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Abstract: The objective of this work was to carry out a multitemporal analysis of changes in land
use and land cover in the municipality of Floresta, Pernambuco State in Brazil. Landsat images were
used in the years 1985, 1989, 1993, 1997, 2001, 2005, 2009, 2014, and 2019, and the classes were broken
down into areas: water, exposed soil, agriculture, and forestry, and using the Bhattacharya classifier,
the classification was carried out for generating land use maps. The data was validated by the
Kappa index and points collected in the field, and the projection of the dynamics of use for 2024 was
constructed. The thematic maps of land use and coverage from 1985 to 2019 show more significant
changes in the forest and exposed soil classes. The increase in the forest class and the consequent
reduction in exposed soil are consequences of the interaction between climate and human activities
and the quality of the spatial resolution of the satellite images used between the years analyzed.

Keywords: caatinga domain; digital classification; remote sensing

1. Introduction

The dry forests of the Brazilian semiarid, known as Caatinga, have been going through
a continuous and lengthy reduction in their coverage [1–3]. In short, changes in land use
and land cover are prominent, caused mainly by the advance in agriculture and livestock
farming, raising goats and cattle, etc. [4–6], exploitation of wood and non-wood products
(firewood, charcoal, fodder, etc.), in addition to urban expansion [7], as well as expansion
of infrastructure and changes in the land structure. Despite being responsible for meeting
the demand for forest resources in the Northeast region of Brazil, multitemporal studies on
changes in their use and coverage are still incipient.

Knowledge of the human and biophysical dimensions of changes in tropical dry forests
and their effects is highlighted as a priority for research [8,9]. Through remote sensing
tools, there is the possibility of answers that contribute to identifying problems inherent to
unrestricted land use in drylands [10] and, consequently, related to the reduction of forest
cover in these areas [11].

Our current understanding of the importance of this ecosystem has been generated us-
ing remote-sensing approaches that provide spatially-explicit values relating to forest area,
land cover, topography, soil, and climate variables. This information is widely used in many
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dynamic models for generating predictive maps of land cover and land-use changes [4,6].
Although these maps have improved our understanding of the morphoclimatic charac-
teristics of the caatinga, they currently do not address land-cover predictions, which are
essential for environmental management.

Therefore, a better understanding of the spatial and temporal dynamics of land use
forms and their potential drivers in recent years is needed to be projected into future scenar-
ios as an effective way to inform environmental policy and decision-making. Importantly,
spatially explicit scenarios can anticipate the magnitude and distribution of land-cover loss,
thus providing valuable information to develop corresponding measures to manage, for
example, deforestation and desertification and mitigate their impacts. Simulated scenarios
can also be used to evaluate development policies, which involve proposals to build infras-
tructure in strategic natural systems, the establishment of land protection schemes [12], or
the assessment of the combined effects of climate change (e.g., [13]).

The use of remote sensing, primarily orbital, as an aid to planning activities related to
natural resources and the environment has facilitated, over the years, studies in different
ecosystems [5,14–16] and allied to these techniques, spatial simulation models have been
receiving greater attention from researchers, becoming a promising field of research [17,18].

Spatial or landscape simulation models simulate changes in environmental attributes
across the geographic territory [19,20] and seek to help understand the causal mecha-
nisms and development processes of environmental systems, and thereby determine how
they evolve under a set of circumstances over time [21]. Therefore, data from remote
sensing of the landscape and modeling together with field surveys become potentially
relevant for disseminating sustainable forest management, especially in Pernambuco, as
well as being essential tools for the formulation of public policies and environmental in the
future region [11].

In order to provide information that better supports planning and land use in the
medium term, the objective of this work was to carry out a multitemporal analysis of
changes in land use and land cover in the municipality of Floresta in Pernambuco State in
Brazil. As secondary objectives, we sought to (1) Understand the changes in land use and
land cover from 1989 to 2019, based on the production of maps; (2) Analyze land use and
land cover change (LULCC) conversions by investigating impacts resulting from 10 years
(from 2014 to 2024) of changes (in a dry forest area from remote sensing tools.

2. Materials and Methods
2.1. Study Area

The study was conducted in the municipality of Floresta (Figure 1), located 433 km
west of the city of Recife, in the São Francisco mesoregion and Itaparica microregion, Per-
nambuco, Brazil. The municipality covers an area of 3674.9 km2, with an average altitude
of 316 m, and is located at geographic coordinates 8◦36′02′ ′ S latitude and 38◦34′05′ ′ W lon-
gitude.

