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Abstract: Land use types can cause changes in soil chemical characteristics, such as altering soil
C, N, and P contents and distribution. The aim of this study was to investigate the status of soil
C, N, P and other nutrient contents and their stoichiometric ratios in the terrestrial ecosystem of
Nianchu River Basin, Tibet. A total of 102 sample plots with 306 soil samples and 102 plant samples
were investigated in August 2021 along the Nianchu River basin by selecting four land-use types:
grassland, shrubland, forestland, and farmland. The soil’s basic physical and chemical properties (soil
organic matter (SOM), total nitrogen (TN), total phosphorus (TP), alkaline nitrogen (AN), available
phosphorus (AP), pH, and soil particle composition) were examined at each sampling point, and the
stoichiometric characteristics of C, N, and P of the soils were analyzed using one-way analysis of
variance (ANOVAs). The results revealed that the C and N contents of shrubland were significantly
lower than those of grassland, forestland, and farmland, with farmland having the highest P content.
For all land types, C:N increased with increasing soil depth, while C:P and N:P decreased with
increasing soil depth. PCA and RDA analyses revealed that soil texture and pH had an impact on
soil C, N, and P contents, as well as stoichiometric ratios.

Keywords: Qinghai–Tibetan Plateau; various land-use types; Soil C, N, P content; ecological stoi-
chiometry; C:N:P ratio

1. Introduction

Carbon (C), nitrogen (N), and phosphorus (P) are the three primary elements that
drive nutrient cycling and plant growth in ecosystems [1–3]. The balance of nutrients is
known as ecological stoichiometry [4], and is critical in the study of primary productivity
in terrestrial ecosystems [5]. Changes in soil C, N, and P contents and soil properties can
alter C:N:P stoichiometry, affecting the structure and function of ecosystems [1]. Ecological
stoichiometry provides a conceptual framework for terrestrial ecological studies [6], and
current research has focused on the effects of ecological stoichiometry on plant growth and
ecosystems, with little understanding of soil stoichiometry and nutrients [7]. As a result,
studying soil C, N, and P contents and stoichiometry in various ecosystems has become a
critical task. In ecosystems, the C:N:P ratio influences primary production, nutrient cycling,
and food web dynamics [2]. C:N and C:P ratios can reflect organic matter decomposition
rates, nutrient mineralization or immobilization, and plant nutrient limitations [8,9]. N:P is
an effective nutrient limitation indicator, and N and P are generally the limiting elements
for plant growth [5]. Human activities (e.g., fertilizer application) and climatic factors (e.g.,
temperature and precipitation) influence soil C:N:P [10].

Land-use types affect soil physicochemical properties [11,12] and the biogeochemical
cycling of C, N, and P [13] via debris and apoplastic decomposition, and nutrient inputs and

Land 2022, 11, 1001. https://doi.org/10.3390/land11071001 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land11071001
https://doi.org/10.3390/land11071001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://doi.org/10.3390/land11071001
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land11071001?type=check_update&version=2


Land 2022, 11, 1001 2 of 16

outputs [14]. Soil nutrients differ significantly across land-use types. Tian et al., 2009, and
Liu and Wang., 2020, for example, investigated alpine regions such as the Qinghai–Tibet
Plateau and the Loess Plateau and discovered that C and N contents, C:P, and N:P were
higher in forestland than in grassland and farmland, and pH was lower in forestland than
in grassland and farmland [15,16]. Liu et al., 2017, found that P content, C:N, C:P, and N:P
were lower in grassland soils of the Yili River Valley in Xinjiang than in shrubland soils [17].
Wang et al., 2018, observed that the C, N, and P contents of grassland and cropland in the
eastern Tibetan Plateau were higher than those of forestland [18].

