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Abstract: Exploring the thermal environment effects of built-up land expansion can lay a firm founda-
tion for urban planning and design. This study revealed the spatiotemporal dynamic characteristics
of built-up land and heat island center points in Shijiazhuang using land-use/land-cover data and
land surface temperature (LST) products from 1996 to 2019, and the response mechanism between the
percentage of built-up land (PLAND) and LST with the grid sampling method and statistical analysis.
Results indicated that heat islands are mainly clustered in the downtown, built-up areas of counties
and the Hutuo River Basin. The spatiotemporal shift direction of the center point of the urban
heat island (UHI) and built-up land in the whole study area varied due to the eco-environmental
transformation of the Hutuo River Basin. In areas far from the Hutuo River Basin, the center points
of UHI and built-up land were shifted in a similar direction. There is a remarkable linear correlation
between the PLAND and LST, the correlation coefficient of which was higher than 0.7 during the
study period. Areas with PLAND > 60% are urban regions with stronger heat island effects, and
areas with PLAND < 55% are villages and towns where the temperature raised more slowly.

Keywords: surface thermal environment; standard deviation ellipse; Shijiazhuang

1. Introduction

The expansion of built-up land along with the acceleration of industrialization and
urbanization has led to a series of ecological problems, among which the thermal envi-
ronment effects were most closely related to human life and directly affected individuals’
normal life [1]. The concept of the urban heat island (UHI) has attracted the attention of
many scholars around the world [2]. The acquisition of the land surface temperature (LST)
based on remote sensing images provides firm data support for exploring the UHI [3,4], and
spatial analysis technology has provided powerful tools for effectively revealing thermal
environment effects of land-use/land-cover change along with urbanization [5–7].

A number of previous studies have shown that land-use/land-over change has greatly
affected the spatial pattern of the thermal environment [8,9]. Most scholars have generally
focused on characterizing the evolution of thermal environment effects of land-use/land-
cover change with the distribution condition of landscape pattern indices [3,8], but some
previous studies also indicated that not all landscape pattern indices are applicable and the
surface thermal environment is predominantly associated with the percentage of built-up
land (PLAND). In fact, the percentage of vegetation and the PLAND were both highly
correlated with surface temperature [9–13]. Besides this, scholars have conducted studies
related to thermal environment effects of the land-use/land-cover change with various
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methods in recent decades [14,15]. The correlation analysis of the surface temperature and
remote sensing index have been widely used, and Autocorrelation using Getis-Ord Gi* was
also widely used to explore the relationship between the built-up land and LST [14–16].
However, the above-mentioned studies generally provide limited information on the
response mechanism between the PLAND and LST, and it is of particular significance
to deeply understand the impacts of built-up land expansion on the surface thermal
environment in fast-growing cities [17–20]. For example, Chen et al. suggested that the
PLAND = 35% split the heating effects of the PLAND on LST by grid sampling and statistics
approach in Wu’an [18].

Shijiazhuang, as the capital of Hebei Province of China, has a very high urbanization
rate, with 70.18% of the resident population in the urban area in 2020, and the heat island
effect due to urban expansion is also increasingly prominent, so it is extremely meaningful
to explore the response mechanism between the PLAND and LST in this highly urbanized
region. This study adopted the grid sampling statistics approach and took the downtown,
two districts, and two counties with fast economic development in Shijiazhuang as the
study area, combining the standard deviation ellipse (SDE), spatial autocorrelation, and
correlation analysis method to explore the effects of the PLAND on LST, aiming to provide
a firm theoretical foundation for the urban planning and design of Shijiazhuang.

