun Village has approximately
700, and Zhili Village has approximately 400. Field research was conducted during the
COVID-19 pandemic, meaning that the villages experienced no tourist activity. Therefore,
as an alternative, we interviewed the villagers to establish the main outdoor spaces for daily
activities and where tourists congregate. At the same time, informed by the basic theory
of space enclosure, we chose 31 typical public space plots to survey and map (Figure 1).
These sample sites are public spaces that feature plant landscapes and flat terrain, with
boundaries defined by forest edge, curbs or wall foot lines. Among the 31 plots, the smallest
area was 90 m2, the largest 1550 m2, and the average area was 661 m2. These space types
included parks, playgrounds, squares, and plazas.
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3.2. Data Collection and Analysis Methods

The research method used in this study can be divided into the following four main
steps (Figure 2). The first step was to quantify the spatial morphological characteristics
of the sample plots, survey and map the sample plots with a 3D laser scanner, construct
a traditional village public space morphological characteristic index system, preprocess
the original point cloud data, and then calculate the value of each index. The second
step was to evaluate the landscape aesthetic preference of the sample plot through the
beauty degree evaluation method and obtain the beauty degree score of each site. The
third step was index screening, which was performed through folding and cross validation,
principal component analysis, and full subset regression analysis to screen out suitable
morphological indicators. The last step was to fit the selected morphological indicators
and beauty degrees according to four different models, which allowed the beauty degree
prediction function.
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3.2.1. Quantification of Spatial Morphological Characteristics

(1) Surveying and mapping of sample sites
A GEOSLAM ZEB-Horizon handheld 3D laser scanner was used. Unlike airborne

and vehicle-mounted radar equipment, this scanner is portable, less affected by weather
conditions, and adaptable to traditional village operating environments. With 100 m
measuring range and 3 cm scanning accuracy, it meets the accuracy requirements for
calculating spatial morphological indicators, as required by this research. The operation
method of this instrument is to hold the scanner in front of the chest and circle the field
at a normal pace to form a closed loop to complete the scan. Data were collected from
23–25 November 2021.

(2) Establishing the spatial morphological characteristic index system
Factors limiting spatial forms include the bottom-surface factor, vertical interface factor,

and top-surface factor [50,52], corresponding to the base plane, vertical separation plane,
and covering surface of village landscape space. The combination of these three dimensions
forms different spatial types. The base plane of rural landscape space is primarily composed
of ground. Divided by pavement, green space, and bodies of water, the size, complexity, and
length of the base plane all affect viewers’ visual perceptions. Referencing the quantitative
indicators of street space, architectural space, and the base plane of garden plant space,
this study used accessible area ratio (AAR), eccentricity (E) [53], and spatial shape index
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(SSI) [54] as the quantitative indicators of flat spatial forms. The vertical partition surface
of village public space is primarily created by the exterior walls of buildings and plant
façades. This not only determines the spatial scope and sense of enclosure, but also
shapes the communication between the viewer’s vision and the external environment.
Referencing the quantitative indicators of the façade forms of street space, waterfront space,
and garden plant space, we selected average height of upper contour (hu), average height of
lower contour (hl), solid-space ratio (SVR) [55], contour fluctuation range (FR), fluctuation
variance of upper contour (FVU), and fluctuation variance of lower contour (FVL) [56,57]
as quantitative indicators of façade forms. The top-surface factors of rural public space
are primarily formed by the sky and by tree canopy coverage, which affects the height
and degree of spatial enclosure. Therefore, in this study, vegetation coverage (VC) [32]
was used as the quantitative index of top-surface forms. Base plane, vertical partition
plane, and covering surface comprise the landscape space unit. The combination of these
three creates a new integrated spatial experience. Based on other types of spatial studies
and characteristics of rural landscape space, this study selected the plant diversity index
(PDI) [58], 3D-GVI [59], enclosure degree (ED), and comprehensive closure (CC) [50] as the
quantitative indicators of three-dimensional spatial forms. According to the definitions of
these indicators, the 14 quantitative spatial indicators can be divided into three categories—
horizontal interface quantification indicators, vertical interface quantification indicators,
and quantification indicators of three-dimensional spatial forms, as shown in Table 1.

Table 1. Quantitative index system of traditional village public space form.