The Nianchu River basin is a significant part of Tibet’s “One River, Two Streams”
region, it is the largest among the five major tributaries of the Yarlung Tsangpo River in
Tibet, and its valley is a developed agricultural area with unique geographical and climatic
conditions. In the background of global warming, the basin and other high-altitude areas are
environmentally fragile and sensitive, and the ecological environment is deteriorating [19].
The Nianchu River basin is facing a series of ecological and environmental problems such
as soil erosion, degradation of grassland and arable land, overgrazing of pastures, and
destruction of forest trees [19]. The basin’s ecological environment is in desperate need of
improvement. This study is critical for acquiring a thorough understanding of the basin’s
current ecological environment, subsequent ecosystem restoration and protection, and
providing scientific data for the protection of the Tibetan Plateau ecosystem. A number
of studies have been conducted on the Nianchu River basin in recent years, primarily
on the community characteristics of wetland soil fauna in the basin [20], hydrological
characteristics of the basin and its response to climate change [21], and changes in runoff
and glaciers and their influencing factors [22–24]. However, there have been fewer studies
on terrestrial ecosystems in the basin, particularly soils. Therefore, four land-use types,
namely, forestland, shrubland, grassland, and farmland, were chosen in this paper. We
aimed to (1) study soil C, N, and P contents and their stoichiometry of the four land-use
types in the Nianchu River basin, (2) assess the mechanism of the impact of land use type
on soil nutrients and their stoichiometry, and (3) summarize the implications of soil nutrient
changes in the basin for further ecological restoration.

2. Materials and Methods
2.1. Study Area

The Nianchu River basin, located at 88◦35′ E–90◦15′ E and 28◦10′ N–29◦20′ N, involv-
ing Kangma County, Gyantse County, Bailang County, and the Sangchuze District of Rikaze
City, Tibet, is a first-class tributary of the five major tributaries of the Yarlung Tsangpo
River, with a 11,130 km2 basin area, and 217 km river length. The basin has a plateau,
temperate, semi-arid monsoon climate with an annual precipitation of about 365 mm and
an annual temperature of 4–6 ◦C. Hordeum vulgare, Triticum aestivum, Brassica napus, and
other crops were primarily planted in the basin. There are also forestlands and shrubland
in the valley, with the dominant species being Salix xizangensis, Hippophae tibetana, and
Hippophae gyantsensis. The dominant species in the alpine meadow grassland are Kobresia
pygmaea and stipa purpurea. According to the Chinese soil classification standards, the basin
soils are semi-Luvisols, dark semi-hydromorphic soils, and hydromorphic soils, etc.

2.2. Soil Sampling and Data Sources

In August 2021, 34 sampling areas (100 × 100 m) (3 forestlands, 18 grasslands,
10 farmlands, and 3 shrublands), were selected using a fixed grid for the survey sam-
ple plots, dividing the entire Nianchu River basin into grids according to 20 × 20 km,
and selecting typical terrestrial ecosystem types. With three replicate sample squares
(10 × 10 m for forestland, 5 × 5 m for shrubland, and 1 × 1 m for grassland and farmland),
102 sampling points were established along the Nianchu River valley alignment (Figure 1).
After surveying each sampling site for above-ground plant species, above-ground plant
leaves were cut, placed in envelopes, and returned to the laboratory to be washed with
distilled water, air-dried, and dried in an oven at 60 ◦C, then weighed using an analytical
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balance. We then determined their C, N, and P contents after grinding finely to 0.15 mm
with a ball mill [25].
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(b) Sampling site map.

For a total of 306 soil samples, soil from 0 to 30 cm was collected in three layers of
0–10 cm, 10–20 cm, and 20–30 cm and placed in self-sealing bags. To ensure soil purity,
surface debris such as apoplast was removed before sampling, and the five-point sampling
method was used. Five soil cores were mixed at each depth to create a composite soil
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sample, and three soil samples (0–10 cm × 1, 10–20 cm × 1, and 20–30 cm × 1) were
obtained from each sample. The soil types analyzed were meadow soils, Fluvo-aquic soils,
Grey-cinnamon soils, and Bog soils. The soil samples were returned to the laboratory
for natural air-drying and passed through a 2 mm sieve before physical and chemical
analysis. The soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), alkaline
nitrogen (AN), available phosphorus (AP), soil particle composition, and pH of the soil
were all determined.

Soil pH was measured using a pH meter in a 1:2.5 soil–water dilution sample. Soil
particle composition (clay, silt, fine sand, and sand) was measured by a laser particle-
size analyzer, and soil organic matter (SOM) and plant C content was measured using
a potassium dichromate oxidation method [26]. Soil and plant total phosphorus (TP)
content was measured with the colorimetric method using ammonium molybdate after
acid digestion. Soil available phosphorus (AP) content was measured with the colorimetric
method using molybdate. Alkaline nitrogen (AN) was measured by the alkali diffusion
method, and soil and plant total nitrogen (TN) was determined by the Kjeldahl method [11].