According to Köppen’s climate classification, the region’s climate is of the BS’h type,
which reports a warm semi-arid climate. The average total annual precipitation is between
200 and 800 mm, with a concentrated rain period from January to May, with the wettest
months being March and April [22]. The average annual air temperature is more significant
than 26 ◦C. The soil in the region is classified as Chronic Luvissol, characterized as shallow
and usually presenting an abrupt change in its texture [23].
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Image acquisition dates are shown in Table 1. 

  

Figure 1. Coverage of the study area: (A–C), and photos of vegetation profiles in rainy (D) and dry
season (E), in the sertão of Pernambuco, Brazil.

2.2. Classification of Land Use and Land Cover

Landsat-5 sensor TM (TematicMapper) satellite images from the years 1985, 1989, 1993,
1997, 2001, 2005, 2009, and Landsat-8 were used, with the sensor OLI (Operational Land
Imager) from the years 2014 and 2019, acquired free of charge from the image catalog
of the National Institute for Space Research (INPE), with cloud-cover rates of less than
30% and 30 m spatial resolution, for orbit/point 216/66, comprising a scene for each date
evaluated; the images obtained from the TM sensor needed to be registered spatially. Image
acquisition dates are shown in Table 1.

Table 1. Date of acquisition of the evaluated images.

Satellite Acquisition Date Orbit/Point Spatial
Resolution

Spectral Bands
Used

Spectral Range
(µm)

Landsat 5

1 October 1985

216/66 30

1
2
3
4
5
7

(0.45–0.52)
(0.52–0.60)
(0.63–0.69)
(0.76–0.90)
(1.55–1.75)
(2.08–2.35)

28 October 1989
7 October 1993
2 October 1997

27 September 2001
24 October 2005

20 November 2009

Landsat 8 23 March 2014
29 October 2019 216/66 30

2
3
4
5
6
7

(0.45–0.51)
(0.53–0.59)
(0.64–0.67)
(0.85–0.88)
(1.57–1.65)
(2.11–2.29)

For the digital classification, it was necessary to perform the image segmentation.
For the Landsat-5 and Landsat-8 satellite images, the values of spectral similarity of 12
and 10 and the area sizes of 15 and 100 pixels were adopted, respectively. From the
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Bhattacharya classifier implemented in the Spring software, the following thematic classes
were identified:

• vegetation (areas covered with natural forest)
• farming (areas intended for agriculture and livestock)
• water (all watercourses present in the area of study)
• exposed soil (uncovered areas of vegetation and in the soil preparation phase and

agricultural fallow)

The images generated from the classifications were quantified areas (hectares), accord-
ing to thematic classes and generated maps of land use and land cover for all mapped dates.

To verify the reliability of the digital classification of land use and land cover in the
municipality of Floresta, the Kappa index [24] was used, calculated from the confusion
matrix, obtained during the training sample collection phase in each of the classified images.
The acceptance intervals of the Kappa index (K) results followed the classification suggested
by [24], in which it is categorized as “poor” when K is less than 0.4, “reasonable” with a K
of 0,4 to 0.8, and “excellent” with K greater than 0.8.

The validation was carried out from georeferenced points in loco with a GPS device
Garmin® GPSMAP 62sc (Chicado, IL, USA). A photographic record was carried out to
compare the data from the digital classification of the year 2014.

2.3. Dynamic Spatial Modeling

For the input data of the model in the dynamic variables, only the thematic maps of
land use and land cover for the years 2009 and 2014 were used, and the static variables
were represented by the maps of hydrography, urban areas, road network, slope, altimetry,
soils and geology of the study area. The urban area was vectored based on Landsat 5 and
8 images. The maps of the road network, water network, soils, and geology were generated
from shapefiles of the State of Pernambuco from the Mineral Resources Research Company
(CPRM) database. Altimetry and slope maps were generated using Spring software (version
5.2.6) based on NASA’s Shuttle Radar Topography Mission (SRTM). The vector maps were
converted to matrix format and standardized in the exact spatial resolution, the number of
rows and columns, and the same coordinate system with Universal Transverse Mercator
(UTM) and Datum WGS-84 projection.