Spatial Composition Quantitative Indicators Indicator Definition Computational Formula

Horizontal interface

Accessible area ratio
(AAR)

Representing the proportion of the
area accessible to viewers of a

spatial unit; the larger the value,
the larger the area that can be

accessed by viewers per unit area

AAR = Aa/Ab
Aa stands for the accessible area of a
spatial unit, and Ab the base area of

a spatial unit

Eccentricity (E)

Representing the length and width
of a spatial unit, the larger the

value, the longer and narrower or
shorter and wider the space.

E = Lmax/Lmin
Lmax is the long axis length of the

bottom surface of a spatial unit,
while Lmin the broken axis length of
the bottom surface of a spatial unit

Spatial Shape Index (SSI)

Representing the complexity of the
bottom surface of a spatial unit.
The closer the index is to 1, the
closer the bottom surface of the

spatial unit is to a circle

SSI = p2/
√

4πAb
p is the base perimeter of a spatial
unit, and Ab the base area of the

spatial unit

Vegetation coverage
(VC)

Proportion of vertical projection
area of vegetation inside a spatial

unit; the closer the value is to 1, the
higher the green coverage rate in

the spatial unit

VC = Sveg/Ab
Sveg is the vertical projection area of
vegetation in the spatial unit, and Ab

the bottom area of the spatial unit

Vertical interface

Average height of upper
contour (hu)

Average height of upper contour of
vertical interface of a spatial unit

hu = 1
N ∑N

i=1 hi
hi is the height of the ith point of the
contour on the vertical interface of

the spatial unit

Average height of lower
contour (hl)

Average height of lower contour of
vertical interface of a spatial unit

hl = 1
N ∑N

i=1 hi′

hi′ is the height of the ith point of the
lower contour on the vertical
interface of the spatial unit
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Table 1. Cont.

Spatial Composition Quantitative Indicators Indicator Definition Computational Formula

Vertical interface

Solid-space ratio (SVR)

Proportion of vertical projection
area of vegetation in a spatial unit,

the closer the value is to 1, the
higher green coverage rate in the

spatial unit

SVR = SP/(hmax × P)
SP is the area occupied by the
vertical interface of the entity
elements, hmax the maximum

height of the contour on the vertical
interface, and P the underside
perimeter of the spatial unit

Contour fluctuation
range (FR)

Representing the fluctuation of the
upper contour of the entity

elements of the vertical interface.
The closer the value is to 1, the

more uniform the contour height
changes on the vertical interface of

the spatial unit

FR = hmax/hu
hmax is the maximum height of the
contour on the vertical interface of

the spatial unit, hu the average
height of contour on a vertical

surface of the spatial unit

Fluctuation variance of
upper contour (FVU)

Representing the intensity of
fluctuation of the upper contour of

the vertical interface. The larger
the value, the more intense the

fluctuation of the contour height
on the vertical interface of the

spatial unit

FVU = 1
N ∑N

i=1 (hi− hu)
hi is the height of the ith point of the
contour on the vertical interface of

the spatial unit, hu the average
height of contour on the vertical

plane of the spatial unit

Fluctuation variance of
lower contour (FVL)

Representing the intensity of the
fluctuation of the lower contour of

the vertical interface. The larger
the value, the more intense the

fluctuation of the lower contour
height on the vertical interface of

the spatial unit

FVL = 1
N ∑N

i=1
(
hi′ − hl

)
hi′ is the height of the ith point of the

lower contour on the vertical
interface of the spatial unit, hl the

average height of lower contour on
the vertical interface of the

spatial unit.

Three-dimensional space

Plant diversity Index
(PDI)

Representing the richness of
vegetation in a spatial unit; the

greater the value, the more diverse
the plants

PDI = −∑S
i=1 Pi ln Pi

Pi = Ni/N, Ni is the number of
individuals of species i, i = 1, 2, 3, . . .