2.3. Data Analysis

Data were counted and processed in SPSS version 24.0 (SPSS, Inc., Chicago, IL, USA)
and Excel version 2016(Microsoft, Washington, DC, USA). The mean, standard deviation
(SD), and coefficient of variation (cV) were calculated to describe the basic characteristics
of topsoil nutrients, and the data was also checked for normal distribution with K-S,
which analyzed the raw data without any transformation. One-way ANOVAs (normally
distributed data) and Mann-Whitney tests (non-normally distributed data) were performed
on the data using SPSS version 24.0 (SPSS, Inc., Chicago, IL, USA) software for analyzing
the effect of land use type on soil nutrients and their chemometric characteristics. The
effects of land use type and soil depth on soil physicochemical properties and stoichiometric
characteristics were determined using two-way ANOVAs. Origin version 2021 (OriginLab,
Northampton, MA, USA) was used to conduct a correlation analysis to look into the
relationship between soil properties, plant nutrients, and soil and plant stoichiometric ratios.
Origin version 2021 (OriginLab, USA) was used to perform principal component analysis
(PCA) and using Canoco 5.0, RDA was performed and images were plotted to determine
the relationship between basic soil physicochemical and soil stoichiometric ratios.

3. Results
3.1. Changes in Soil SOM, N and P Contents under Different Land Use Types

The basin SOM, TN, AN, TP, and AP contents were 8.56–24.40 g·kg−1, 0.40–1.26 g·kg−1,
9.31–36.21 mg·kg−1, 0.49–0.62 g·kg−1, and 1.49–11.83 mg·kg−1, respectively, with coeffi-
cients of variation (Cv) of 30.68–54.36%, 30.02–61.06%, 34.20–78.26%, 4.73–22.51%, and
40.54–89.51%, respectively. The basin soil pH was 7.95–8.38 and is slightly alkaline. As
shown in Table 1, the SOM content in the 0–30 cm soil layer was significantly lower in
the shrubland than in the grassland, forestland, and farmland. The TN content of shrub-
land was significantly lower than that of grassland, forestland, and farmland, and that in
forestland was significantly lower than that in farmland. The AN content of shrubland
was significantly lower than that of grassland, forestland, and farmland, and significantly
higher in grassland and farmland than in forestland. Farmland and forestland had a sig-
nificantly higher TP content than shrubland and grassland. The AP content of farmland
was significantly higher than that of shrubland, forestland, and grassland, and shrubland
content was significantly lower than that of grassland and forestland. The pH of shrubland
was significantly higher than that of grassland, forestland, and farmland. Additionally, the
pH of grassland significantly higher than that of farmland.
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Table 1. Characteristics of C, N, and P contents and their stoichiometric ratios in 0–30 cm soil layers
of different land use types.

Indicators
Grassland Shrubland Forestland Farmland

SD Av Cv (%) SD Av Cv (%) SD Av Cv (%) SD Av Cv (%)

pH 0.20 8.15 A 2.50 0.21 8.28 B 2.55 0.18 8.05 AC 2.22 0.22 8.05 C 2.74
SOM (g·kg−1) 10.78 20.93 A 51.52 6.02 11.08 B 54.36 10.03 18.80 AC 53.37 5.42 17.68 AC 30.68
TN (g·kg−1) 0.61 1.10 AC 55.18 0.29 0.53 B 55.65 0.54 0.89 A 61.06 0.30 1.01 C 30.02
TP (g·kg−1) 0.11 0.50 A 22.51 0.02 0.52 A 4.73 0.04 0.57 B 6.98 0.09 0.60 B 15.73

AN (mg·kg−1) 18.80 30.64 A 61.37 10.27 13.12 B 78.26 16.05 22.28 C 72.06 9.16 26.78 AD 34.20
AP (mg·kg−1) 1.05 2.58 A 40.54 0.94 1.96 B 47.72 1.43 2.84 A 50.37 7.28 8.13 C 89.51

C:N 2.33 11.50 A 20.23 1.02 12.36 B 8.24 1.20 12.50 B 9.59 0.96 10.17 C 9.42
C:P 12.47 25.18 A 49.55 6.51 12.38 B 52.58 9.64 19.07 C 50.56 5.61 17.29 C 32.43
N:P 1.18 2.24 A 52.65 0.54 1.01 B 53.70 0.88 1.55 C 56.73 0.50 1.45 C 34.31