2. Materials and Methods
2.1. Study Area

Shijiazhuang is located at the eastern piedmont of the Taihang Mountains, and the
eastward airflow is blocked by the mountains and then sinks, causing the temperature in
the area at the piedmont of the mountains to rise. Shijiazhuang, as the capital of Hebei
Province, has experienced rapid urbanization since the 1990s, with large-scale urban land
expansion and migration of people to the center of the city for better public services and
job opportunities. The study area in this study covers the downtown (Xinhua, Changan,
Qiaoxi, Yuhua), two districts (Gaocheng, Luancheng), and two counties (Wuji, Zhengding)
(Figure 1) in the east and central parts of Shijiazhuang, with plain terrain outside the
mountain ranges, which jointly account for 47.66% of the total population of Shijiazhuang.
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2.2. Data Sources and Processing

The major data sources used in this study include: (1) Landsat series images from the
Google Earth Engine (GEE) platform (https://earthengine.google.com/, accessed on 31
March 2022). Images covering the extent of the study area were selected in six periods
(1996, 2001, 2007, 2011, 2015, and 2019). The data parameters are shown in Table 1. (2) Land-
use/land-cover data from the China Land Use/Cover Dataset (CLUDs) by Professor
Huang Xin’s team at Wuhan University. The spatial resolution is 30 m [21], and the data

https://earthengine.google.com/
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were obtained from the PIE-Engine platform (https://engine.piesat.cn/, accessed on 31
March 2022).

Table 1. Remote sense statistic parameters.

Data Type Date of
Acquisition Row/Path Resolution (m)

Landsat5 TM 20 May 1996 124/33 124/34 30
Landsat7 ETM 10 May 2001 124/33 124/34 30
Landsat5 TM 3 May 2007 124/33 124/34 30
Landsat5 TM 14 May 2011 124/33 124/34 30
Landsat8 OLI 25 May 2015 124/33 124/34 30
Landsat8 OLI 20 May 2019 124/33 124/34 30

The land-use and land-cover data were programmed to be downloaded locally with the
application programming interface of the PIE Engine platform. Then this study reclassified
the land-use and land-cover data into four categories, that is, cropland, built-up land, water,
and other land (Figure 2), with the help of the reclassification tool in the ArcGIS software.
The statistics of the built-up land area for each year were also summarized based on the
ArcGIS software (Figure 3).
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Figure 3. Time series statistic diagram of built-up land area.

This study selected the Landsat images in six less cloudy periods as the foundation
for the temperature inversion and acquired 12 scenes of LST single-band images in six
periods in total by running the open-source code. This study then mosaicked these remote
sensing images of each period together with the help of a seamless mosaicking tool in
the ENVI software, and thereafter the data of the study area were extracted based on the
study area boundary data (Figure 4). This study thereafter used the practical single channel
(PSC) method to acquire the LST data with the help of the GEE cloud platform and the
Landsat series satellite surface temperature data inversion framework [21,22]. The overall
bias of the obtained temperature products was 0.17 K according to the cross-validation
with MODIS surface temperature products, indicating high accuracy.
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2.3. Calculation of the Percentage of Built-Up Land

This study explored the urban thermal environment based on the landscape pattern in-
dex, which is a quantitative expression to describe the spatial pattern of the landscape [8,9].
The landscape pattern index is one of the current research hotspots to investigate the urban
thermal environment, and previous studies generally suggested that the PLAND index has
the best fitting effect on the thermal environment by investigating the correlation between
each landscape pattern index and LST [20]. This study specifically described the spatial
and temporal distribution pattern of built-up land in the study area with the PLAND,
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which was calculated based on the moving window approach of the FRAGSTATS software
as follows.

PLAND =

(
n

∑
j=1

aij/A

)
× 100 (1)

where the PLAND is the percentage of built-up land, which ranges between 0 and 100,
aij represents the area of built-up land patches, A indicates the background area. When
the value of the index is close to 0, it indicates that the PLAND is decreasing in a single
calculation window, and when the value of a single window is 100, it means that the
window consists of built-up land only.

2.4. Thermal Environment Grading Classification

Climatic differences over the years have significant impacts on the true LST, such
differences need to be eliminated when analyzing the evolution of the thermal environment,
and the equation for standardization is as follows.

Tnor =
Ti − Tmin

Tmax − Tmin
(2)

where Tnor denotes the normalized temperature of the ith grid, Ti indicates the temperature
of the ith grid, Tmax indicates the maximum temperature in the study area, Tmin indicates
the minimum temperature in the study area. The mean-standard deviation method was
used to classify the thermal environment in the study area, and the LST was divided into
five thermal classes: low, sub-low, medium, sub-high temperature, and high temperature
(Table 2). By grading the LST, this study generated a map of the thermal class distribution
of each period, which makes the thermal environment of each period comparable and lays
a firm foundation for the in-depth investigation of the spatial and temporal evolution of
cold and heat islands in the study area.