S, N is the total number of
individuals

3D-green view
index(3D-GVI)

Volume of tree cover in a spatial
unit; the larger the value, the larger

the proportion of plants in a
spatial unit

3D-GVI = Vp/(hmax × Ab)
Vp is the volume of vegetation in a

spatial unit, hmax the maximum
height of contour on the vertical

interface of the spatial unit, Ab the
base area of the spatial unit

Enclosure degree (ED)
Representing the enclosure of a
spatial unit, and the higher the
value, the higher the enclosure

ED = PU/P
PU is the perimeter of the upper

contour on the vertical interface of a
spatial unit, P the underside
perimeter of the spatial unit

Comprehensive
closure (CC)

Representing the combined
enclosure of a spatial unit; the
larger the value, the higher the

enclosure of the spatial unit

CC = Sv/Ab
Sv is the area of interface between

the upper contour and lower contour
on the vertical interface of the spatial

unit, Ab the bottom area of the
spatial unit
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(3) Point cloud data preprocessing
Clipping, denoising, ground point extraction, and normalization of point cloud data

were conducted to reduce the number of point clouds while preserving the relevant point
clouds in the study area. Lidar360 v 3.2 software (Green Valley Team, Beijing, China)
was used in this process. Necessary research objects were reserved during clipping, and
hard paving decorative cloud and canopy point cloud were separately clipped for later
calculation. Human activities, birds, and equipment interfering with the process and the
acquired point cloud data were inevitably mixed with other outlier points, namely noise
points. These noise points would otherwise impact data processing, reduce data accuracy
and perhaps change the final result. We took the distance between points as the primary
measurable indicator. Based on multiple experiments, with 10 points as a neighborhood,
the median and standard deviation of the mean distance between points in the domain
were calculated. We used a calculation formula to determine the maximum threshold of the
distance. Points larger than the threshold were considered noise points, and points within
the threshold were retained for subsequent calculation. The calculation formula is:

Tmax = M10 + 5 × σ

where Tmax is the threshold of the 10 points, M is the median of the 10 points, and σ is the
standard deviation of the 10 points.

Following pretreatment, the number of point clouds in each sample site reached tens
of millions. Such a data redundancy greatly slowed down subsequent data processing.
In order to improve computing efficiency, we reduced the number of point clouds by
down-sampling. After several attempts, we set the box grid filer at 0.1 m for filtering. The
resulting down-sampling brought the point cloud in each sample site down to within half
a million.

(4) Spatial morphological indicator calculation
When calculating the above-mentioned morphological indicators, plant diversity

indicators were determined using visual interpretation and field investigation. Other mor-
phological indicators that could not be measured directly were calculated using Lidar360 v
3.2 software and R Programming language (R Core Team, Vienna, Austria). The accessible
area point cloud was projected onto the XOY plane. Conducting an edge extraction of the
point cloud, the edge contour was delineated and the area inside the contour (Aa) was
calculated (Figure 3b). We projected the point cloud of the study area onto the XOY plane.
By virtue of edge extraction, we outlined the edge contour and calculated the area (Ab)
and perimeter (P) in the contour (Figure 3b). We used the traversal method to calculate the
Euclidean distance between points, reserving the maximum value as Lmax. We calculated
the length of point cloud on the X-axis and Y-axis of the study area, selecting the minimum
value as Lmin. We projected the tree canopy point cloud onto the XOY plane, outlining the
canopy edge and calculating the contour area through edge extraction of the point cloud.
We also used the α-shape method to construct a convex hull for canopy point cloud, with
the empirical value of α being 0.03 m, followed by a calculation of the volume of each
convex hull, which added up to Vp (Figure 3a). For vertical interface indicators, we first
calculated the center point, P0(x0,y0,z0), of the study area, taking Line 1 (xi,y0,zi) and Line 2
(x0,yi,zi), which pass through point P0 and are parallel to the X-axis and Y-axis, respectively,
as the threshold values, and partitioning the point cloud in the study area by plane. After
calculating indicators of the four partitions, the mean value of the indexes was taken as
the indicator of the research area. Then, we projected the partitioned point cloud onto the
threshold surface, outlining the edges by virtue of edge extraction of the point cloud, which
were output as raster data for the calculation of the contour area (Sp) and the circumference
of the upper contour (Pu) (Figure 3c). For h and h

′
especially, we calculate the height of the

edge inside each grid by the number of columns in the edge grid image and calculated the
average height in the contour by integrating and averaging.
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3.2.2. SBE Evaluation

(1) Image data collection
In this study, an Insta360 ONE X2 panorama camera was used to take panoramic

shots. The main acquisition strategy is as follows: (1) minimize the influence of external
environmental factors on the aesthetics of panoramic photos; and (2) ensure that the scene
captured by the panoramic image is consistent with the spatial form of scanning and
mapping. The shooting height was set as 1.6 m (average adult viewpoint height), and
the shooting position was in the center of the scene, so that panoramic photos could fully
show the morphological characteristics of the spatial unit. To minimize the impact of
climate, temperature, season, and light on spatial appearance, and to ensure that the spatial
morphological characteristics displayed in the panorama were consistent with those in the
survey and mapping, panoramic shots were taken synchronously with 3D laser scanning
mapping and were completed in three days from 23–25 November 2021, during a period of
similar weather conditions. Panoramic shooting was conducted from 9:30 am to 11:30 am
and from 2:00 pm to 4:00 pm to ensure similar lighting conditions.