AN:AP 8.20 13.20 A 62.11 4.67 7.54 BC 61.98 4.37 8.36 B 52.23 3.84 5.34 C 71.87

Note: Different capital letters indicate significant differences among different land types in 0–30 cm soil layer
(p < 0.05) SOM: soil organic matter; TN: total nitrogen; TP: total phosphorus; AN: alkaline nitrogen; AP: available
phosphorus; C: N: carbon to nitrogen ratio; C:P: carbon to phosphorus ratio; N:P: nitrogen to phosphorus ratio;
AN:AP: alkaline nitrogen to available phosphorus ratio; SD: standard deviation; Cv: coefficient of variation; and
Av: Average value. Same as below.

Figure 2 shows that there was no statistically significant difference in the pH, SOM,
and N content between land-use types (Figure 2a–d). The TP content in the 0–10 cm soil
layer was significantly higher in farmland and forestland than in grassland and shrubland
(Figure 2e). Farmland had a significantly higher AP content than grassland and shrubland
(Figure 2f). Shrubland had significantly lower SOM and TN contents in the 10–20 cm soil
layer than grassland and farmland (Figure 2b,c). Farmland and grassland had a significantly
higher AN content than forestland and shrubland, and forestland had a significantly higher
AN content than shrubland (Figure 2d). Farmland had a significantly higher TP content
than grassland and shrubland (Figure 2e). Farmland had a significantly higher AP content
than forestland, shrubland, and grassland, and grassland had a significantly higher AP
content than shrubland (Figure 2f). Shrubland had significantly lower SOM, TN, and AN
content in the 20–30 cm soil layer than grassland and farmland (Figure 2b–d). Farmland
had a significantly higher AN content than forestland (Figure 2d). The TP content was
significantly higher in farmland than in grassland and significantly higher in forestland than
in shrubland, and the AP content was significantly higher in farmland than in grassland,
shrubland, and forestland (Figure 2e). The pH shrubland was significantly higher than
grassland, forestland, and farmland in the 10–20 cm and 20–30 cm soil layers (Figure 2a).
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Figure 2. Differences in SOM, TN, TP, AN, and AP contents and pH values in grassland, shrubland,
forestland, and farmland. (a) pH value, (b) SOM content, (c) TN content, (d) AN content, (e) TP
content, (f) AP content. Error bars indicate the standard error of the mean. Different capital letters
indicate significant differences between land use types (p < 0.05); different lowercase letters indicate
significant differences between soil depths (p < 0.05).

3.2. Analysis of Soil Nutrient Stoichiometric Ratios under Different Land-Use Types

The basin’s soil C:N, C:P, and N:P ranges were 10.07–13.31, 9.78–27.10, and 0.79–2.46,
respectively. Variation coefficients (Cv) were 8.24–20.23%, 32.43–52.58 %, and 34.31–56.73%,
respectively. The type of land use had a significant impact on soil C:N, C:P, and N:P
ratios (Table 2). As shown in Table 1, soil C:N in the 0–30 cm soil layer was significantly
lower in farmland than in grassland, shrubland, and forestland, and significantly higher
in forestland and shrubland than in grassland. C:P and N:P levels in grassland were
significantly higher than in shrubland, farmland, and forestland, and significantly higher
in forestland and farmland than in shrubland. The ratio of AN:AP in grassland was
significantly higher than in shrubland, forestland, and farmland, and significantly higher
in forestland than in farmland.

Table 2. Analysis of variance (ANOVA) of soil nutrients and their stoichiometric ratios for different
land use types.

PH TN TP SOM AN AP C:N C:P N:P Clay Silt Fine Sand Sand

Land use type *** *** *** *** *** *** * *** *** *** *** *** NS
Depth NS * * NS ** *** NS NS *** NS NS NS NS