Dynamic spatial modeling was performed in Dinamica EGO software, version 2.4.1.
Moreover, it was divided into three stages: (1) construction and calibration of the model,
(2) simulation, and (3) validation. The construction and calibration of the model were
performed from the calculation of historical transition matrices, indicating the variation of
land use and land-cover classes at two different time points, obtaining the transitions that
occurred annually (multiple-step matrix) and the changes that happened in the total study
interval (single-step matrix), in this case, five years, corresponding to the years between
2009 and 2014.

Once the transition rates were obtained, it was possible to perform, based on Bayes’
conditional probability theorem, the method of weights of evidence adopted by Dinamica
EGO for the definition of transition probabilities, which visualized the areas that are
more favorable for possible changes. The procedure to follow was the calculation of the
coefficients, using as input data the result of the weights of evidence method, initial and
final land-use map, and static variables. The Weights of Evidence method assumes that the
input maps must be spatially independent. The Cramer indices and the Join Information
Uncertainty were used to assess this correlation between variables; with the selection
requirement for the variables to remain in the model, a correlation threshold of 0.5 was
adopted, and variables that presented a correlation above 0.5 were discarded.

The algorithms incorporated in Dinamica EGO (patcher and expander) and the isom-
etry index and the variance of the changing area calculated in the change map were
considered for the simulation model of the transitions of the spatial patterns of the use
classes. In order to obtain the most suitable model, tests were carried out varying the
input parameters. Model validation was performed by the fuzzy similarity comparison test
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between the 2014 simulated map and the reference map for the same date; the closer to 1,
the greater the similarity between the maps; thus, the distinctions being identified between
the maps of actual end and initial use, and simulated ending and natural starting.

With the validation of the model, it was possible to simulate the scenarios for 2024 with
the help of the SPRING software (version 5.2.6), quantifying land use and coverage and also
observing the trends in class changes (Agriculture, Exposed Soil, Water, and Vegetation) on
the map of initial use (2014) and of the simulated use map (2024).

3. Results and Discussion
3.1. Land Use and Coverage

The Kappa index values obtained for the municipality of Floresta using the error
matrix of classified images of the years under study showed excellent acceptance levels for
the most part, except for the year 2001, which was categorized as reasonable. The thematic
maps obtained by the supervised digital classification process—the Bhattacharya algorithm,
in the municipality of Floresta, allowed the visualization of the spatial distribution of the
thematic classes (Figure 2) and their dynamic and quantification (Figure 3).
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Among the various areas where the 25 points marked in loco in the municipality of
Floresta were collected, only seven did not correspond to the classification of the images,
corresponding to 72% of correct answers. However, for the forest class, the correct answer
was only 50%, which is associated with strong seasonality and high heterogeneity in terms
of phytophysiognomy of the Caatinga, making the digital-image classification process
difficult. Classifications in which the Kappa index indicates excellence can be found when
working with a reduced number of classes [25].

The results corroborate [26] that for classifications involving four to seven classes,
the use of the confusion matrix presents more minor variations. However, it is worth
emphasizing the issues [27] raised regarding the basic assumptions underlying the accuracy
assessment, such as generalization of the number of classes, mixed-pixel problems, incorrect
category registrations, and sampling plan. It is also noteworthy that a problem associated
with multitemporal remote-sensing data for detecting changes is that they do not have
the same date (day/month), which varies between solar incidence angles, atmospheric
conditions, and soil moisture [28].

The forest class presented an area in 2001 of 119,962.44 hectares, representing a smaller
area compared to 2014 (218,602.62 ha.), equivalent to 61.70% of the area this year (Figure 3).
However, for 2014 the classification was influenced by rainfall, as it was lower and unevenly
distributed when observed in other periods (Figure 4). Thus, it is recommended to compare
maps from 1985 to 2009, since rainfall is no more significant influence. Therefore, it can be
observed that between 1985 and 2009, there was a reduction in the forest and agricultural
classes, from 48.86 to 41.69% and from 10.0% to 7.58%, respectively. In comparison, the
exposed-soil class increased from 40.58 to 49.64% and water from 0.58 to 1.09%.

According to Silva et al. [11], in a study in the municipality of Floresta, the removal of
vegetation was necessary due to the works to transpose the São Francisco river from the
east axis (started in 2007), which runs from the municipality of Floresta (PE) to Monteiro
(PB), in a 220 km route in which 430 ha were deforested to make way for canals, reservoirs,
construction sites, service roads and places for earth and stone extraction. Compared with
the years between 1985 and 2009, the results found in this study reveal that it may be a
reflection of these works, which are still in the execution phase.
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The increase in exposed soil during the study period requires attention since the
municipality of Floresta is inserted in the Cabrobó desertification nucleus [29,30], and
according to [31], this class is a characteristic fundamental of this phenomenon in the
semi-arid region of the Northeast, whose problem can worsen as a result of the successive
droughts that devastate the Northeast.