(2) Evaluation process
Except for extreme landscapes, there is no statistically significant difference in aesthetic

preferences between different groups or people from different cultural backgrounds [40].
This research gave comprehensive consideration to the evaluators’ abilities to operate VR
equipment and sought to ensure that landscape rating was not influenced by the personal
aesthetics of the evaluators, and selected 40 evaluators composed of landscape architecture
postgraduates and people with doctorate degrees and 24 experts (including 14 associate
professors, 5 professors and 5 senior engineers) as evaluation subjects. Each evaluator went
alone into a room equipped with the devices needed for the evaluation. They were shown
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the video data and informed of the evaluation procedure and scoring method. A 5-level
evaluation scale was used, with the corresponding score ranging from 1 to 5, indicating
dislike very much, dislike, neutral, like, and like very much. Participants wore VR glasses
(VIVE-VR) to watch the panorama and to score the scenic beauty according to their feelings
(Figure 4).
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(3) Data processing
Assuming a normal distribution of the evaluation score for each scene, we calculated

the average Z value of each scene according to the formula, selected one spatial unit as
the reference line to calculate the average Z-value difference between each scene and the
reference line, and multiplied the difference by 100 to obtain the original SBE of each scene.
The specific calculation steps are as follows:

MZi =
1

m− 1 ∑m
k=2 f(CPik) (1)

where MZi is the average Z value of the scenic environment; CPik is the cumulative
frequency at which the evaluators considered the SBE to be at or above K, when P = 1
or CP = 0, CP = 1 − 1/(2N) or CP = 1/(2N); f (CPik) is the unilateral quantile of normal
distribution. In this study, NORMSINV in EXCEL (Microsoft, Redmond, WA, USA) was
used for the calculation; m is the total number of grades evaluated; and k is the evaluation
grade (1–5).

SBEi = (MZi − BMMZ) ×100 (2)

where SBEi is the original SBE of scene i; MZi the average Z value of scene i; and BMMZ
the average Z value of the base line of the evaluation object.

3.2.3. Statistical analysis

(1) Index selection
Correlation between each indicator and SBE were analyzed, coupled with classi-

fication analysis of all indicators from the horizontal interface, vertical interface, and
three-dimensional space. The appropriate number of indicators for model construction
was obtained through folding and cross validation. Based on principal component analysis,
indicators with a higher contribution rate were selected. Finally, the most suitable indicators
were found according to a full subset regression.

(2) Model building and accuracy evaluation
According to the screened indicators, we divided all scenes into training scenes and

test scenes. We randomly selected 20 scenes as training scenes for modelling, and all
31 scenes were used to verify model accuracy. We selected and constructed the linear
model, nonlinear model, machine learning model, and neural network model. Parameters
of the linear model were solved by virtue of the least square method. The exponential
function model and polynomial equation model based on response surface analysis were
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empirically selected for the nonlinear model. As a common classifier of machine learning,
random forest is often used for sample training and prediction. It has good prediction
accuracy even when the relationship between parameters and sample values is more
complex [60]. Neural network processes distribute parallel information by imitating the
behavior characteristics of animal neural networks. The BP neural network, a multilayer
feedforward neural network trained by an error backward propagation algorithm, is one of
the most widely used neural network models [61]. The models are listed in Table 2.

Table 2. Model list.

Models Types Functions

Linear Least Squares Y = p1x1 + p2x2 + p3x3 + p0

Nonlinear
Exponential Function EXP(p1x1 − p2x2 + p0)
Polynomial Function ax1

2 + bx1x2 + cx2
2 + d

Machine Learning Random Forest R package randomForest
Neural Network Back Propagation R package nnet-

The precision rate (Pr), determination coefficient (R2), and root-mean-square error
(RMSE) were used to judge model accuracy. The formulae are as follows:

Pr =
Pcorrect

11
× 100%

R2 = 1−

31
∑

i=1
(xi − x̂i)

2

31
∑

i=1
(xi − x)2

RMSE =

√√√√ 1
31

31

∑
i=1

(xi − x̂i)
2

where Pcorrect is the number of SBEs correctly predicted; xi is the SBE of the ith scene
obtained by the calculation; x̂i is the SBE based on the feature model; and x is the average
SBE of all scenes.