* p < 0.05, ** p < 0.01, and *** p< 0.001; NS, Nonsignificant.
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As shown in Figure 3, the soil C:N in the 0–10 cm soil layer was significantly lower in
farmland than shrubland and grassland. The soil C:P in grassland was significantly higher
than that in shrubland, farmland, and forestland, and significantly higher in forestland
than in farmland and shrubland. The soil N:P and AN:AP in grassland were significantly
higher than those in farmland. In the 10–20 cm soil layer, the C:N in farmland was
significantly lower than that in grassland, shrubland, and forestland. The C:P and N:P
were significantly lower in shrubland than in farmland and grassland, and the C:P in
farmland was significantly lower than that in grassland. The AN:AP in grassland was
significantly higher than farmland. In the 20–30 cm soil layer, the C:N was significantly
lower in farmland than in grassland, shrubland, and forestland, and significantly higher
in forestland than in grassland. The C:P was significantly lower in shrubland than in
grassland, forestland, and farmland. The N:P was significantly higher in grassland than
in shrubland and farmland. The AN:AP was significantly higher in grassland than in
farmland. As seen in Table 2, the soil C:N increased with increasing soil depth, and the soil
C:P and N:P decreased with increasing soil depth.
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Figure 3. Differences in soils and their phytochemical stoichiometry in grassland, shrubland, forest-
land, and farmland. (a) Soil C:N ratio, (b) Soil C:P ratio, (c) Soil N:P ratio, (d) Soil AN:AP ratio,
(e) Plant C:N, C:P and N:P ratio. Different capital letters indicate significant differences between land
use types (p < 0.05); different lowercase letters indicate significant differences between soil depths
(p < 0.05).



Land 2022, 11, 1001 8 of 16

3.3. Relationship between Soil Nutrient Stoichiometric Ratios and Basic Physicochemical Properties

Figure 4 depicts the PCA results for the basic soil physicochemical properties and their
stoichiometric ratios. The PCA1 and PCA2 axes explained 48.3% of the total variance. Fine
sand, sand content, and pH could explain the variability in the C:N:P stoichiometric ratios
(Figure 4). The soil properties accounted for 76.21% of the total variance in the C, N, and
P contents, and stoichiometric ratios derived from redundancy analysis (RDA) (Figure 5).
The soil C, N, and P contents and C:P, N:P, and pH were highly correlated with the first
axis, while the soil C:N, clay, fine sand, and silt contents were highly correlated with the
second axis. Figures 4 and 5 show that the fine sand and soil C:N are in the same direction
and have a positive effect; clay and silt are in the opposite direction and have a negative
effect. The pH and soil TN, TP, AN, AP, SOM, C:P, and N:P are in the opposite direction
and are negatively correlated.
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The basic physical and chemical properties of the soil and plant C, N, and P contents
were significantly correlated with the stoichiometric ratios (Figure 6). The SOM was
significantly positively correlated with the AN, soil C:N and N:P, and plant TN and TP,
and negatively correlated with the pH and plant C:N and C:P. The TN was found to be
significantly positively correlated with the TP and soil N:P. The AN was significantly
positively correlated with the soil C:P and N:P, and plant TP, and significantly negatively
correlated with the plant C:P. The AP was significantly positively correlated with the C:N
and significantly negatively correlated with fine sand, and the plant TN, OC, and N:P. The
plant TN was found to be significantly positively correlated with the soil C:P and N:P, fine
sand, and plant TP, OC, and N:P, and significantly negatively correlated with the plant
C:N and C:P. The plant TP was significantly positively correlated with the soil C:P and
N:P and plant OC, and negatively correlated with the plant C:P and N:P. The plant OC
was also significantly positively correlated with the soil C:P. The soil C:P and N:P were
significantly positively correlated with fine sand. The soil C:P was significantly positively
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correlated with the N:P and significantly negatively correlated with clay and the plant C:P
and C:N. The N:P was significantly negatively correlated with the soil pH and plant C:P
and C:N. The plant C:N was significantly positively correlated with the plant C:P. Fine
sand was significantly negatively correlated with the plant C:N and C:P. The plant C:P
was significantly positively correlated with the soil pH. The plant N:P was significantly
negatively correlated with the plant C:N.
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4. Discussion
4.1. Effect of Land-Use Type on Soil Nutrients