Table 2. Land surface temperature (LST) grading criteria.

LST Level Grading Standard

Low Tnor < Ta − sd
Sub-low Ta − sd ≤ Tnor < Ta − 0.5sd
Medium Ta − sd ≤ Tnor < Ta + 0.5sd
Sub-high Ta + 0.5sd ≤ Tnor < Ta + sd

High Tnor > Ta + sd

Note: Tnor denotes the normalized temperature of the ith grid, Ta indicates the average temperature in the study
area for each year, and sd represents the standard deviation of the LST.

2.5. Establishment of the Standard Deviation Ellipse

This study explored the evolution trends of the built-up land and heat island using the
SDE, a classical method widely used for analyzing the directional characteristics of spatial
distribution. In this study, the high-temperature region and the sub-high-temperature
region were divided into heat island areas with the spatial statistics module of the ArcGIS
software, the direction publishing tool was used to obtain the standard deviation of the
heat island and built-up land. The expansion characteristics of the heat island and built-up
land were explored by connecting the center points and SDE of the heat island and built-up
land. The comparative analysis of the center point shift direction was carried out to lay the
foundation for the following quantitative study of the relationship between built-up land
expansion and the surrounding thermal environment.

2.6. Spatial Autocorrelation Analysis and Correlation Analysis

A grid scale of 990 × 990 m was selected based on the Fishnet tool of the ArcGIS
software to establish spatial grids to investigate the response mechanism between the
PLAND and LST at the same spatial scale [18,19]. The sample grid was collected by
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combining the PLAND and LST raster maps for each year. It is notable that the thermal field
in the Hutuo River Basin may disturb the surrounding thermal environment. Therefore,
the interfering areas were excluded from the grid sampling, and the sample grid covered
all the areas where the PLAND existed in the study area.

The spatial autocorrelation analysis of the distribution of the PLAND and LST is a
prerequisite for exploring the correlation between the PLAND and LST. This study explored
the aggregation characteristics of the spatial distribution of built-up land and LST based on
Moran’s I, which can effectively detect the spatial autocorrelation of geographic entities.
This study estimated the Moran’s I of built-up land and LST with the spatial autocorrelation
tool in the ArcGIS software as follows.

Moran′ s I =
n

∑n
i=1 ∑n

j=1 wij
×

∑n
i=1 ∑n

j=1 wij
(
Xi − X

)(
Xj − X

)
∑n

i=1
(
Xi − X

)2 (3)

where n is the number of samples, wij is the spatial weight matrix, Xi indicates the temper-
ature value and the PLAND value of each period.

This study further explored the correlation between the PLAND and the corresponding
LST using the Pearson correlation analysis as follows.

r =
∑n

i=1(xi − x)
(
yj − y

)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(4)

where r represents the correlation between the two sets of variables, x represents the
arithmetic mean of the LST of the ith grid, yi is the percentage of built-up land in the ith

grid, y is the arithmetic mean of the PLAND in the ith grid.

3. Results
3.1. Characteristics of the Distribution of Thermal Environment

The results indicated the spatial pattern of the thermal environment in six districts
and two counties of Shijiazhuang has changed dramatically along with accelerated ur-
banization and industrialization (Figure 5). In this study, the sub-high temperature and
high-temperature zones were categorized as the heat island, the medium-temperature
zones were categorized as the normal zone, and the low-temperature zone and sub-low
temperature zone were categorized as the cold island. The spatial and temporal expansion
of the thermal environment in downtown Shijiazhuang was the most remarkable, indi-
cating the strong heat island effect. Besides this, the heat island range in the main urban
area of Shijiazhuang tended to expand to the east as time went by, followed by a large
expansion of the heat island in the main urban area to the southeast, which merged with
the heat island patches in Luancheng District and reflected the development orientation
towards Luancheng District. In addition, the Hutuo River Basin has been maintained in a
high-temperature zone state from 1996 to 2011 due to its poor ecological environment and
bad geological condition within the dry riverbed.