4. Results
4.1. SBE Evaluation Result

The specific score of the SBE is shown in Figure 5. From high to low, the order is S28 >
S9 > S27 > S8 > S24 > S13 > S14 > S5 > S21 > S30 > S31 > S20 > S15 > S7 > S29 > S23 > S19
> S10 > S18 > S25 > S3 > S17> S1 > S4 > S11 > S26 > S2 > S16 > S22 > S12. The extremum
method was used to visually represent the SBE of each scene. Scores corresponding to
grade 1–5 were calculated using the above formula. The SBE score interval corresponding
to the interval of “dislike very much and dislike” was [−40.1, 80.8]; that corresponding to
the interval of “dislike and neutral” was [80.8, 201.7]; that corresponding to the interval of
“neutral and like” was [201.7, 322.6]; and that corresponding to the interval of “like and
like very much” was [322.6, 443.5]. S28, S29, S27, and S8 were between “like and like very
much”, S24, S13, S14, S5, S21, S30, S31, S20, and S15 were between “neutral and like”, S7,
S29, S23, S19, S10, S18, S25, and S3 were between “dislike and neutral”, and S17, S1, S4,
S11, S26, S2, S16, S22, and S12 were between “dislike very much and like”. The average
SBE score for public space in Wengxiang Village and Yangwan Village, between “neutral
and like,” was higher than that of the other two villages. However, the average SBE score
for Wengxiang Village and Yangwan Village was some distance behind “like very much,”
demonstrating that all four ancient villages have room for improvement.
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Figure 5. SBE score of each scene.

4.2. Parameter Screening

In this study, a correlation analysis of 14 spatial morphological characteristics and the
SBE scores for 31 sample environments (Figure 6) show that vertical interface indicators
had the greatest correlation with SBE among the three indicator levels. SVR and HU
were strongly correlated with SBE value, with the correlation reaching 0.5. The correlation
coefficients of spatial shape indicator (SSI), contour fluctuation range (FR), average height of
lower contour (hl), fluctuation variance of lower contour (FVl), and plant diversity indicator
(PDI) were above 0.2, showing a moderate correlation. Some indicators of horizontal
interface and three-dimensional space were weakly correlated with SBE, and correlations
between AAR, ED, CC, and SBE were less than 0.10. Weak correlation indicators will not
be analyzed as the main research object in a follow-up study.

To ensure that the number of screening parameters was scientific, the influence of
preserving different numbers of parameters on model accuracy was calculated according
to 10-fold cross verification (Figure 7). This indicates that when the number of parameters
is 4, there is an obvious turning point in the model error, meaning that the model error has
reached its peak. Therefore, four indicators were selected as parameters for the subsequent
model fitting.

Principal component analysis was carried out on indicators to reduce parameters
and dimensions and to examine the contribution rates of indicators in different principal
components (Figure 7). Significantly, the first principal component and the second principal
component present more than 60% of the information (Figure 8a). Therefore, we only
considered the index contribution rates in the first and second principal components. A de-
scription of the contribution rate of each indicator shows (Figure 8b) the seven indicators
circled in blue, meaning they make a greater contribution within their respective principal
components. Finally, seven indicators, AAR, VC, SVR, FR, hu, hl, and CC were screened.
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These seven indicators were re-screened to decide on four indicators capable of higher
model accuracy. A full subset regression analysis of the seven indicators (Figure 9) found
that retaining four indicators, VC, SVR, hu, and CC, provided better accuracy, with the
adjusted R2 reaching 0.272. We ultimately chose these four indicators.
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4.3. Validation of Model Accuracy

Firstly, we established models and calculated the parameters of each model (Table 3),
and the calculated object was the SBE score. We divided the predicted SBE score into grades,
using the divided grades as a reference to verify the accuracy of each model. Noticeably,
considering the accuracy of the random forest model and neural network model, that SBE
grade was input as data, and the SBE grade of the scenes was directly predicted. For other
models, the SBE score was the main input data. Model evaluation was conducted to judge
the accuracy of the SBE grade and to evaluate the accuracy of the SBE score.
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Table 3. Model parameter calculation and model establishment.