There is more incredible difficulty in the digital classification of images in these areas,
as the vegetation is of reduced size and greater spacing between woody individuals than
in the other vegetation physiognomies of the study area, generally coinciding with the
presence of the steppe savanna wooded and open. Still, the water class had a lower
percentage share (0.44) in the study area, probably due to the long period of drought that
has passed through this region since 2009, which did not allow the restoration of the most
significant area observed in 2005 (4707.90 ha).

Except 2001 and 2014, the other years showed an increasing area of the water class,
which can be explained by [2,11], due to the creation in 1988 of the Luiz Gonzaga Hy-
droelectric Power Plant (Itaparica) in Petrolândia-PE, which produced a greater flow of
water for the Municipality of Floresta with the widening of the São Francisco River and
also because this period had a more significant presence of public policies to alleviate the
drought in construction of wells and weirs.

The reduction in agriculture observed between 1985 and 2009 can be explained by
the fact that this class and exposed soils are closely linked, as they are part of agricultural
areas [4,6,15,32]. In addition, exposed soils are generally fallow or under crop prepara-
tion [2]. Still, it may also reflect the prolonged period of drought that the region has been
experiencing since 2009, corroborating the assertions of Soares [27] and Mariano et al. [31]
that in times of drought, agriculture is seriously compromised. In addition, and among
the main income-generating activities, the removal of firewood stands out, which, together
with agriculture, promotes substantial changes in the caatinga vegetation and soils.

3.2. Dynamic Modeling of Land Use and Land Cover

The weight of evidence allowed us to infer what contribution a class occurred in each
transition. The positive weights of evidence favor the transition’s occurrence (Table 2). The
highest positive values achieved in each class were considered.
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Table 2. Continuous and static variables that most influenced land use and land cover transitions in
the municipality of Floresta-PE.

Transition Local Variables (0 to 500 m) Weight of Evidence (W+)

Farming→Water Vegetation 0.9936
Farming→ exposed soil Water 0.759
Farming→ Vegetation Water 0.8178

Water→ Farming exposed soil 0.9434
Water→ exposed soil Farming 0.9946
Water→ Vegetation Vegetation 0.891

exposed soil→ Farming Slop 0.9445
exposed soil→Water Water 0.9163

exposed soil→ Vegetation Vegetation 0.7112
Vegetation→ Farming Farming 0.9496

Vegetation→Water Hypsometric 0.9581
Vegetation→ exposed soil Farming 0.9551

It was observed that the transition from vegetation to agriculture and exposed soil
was influenced by agriculture itself, which can be explained by the high demand for this
activity in the municipality. The expansion of vegetation with agriculture and exposed soil
undergoing the transition to vegetation was explained by the variable water and vegetation
having to be taken into account for this result when the image was obtained. The existence
of dependence in the maps tested was observed only for the variable “exposed soil,” in
which it presented a Cramer Index (V) greater than 0.5, as for the Joint Uncertainty Index
(U), this variable presented values less than 0. 5 (Table 3). As it is an essential variable for
the model, it was not excluded from it.

Table 3. Higher Cramer Index and Joint Information Uncertainty values in the model variables.

Variable Cramer (V) Uncertainty of Information
Joint (U)

Exposed soil 0.54844644 0.285369436
Exposed soil 0.548146466 0.332466886
Exposed soil 0.547584512 0.367988266
Exposed soil 0.530289258 0.199917044
Exposed soil 0.530248771 0.26247358
Exposed soil 0.530062551 0.324499163

From the simulation performed in the Dinamica EGO software, the simulated map of
the year 2014 was obtained, compared with the classified map of the same year to observe
the quality of the model (Figure 5). The fuzzy similarity index values (Table 4), obtained
from the constant and exponential decay functions for different sizes of windows with
gradual clustering of pixels, presented good values in the literature.
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Table 4. Fuzzy similarity indices obtained from the constant and exponential decay functions for
different window sizes in the periods between 2009 and 2014.