Cold islands are primarily located in rural and rural farmland far from the built-
up areas of districts and towns, which are more widely distributed in the northeast and
southwest of the downtown. Meanwhile, the area of cold islands decreased gradually with
the expansion of cities and tow. In particular, cold islands appeared in the downtown
section of the Hutu River Basin after 2011, which expanded to the east over time due to
the ecological restoration project of the Hutuo River Basin, reaching its maximum extent
in 2019.
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It is notable that the proportion of sub-high temperature in the heat island area of
downtown in 2011 is larger than that of high temperature (Figures 4 and 5), which is
primarily attributed to meteorological issues such as the cloud content. In fact, it is not
surprising that the heat island area in 2011 is larger than that in 2007 since areas with
sub-high temperature and high temperature were together classified as the heat island
in this study, and this phenomenon does not affect the accuracy of these results. After
2011, ecological restoration projects such as the “Inflow of the eastern ring water system”,
“Coordination of the South-North water transfer to divert river water” and “Ecological
recharge of the Gang Huang reservoir to the Hutuo River” have been gradually carried out.
The ecological environment of the Hutuo River basin has improved significantly since then,
which has gradually changed from a hot spot area to a cold spot area. The cropland in the
northwest of Zhengding County also showed a band of high-temperature areas. In fact,
the cropland in this part is in the old Magnetic River, which was converted to cropland
after the river dried up, forming an area with temperatures higher than the surrounding
cropland. Some relative authorities have proposed to reduce the urban heat island effect
by building the ecological corridor of the Old Magnetic River and the spatial structure
of the ecological corridor of the South-North Water Diversion in the “Urban and Rural
Master Plan of Zhengding County, Hebei Province (2014–2030)”. In fact, the heat island
effect of the Old Magnetic River has weakened in 2019 after a period of implementation,
but it is still in the sub-high temperature area. Additionally, built-up areas in districts and
counties always had higher temperature levels than the area of townships in these districts
and counties.

3.2. Spatial Dynamics of Urban Heat Island and Built-Up Land

Figures 6 and 7 depict the schematic diagrams of the UHI and the built-up land SDE
and center points in the whole study area from 1996 to 2019. The results suggest the center
point migration trajectory of the heat island and built-up land within the study area was
well coupled between 2001 and 2011, both of which tend to expand towards the northeast
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direction. However, the heat island center point leaned towards the northwest direction
before 2001 and turned to the southwest direction after 2011, which was contrary to the
build-up land during these periods. The more in-depth analysis results suggested there
were strong heating effects in the Hutuo River Basin and the old channel of the Cihe River
in Zhengding County, except for the heat island in the built-up area. In fact, the expansion
of built-up land was very slow in the downtown before 2001, while the Hutuo River Basin
and the old channel of the Cihe River had an increasingly powerful heat island effect. In
other words, the heat island effect in the built-up area of the downtown is not as strong as
that in the Hutuo River Basin and the old channel of the Cihe River in the northwest part
of the study area, which made the heat island center point more prone to the northwest
direction before 2001. By contrast, the spatial pattern of the heat island was consistent with
the trend of the center point of built-up land expansion from 2001 to 2011. The heat island
effect of built-up land expansion was more significant than that of the thermal environment
effect in the Hutuo River Basin and the old channel of the Cihe River during this period.
The built-up land expansion played a dominant role in influencing the spatial variation
of the heat island, and therefore the center point of the heat island followed the evolution
direction of the center point of built-up land. The center point of the heat island in 2011
was within the Gaocheng District on the north side of the Hutuo River. This is primarily
due to the improvement of the eco-environment of the Hutuo River Basin, where the heat
island effect was weakened and the cold island effect was enhanced, making the center
point of the heat island shift to the south bank of Hutuo River. If the cold island effect in
this region gets intensified as time goes by, the center point of the heat island may further
shift towards the southwest direction.
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The results mentioned above suggested the ecological environmental transformation
of the Hutuo River Basin had a significant influence on the evolution of the center point
of the heat island along with built-up land expansion. It is, therefore, necessary to carry
out more in-depth analyses of the areas strongly and weakly influenced by the thermal
environment effects in the Hutuo River Basin. This study has therefore taken the downtown
area and Yuhua District as an example to reveal the influence of the Hutuo River Basin on
the shift characteristics of the heat island center. Figure 8 portrayed the schematic diagrams
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of the UHI, built-up land SDE, and center point in the downtown area from 1996 to 2019.
The heat island center point in the downtown area tended to move in the same direction as
the center point of built-up land in general from 2001 to 2011, while the heat island center
point shifted in the direction opposite to the center point of built-up land from 2011 to 2019,
which was generally consistent with the results of the whole study area.
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Figure 9 depicted the schematic diagram of the UHI and the SDE and center point of
built-up land in the Yuhua District from 1996 to 2019. Both the built-up land expansion
and the center point of the heat island migrated towards the southwest direction in Yuhua
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District, indicating the center shift of the heat island and built-up land kept consistent
in areas less affected by the thermal environment effect in the Hutuo River Basin. These
results further confirmed the thermal environment effect in the Hutuo River Basing, sug-
gesting that the ecological restoration projects in the Hutuo River Basin since 2014 have
effectively improved the regional eco-environment quality and significantly influenced
the surrounding thermal environment. In summary, the heat island effect in the Hutuo
River Basin affected the temperature of the surrounding area, causing the center points of
built-up land and the heat island to shift away from the same direction within a certain
spatial scope.
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3.3. Results of Spatial Autocorrelation Analysis and Correlation Analysis