Models Types Functions/Parameters of Models Number of
Correct Grades Pr

Linear Least Squares SBE = −27.406VC + 8500.683SVR
+7.18hu− 3.225CC− 14.51

22 70.97

Nonlinear
Exponential Function EXP(0.02VC + 70.135SVR+

0.086hu− 1.106CC + 3.138)
18 58.06

Polynomial Function ax1
2 + bx1x2 + cx2

2 + d 15 48.39

Machine Learning Random Forest
Import Parameters: VC, SVR, hu, CC
Import Labels: SBE/Grades of SBE

Iterations: 1000
20 64.52

Neural Network Back Propagation

Import Parameters: VC, SVR, hu, CC
Import Labels: SBE/Grades of SBE

Iterations: 1000
Layers: 5

15 48.39

As the statistical results in Table 3 show, the linear model and random forest model
show excellent prediction capability for SBE grade evaluation. Of the 31 scenes, Pr of the
linear model was 70.97% and Pr of the random forest model was 64.52%, which was slightly
smaller than the former. This shows that these two models are consistent with the SBE
rating system. Among nonlinear models, the exponential function model shows the best
Pr (58.06%). The accuracy of the multinomial model and the neural network model was
48.39%, the lowest among all models.

In addition, we evaluated the ability of all models to directly predict the SBE score
(Table 4). This shows that all models have low accuracy for direct evaluation of SBE scores.
We suspect that this may be due to insufficient sample data. This study, however, found
the results of each model to be representative. Of all the models, the random forest model
has the best prediction accuracy (R2 = 0.405, RMSE = 63.311). It also has the best result
in terms of SBE score. The linear model is the second most accurate for SBE (R2 = 0.332,
RMSE = 64.774), followed by the neural network model (R2 = 0.251, RMSE = 95.140) and
the polynomial model (R2 = 0.257, RMSE = 117.800). The exponential function model had
the worst accuracy (R2 = 0.187, RMSE = 119.517).

Table 4. Ability of all models to directly predict SBE score.

Models Types R-Square RMSE/Score

Linear Least Squares 0.332 64.774

Nonlinear
Exponential Function 0.187 119.517
Polynomial Function 0.257 117.800

Machine Learning Random Forest 0.405 63.311
Neural Network Back Propagation 0.251 95.140

In short, both the linear model and the random forest model performed well in SBE
grade evaluation and score prediction. The linear model is more suitable for SBE grade
evaluation, and the random forest model is more accurate in SBE score prediction.

5. Discussion
5.1. Application Advantages of Handheld 3D Laser Scanners in Traditional Village Surveying
and Mapping

As an active remote sensing technology, laser scanning is suitable for basic data
collection, processing, and visualization at a variety of spatial scales. However, it is rarely
used in the field of landscape architecture for surveying and mapping of micro-scale spaces.
Wang et al. [50] quantified the form of 35 open spaces in 5 city parks in the Netherlands and
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explored the relationship between spatial form and beauty. The data source was the Current
Dutch Elevation (AHN3) map and point cloud data were collected from 2014 to 2019, with
large differences in the shooting time of the environment evaluation photos. Due to the
dynamic characteristics of plant landscapes, differences between the spatial form shown in
the photo and the spatial form presented by point cloud data can affect the accuracy of the
research results. In this study, a handheld laser scanner was used to effectively solve this
problem. The collection of point cloud data and the shooting of spatial images were carried
out simultaneously to ensure that the spatial form displayed by the VR panorama was
consistent with the spatial form presented by the point cloud data, and point cloud data
accuracy was also improved, from 0.5 m to 0.03 m. In order to further verify the advantages
of laser scanning technology in the quantitative analysis of traditional village public spaces,
we took scene 10 as an example and conducted traditional surveying and mapping of the
site on 26 November 2021, making comparisons from four perspectives—operation mode,
data accuracy, achievement presentation, and application prospects. Table 5 shows that
compared with traditional surveying and mapping, laser scanning technology adopts non-
contact scanning, which is less affected by external factors, and which effectively protects
the heritage of traditional village cultural landscapes. Handheld 3D laser scanners are
portable and can be operated by one individual, which greatly reduces labor and time costs.
The accuracy of data collection and analysis is higher than that of manual measurements
and, at the same time, the data can be visualized in the form of a three-dimensional space
model. The data expression is more intuitive and can be adapted to different quantitative
analysis needs.