Similarity Index Fuzzy

Windows (Pixels)
Decay Function

Constant Exponential

1 × 1 0.4713 0.4713
3 × 3 0.5944 0.5373
5 × 5 0.6448 0.5605
7 × 7 0.6820 0.5720
9 × 9 0.7132 0.5785

11 × 11 0.7399 0.5822

Ferrari [33], for example, in an Atlantic Forest ecosystem, obtained a fuzzy similarity
value for 11× 11 windows and a constant decay function of 0.84. Macedo [34], in the border
region between Cerrado and Atlantic Forest, obtained a fuzzy similarity value of 0.52 as a
function of constant decay for the same windows. The generation of future scenarios, or
the simulation of maps a posteriori, is illustrated in Figure 6 over ten years. The first map
is presented corresponding to the 2014 map used as a reference for the comparison.

Obtaining simulated maps for ten years allowed the quantification of the conversion
rates of classes between the years 2014 and 2024. Table 5 shows the modeling results for
the municipality of Floresta-PE.

Table 5. Quantification of the future scenario of the municipality of Floresta-PE and comparison with
2014.

Class Área 2014 (ha) Área 2024 (ha) 2014–2024 (ha) 2014–2024 (%)

Vegetation 218,602.62 229,940.64 11,338.02 5.19
Farming 55,365.75 61,320.78 5955.03 10.76

Exposed soil 78,790.59 62,569.71 −16,220.88 −20.59
Water 1555.47 801.72 −753.75 −48.46
Total 354,314.43 354,632.85 - -

It was found that there is an increase linked to the areas of vegetation and agriculture in
the municipality of Floresta. The areas of exposed soil had a considerable drop. According
to Benedetti [25], the trend is that if the area is maintained, the same conditions as extensive
activities such as agriculture will be reduced over time. From the evolutionary analysis of
land use and land cover, as well as the spatial, historical survey of the occupation of the
area and its prediction of how its uses will tend to behave in the future, it is possible to
understand the location of the areas of these uses and the changes to which these areas are
likely to be subject [19].

However, it is essential to note that our analyzes do not specifically consider direct
anthropogenic factors in the modeling. Furthermore, if the effects of indirect factors, such
as feedback from the surface atmosphere, were also considered, the resulting simulated
vegetation area could represent significant decreases motivated by the increased severity
of droughts and fires [35,36]. The risk of triggering these processes of amplification of
forest loss and, therefore, reduction of vegetation cover is possibly more significant in the
scenario of currently imminent climate change [37,38]. Under current deforestation trends,
not only does forest loss increase, but the remaining forest areas become more fragmented,
impacting their ecological functions and the future stability of the ecosystem.

Finally, while the approaches presented here help to draw relevant links between
cause and effect of changing spatial points and ecological processes in tropical, dry forest
landscapes, inferring complex and dynamic land-use processes is still tricky [39] because
multiple processes may account for the same pattern and may change substantially because
they are geographically structured [40]. To better understand the processes that drive the
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observed land-cover dynamics and use [36] recommended applying dynamic models based
on site-specific factors. By assessing the relative influence of different biotic and abiotic
processes over longer time horizons, these models can further inform decisions about
which restoration interventions will lead to spatial patterns of land use similar to those
observed in reference areas. All these effects ultimately affect the ability of ecosystems
to provide services to society, potentially amplifying socioeconomic inequality, which is
highly documented in South America [41].
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4. Conclusions

This study complements the knowledge about the direct and indirect causes of land
use and land cover in tropical dry forests in Brazil. Our results indicate that from 1985 to
2014, more significant changes were observed in the forest and exposed-soil classes. The
increase in forest class and the consequent reduction in exposed soil are consequences
of the interaction between climate and human activities, as well as the quality of the
spatial resolution of the satellite images used between the years analyzed. The low rainfall
climatic conditions in the analyzed periods are primarily associated with the exposed soil
throughout the municipality, as indicated by our spatially-explicit scenarios. However, their
particular influences are variable in space and time and act in a complex way in combination
with the other environmental drivers to produce specific trends in the transformation of the
dry-forest ecosystem. These results suggest the need to complement the variables modeled
in this study under the direct influence of other environmental factors inherent to the place.
More specifically, our results may suggest potential future trajectories of land-cover changes,
such as possible loss of vegetation area. This information is valuable for developing public
policies and management strategies to combat the effects of environmental degradation
and the loss of natural areas on a larger scale.
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