The spatial autocorrelation analysis results showed that the p-values of the PLAND
and LST were zero in all years, which passed the 95% confidence test. Besides this, the Z
scores of both the PLAND and LST were at a high level (Table 3), indicating the stronger
spatial autocorrelation of both the PLAND and LST. In addition, the Moran’s I values in all
years were above zero, and the Moran’s I of the LST were higher than that of the PLAND
in each period, indicating the positive spatial correlation of the surface temperature was
stronger than that of the build-up. In particular, the spatial autocorrelation of PLAND and
LST was both the strongest in 2015.

Figure 10 shows that there was a significant linear correlation between the PLAND and
LST of the study area, which passed the significance test and proved the objective credibility
of the results. Besides this, Figure 10 indicates that the samples are heavily clustered in the
interval of the PLAND values of 0–60%. In addition, the Pearson correlation coefficients
from 1996 to 2019 were close to 1, reflecting a high correlation level (Table 4).
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Table 3. Moran’s I of the percentage of built-up land (PLAND) and land surface temperature (LST)
from 1996 to 2019.

1996 2001 2007

LST PLAND LST PLAND LST PLAND

Moran’s I 0.6869 0.6449 0.6681 0.6673 0.71261 0.6703
Expected −0.0003 −0.0003 −0.0003 −0.0003 −0.0003 −0.0003

Z 149.0519 148.7134 146.9694 146.8172 94.6894 89.0626
P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2011 2015 2019

LST PLAND LST PLAND LST PLAND

Moran’s I 0.7434 0.6911 0.7523 0.7196 0.66705 0.6559
Expected −0.0003 −0.0003 −0.0003 −0.0003 −0.0003 −0.0003

Z 120.9226 112.4418 124.0526 121.4431 218.8321 215.1886
P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Land 2022, 11, x FOR PEER REVIEW 12 of 16 
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Figure 10. Correlation analysis results of the percentage of built-up land (PLAND) and land surface
temperature (LST) from 1996 to 2019.
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Table 4. Correlation between the percentage of built-up land (PLAND) and land surface temperature
(LST) from 1996 to 2019.