Table 5. Comparison of laser scanning technology and traditional surveying and mapping.

Scene10 (419.39 m2) 3D Laser Scanning Technology Traditional Mapping

Assignment style

Equipment: handheld laser scanner (GEOSLAM
ZEB-Horizon)

Non-contact scanning, less interference from
external factors

Time Consumption: 12 min for a single person

Equipment: tape measure, perimeter,
digital camera

Contact measurement, greatly disturbed by
external factors

Time consumption: 2 h for 3 people

Data precision Range: 100 m, Relative accuracy: 1.5–3 cm More random

Results presentation 3D model
Data processing time: 28 min for a single person

2D photos, reports
Data processing time: 5 h for 2 people

Application prospect
Quantitative analysis of three-dimensional space
morphology, microclimate simulation, auxiliary

scheme design
2D interface analysis

5.2. Indicator Selection and Model Accuracy

In the process of indicator screening, correlation analysis found that Hu, SVR, SSI, FR,
Hl, FVL, and PDI were all correlated with SBE at an over 0.2 absolute value of correlation
coefficient, a moderately high correlation. In a further full subset regression analysis, only
HU and SVR were involved in the model construction, and the relationship between the
other five indicators and the landscape preference score was not obvious. There are two
explanations for this. One is that the narrow range of the five indicators in the 31 scene
environments makes them incapable of having much of an impact on landscape preference.
For example, the interval of FR was only 1.5 and that of PDI was only 1.9. Another
explanation may be the relationship between these five indicators and the four indicators
involved in model construction; that is, changes in one or several indicators may have led
to changes in the remaining indicators.

A large number of previous studies have built models for the prediction of SBE in
different scenarios based on a variety of influencing factors [5,44,62]; however, most used a
single linear regression model to predict the SBE score. In the actual application process, it
is difficult to directly quantify the popularity of the scene environment; only the relative
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level of beauty of each scene can be obtained, and the relationship between different data
cannot be fully explained. In this study, four models were selected to fit the specific scores
and grades of SBE, which effectively solved this problem and met different application
needs. The random forest model has higher SBE score prediction accuracy and can quickly
obtain the relative level of beauty for each scene. The linear model has better SBE grade
prediction accuracy, can intuitively represent the popularity of each scene, and can provide
guidance for the improvement of traditional village public space landscapes.

After correlation and full subset regression analysis, VC, SVR, hu, and CC were finally
screened as having significant impact on predicting the beauty of public spaces in traditional
villages in the Lake Taihu area. According to the linear measurement model, hu has positive
feedback on SBE. The main elements of the vertical interface of public spaces in traditional
villages are plants. Therefore, the average contour height on the vertical interface of a
spatial unit reflects the overall plant growth and tree size in that unit. Misgav argues that
the physical characteristics of individual plants influence aesthetic preferences, and that
increasing plant height is the primary factor in improving landscape quality [63]. Therefore,
the average height of the contour on the vertical interface should be in proportion to the
size of the trees inside the unit and to the popularity of the scene environment. Our results
confirm this. Over the long course of time, traditional villages had large, long-lived trees
dotted around their public spaces. Reasonable protection and utilization of this vegetation
can effectively improve the quality of the landscape environment. CC has a negative effect
on landscape preferences. Openness is viewed as a significant factor influencing scenic
beauty preference [64]; spaces with open boundaries, discontinuities, and gaps are more
popular than confined spaces [3]. SVR is reflective of the closure of a vertical interface
and is an important embodiment of the openness of a scene. The linear model shows
that SR is in proportion to the popularity of a scene, contrary to the findings of previous
studies [50]. An analysis of the SVR values of 31 landscape spatial units indicates a range
between 0.08 and 0.15, which is far smaller than the half-open space preferred by the
public (0.5) [9]. The positive feedback between SVR and landscape preference in this study
may have been caused by the wide façade enclosure and lack of shelter at the 31 sites.
This echoes Appleton’s “prospect-refuge” theory [65], which argues that people wish to
see but not to be seen. Vegetation cover in the model may provide negative feedback on
landscape preference. A place of greater coverage offers greater privacy. Coming to such
a place may arouse feelings of owning the domain. Such a place will lose its appeal if
it has to be shared with others. Traditional village public spaces are places for people
to relax and communicate, so vegetation coverage should not be too high. Based on the
above considerations, planning and management departments should reduce government
intervention in the process of traditional village protection and renewal and encourage
villagers and tourists to participate in the decision-making process. Starting from the above
four indicators, we should enhance the vitality of the public relations space in traditional
villages and focus on protecting ancient and famous trees in villages. In addition, the
amount of vegetation in the public space should be increased. Attention should be paid
to the integration of vegetation and the environment, and taking into account the social
function, ecological function and aesthetic function of the public space can maximize the
compound benefit.

5.3. Deficiencies and Prospects

This study has some limitations. First, while the experiments limited conditions af-
fecting data acquisition, such as time, weather, and light, there was no way to completely
avoid the influence of factors other than spatial morphological characteristics on landscape
preference, such as color, texture, and emotion. In the follow-up research, index elements
other than morphological indicators will be incorporated, and the selection of morphologi-
cal indicators will be enriched to promote the refined management of traditional village
landscapes. Thirty-one sites were selected for this research, and the function models we
obtained were based on the morphological characteristic data and SBE of those thirty-one
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sites. Each indicator value had a certain range, making it difficult to discuss the relationship
between spatial morphological characteristics and landscape preference beyond those nu-
merical ranges. However, follow-up studies can expand the sample size. Second, this study
focused on public spaces in traditional villages, the formation of which is shaped by natural
and human factors, and obvious regional characteristics. The morphological characteristics
of landscaped public space in different regions obviously differ. This research explored
traditional villages in Dongshan and Xishan, Lake Taihu, Suzhou. The relationship between
the public space characteristics of traditional village landscapes and landscape preferences
in other regions requires further exploration. However, this methodology is applicable to
other areas.

Third, in order to explore whether model accuracy can be improved, in addition by
selecting more models, we started from the perspective of indicators, hoping to improve
model accuracy by fusing more relevant indicators. We selected indicators with the highest
correlation from the three types of indicators, namely SSI, HU, and PDI. Multiplying any
two of these three indicators produces three fused indicators, namely SSI_hu, SSI_PDI, and
hu_PDI. Correlation between all indicators, including the three fused indicators, and SBE
was calculated, with parameters re-screened to establish the model. When modelling, the
linear model was chosen as the basic model according to the findings of this study, with
model accuracy verified by predicting SBE and ranking all the sites (Table 6). We found
that, although fusion indicators were not very helpful in the evaluation of SBE grade, R2

was significantly improved in predicting the SBE score, suggesting that fused indicators
can provide better accuracy for SBE score fitting. In future experiments, more consideration
will be given to the influence of fused indicators on model accuracy.

Table 6. Model accuracy verification.

Number of Parameters Models Number of
Correct Grades Pr R-Square

14 Linear 22 70.97 0.332
17 (including 3 mixed parameters) Linear 22 70.97 0.392

6. Conclusions

In this study, a morphological characteristic index system of traditional village public
space at the micro-scale was constructed based on spatial components, and a handheld 3D
laser scanner was used to obtain spatial point cloud data, which solved the problem of the
lack of spatial data sources at the micro-scale in rural areas. Using VR panoramic instead
of traditional photo media to evaluate the beauty of the scene environments made result
evaluation more closely resemble on-site scoring. Through correlation analysis and full
subset regression analysis, four key indicators of beauty degree prediction were screened,
namely hu, SVR, VC, and CC. Taking the four key indicators as variables, the linear model,
nonlinear model, machine learning model, and BP neural network model were selected to
fit SBE scores and grades. The degree level was found to have better prediction accuracy.
The random forest model (R2 = 0.405, RMSE = 63.311) had the best effect on beauty degree
score prediction and met different prediction needs. According to the prediction model,
of the four key indicators, SVR and hu had positive feedback on scenic beauty preference,
while VC and CC had negative feedback on landscape preference. The research offers
a good explanation for the aesthetic preferences for public spatial forms in traditional
villages in the research area. It thus provides guidance for the protection and renewal of
traditional village public spaces in the area and offers management and design as the basis
for government and design decision-making. The methods used in this paper to quantify
spatial forms and evaluate landscape preference are applicable to studies of different types
of landscape space in traditional villages in other regions, as well as research on landscape
space in urban environments.
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