Year Pearson’s r Significance Level

1996 0.878 0.000
2001 0.876 0.000
2007 0.860 0.000
2011 0.798 0.000
2015 0.867 0.000
2019 0.732 0.000
2019 0.732 0.000

3.4. Response Mechanism of the Percentage of Built-Up Land (PLAND) and Land Surface
Temperature (LST)

Figure 11 shows the response mechanism between the PLAND and LST. When the
PLAND value is below 20–25%, the number of the sample grids decreased year by year,
and when it is above this range, the number of the sample grids increased year by year. In
particular, the number of sample grids in the 25–30% range tended to be the same, and
the difference in the number of sample grids gradually increased as the value increased,
indicating that the low-density built-up land in each grid gradually was transformed into
high-density built-up land, and there was significant built-up land expansion.
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This study categorized the grid in the study area according to the PLAND value,
based on which the average temperature changes in the PLAND categories were revealed
(Figure 12). The results showed that the temperature changed most slightly in the build-up
land with the PLAND of 55–60%, and the 55–60% interval can be used to divide the sample
grids of the whole study area into two categories. Specifically, for areas with the PLAND
below the 55–60% range, the temperature increase tended to increase and then decrease as
the PLAND increased. In particular, the maximum temperature was in the areas with the
PLAND below 55–60%, and increases occurred in the areas with the PLAND of 25–30%. By
contrast, the temperature increases in the areas with the PLAND above 55–60% showed
first an increasing and then a decreasing trend as the PLAND increased. In particular, the
maximum temperature increases in the areas with the PLAND above 55–60% occurred in
the areas with the PLAND at 65–70%. The average surface temperature increase tended
to slow down in the areas with the PLAND exceeding 70%, where the temperature still
showed an increasing trend.
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Figure 12. Statistics of the average temperature of different percentage of built-up land
(PLAND) types.

This study further classified the sample grids into two categories based on the PLAND
of 0–60% and 60–100% and carried out clustering analysis to further investigate the influ-
ence of the PLAND on the thermal environment. The LISA clustering diagram suggested
that the high-high clusters were mainly in the built-up areas of the downtown and counties
(Figure 13). The grids of high-high clusters gradually increased as time went by, reflecting
the increasing heat island effects due to the built-up land expansion. Meanwhile, the
low-high clusters were scattered at the edge of the built-up areas of the downtown, and the
high-low clusters were distributed in the suburban areas of each district and county. All
these results can also provide a firm basis for the boundary division of built-up areas.
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3.5. Discussion

This study revealed the thermal environmental effects of the built-up land expansion
based on long time series data, the results of which can provide valuable references for
urban development and ecological environment improvement, but it is still necessary
to carry out some more in-depth research. Firstly, the study period of this study lasted
24 years, but the time interval is not uniform, and it is necessary to carry out more in-depth
case studies in more sample cities. Besides this, it is necessary to link the research results
with the relevant urban planning in order to effectively improve the thermal environment in
urban areas. For example, the results of this study suggested it is necessary for the relevant
departments to expand the green area of urban areas as vastly as possible and accelerate
the ecological restoration projects of the Hutuo River Basin in order to enhance its cold
island effect and thus reduce the adverse thermal environment effects in the surrounding
areas. Additionally, it is also necessary for relevant departments to strengthen the control
of urban size in order to avoid further deterioration of the thermal environment resulting
from the uncontrolled built-up land expansion according to the results of this study.

4. Conclusions

This study explored the thermal environment effects of built-up land expansion in
Shijiazhuang from 1996 to 2019 based on land-use data and temperature products and
revealed the response mechanism between the PLAND and LST in six districts and two
counties of Shijiazhuang. The results showed that: (1) The heat island in the study area was
mainly distributed in the downtown, built-up areas of each district and county, and the
Hutuo River Basin. However, ecological restoration projects have remarkably improved
the regional ecological environment in the Hutuo River Basin, where the heat island was
weakened and significantly influenced the evolution of the center point shift of the heat
island in the study area. (2) There was a significant correlation between the PLAND and the
LST, with the correlation coefficients all above 0.7 during the study period, indicating the
significant role of built-up land expansion in affecting the thermal environment. (3) PLAND
= 55–60% separated the surface thermal environmental effects of built-up land expansion
in urban and rural areas, which reflects the heat island effect of the urban built-up land
expansion and the cold island effect of rural cropland. The areas with PLAND > 60% are
generally urban regions with stronger heat island effects, while areas with PLAND < 55%
are generally villages and towns where the temperature raised more slowly. These results
of this study can provide a valuable reference for urban development and ecological
environment improvement in Shijiazhuang and other cities, but it is necessary to link
the research results with the relevant urban planning in order to effectively improve the
thermal environment in urban areas.
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