The results of this study found that land-use type significantly influenced soil physic-
ochemical properties [27–29] and stoichiometric ratios. Soil nutrients showed moderate
variability (CV in the range of 10–100%) and basin soil nutrients showed strong spatial
variability, according to the results of this study’s coefficient of variation (Table 1). In this
study, grassland SOM content was higher than forestland and farmland (Table 1), in con-
trast to Khan and Chiti (2022), who found higher SOM content in forestland than grassland
in the Lithuanian region, and in agreement with Wang et al. (2018) and Zhang et al. (2013),
who found higher SOM content in grasslands than in farmlands. This could be because
grassland within this basin is primarily distributed in Kangma County, where the grassland
type is primarily alpine meadow, with a thicker distribution of the grass felt layer and
increased input of surface apoplankton, which provides more nutrients to the soil through
decomposition [30]. At the same time, this type of meadow is rich in roots, and Wei et al.,
2009, [31] discovered that meadows have more fine roots than forestland and shrubland
in the 0–40 cm soil layer. Fine roots significantly contribute to soil organic matter [3], and
their continuous production and decomposition [12,32] increase the SOC, resulting in the
highest SOM content in the basin being found in grasslands. The SOC content of forestland
is influenced by altitude, which is usually higher than grassland SOC content in areas
below 2000 m in altitude [18]. The total elevation of the basin is greater than 3800 m. Higher
elevations have lower net primary productivity and more water, so soil C input is lower [18].
Tillage disrupts soil structure, reduces the physical protection of soil organic carbon and N
by soil structure, and accelerates the loss of original and newly imported organic carbon
and N from the soil through a positive initiation effect [33], resulting in a large loss of
organic carbon from farmland. However, the SOM and N contents in the 0–10 cm soil
layer were higher in forestlands than in grasslands (Figure 2b–d), which differed from the
findings of Wang et al., 2018 [18] in Qinghai Province. One of the reasons could be that
the soil samples taken by Wang et al., 2018, were taken at a depth of 0–20 cm. The main
reason, however, is due to the complicated mechanism of soil nutrient variation. The high
SOM content in the forestland is due to the forestland apoplastic biomass is high at the
soil surface, and the C and N content in the apoplastic layer is higher [34]. The shrubland
had the lowest amount of SOM (Table 1), contradict the results of Zhang et al., 2013 [32].
The soil pH was found to be significantly negatively correlated with SOM in this study
(Figure 6), because alkaline soils decompose soil organic matter faster than acidic soils [35],
and pH can influence microbial activity [36] and bacterial community composition [37],
thereby influencing organic matter turnover. The shrubland pH was the highest in this
study, most likely due to the shrubland’s low vegetation cover as a result of the basin’s
extensive deforestation for fuelwood [19] and low root biomass and residues, resulting in
less decomposable organic matter, weaker microbial activity, and less carbon and organic
acids. SOM and N distribution patterns are consistent across the profile [38], and the mech-
anisms underlying SOC and N loss are similar [39]. However, the N content of farmland
did not conform to this pattern, and the N content of farmland was higher than that of
forestland (Table 1), most likely due to the use of livestock manure and chemical fertilizers
by local farmers to add nutrients to the farmland. Su et al., 2022, [33] demonstrated that
the application of chemical and organic fertilizers increased soil N content and promoted
plant growth, resulting in an increase in root debris returned to the soil and an increase in
root biomass in the soil. Furthermore, soil SOM, TN, and AN content decreased by 36%,
45%, and 57%, respectively, in the 10–20 cm soil layer and 5%, 7%, and 8%, respectively, in
farmland compared to the 0–10 cm soil layer in the forest. It can be seen that, as soil depth
increases, the reduction in C and N content in farmland is lower than that in forest land,
whereas N loss occurs more frequently in forestland. SOM and N content in the 0–10 cm
soil layer did not differ significantly between land use types (Figure 2b–d). SOM and N
in basin soils were between the third (SOM: 20–30 g/kg, N: 1–1.5 g/kg) and fourth (SOM:
10–20 g/kg, N: 0.75–1 g/kg) levels, and SOM and N were generally inadequate, according
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to the nutrient grading requirements of the second national soil census. Surface soils have
significantly different SOC and N levels than underlying soils, and this difference can be
attributable to the effects of plant cover, apoplastic and root populations, and anthropogenic
disturbances [32].

The TP content in forestland and farmland was higher than grassland and shrubland.
In the Nianchu River Basin, P content was related to soil [26], and it can be shown that
forestland and farmland soil P content was higher than grassland and shrubland. Grass-
lands had the lowest TP content, as discovered by Li et al., 2016, [34]. Basin shrublands
often grow on grasslands, and shrublands mobilize more soil P than grasslands, increasing
phosphorus depletion in the root profile and gaining more P from the soil, aggravating
soil P depletion in grasslands [40]. Soil pH was lower and phosphatase activity was higher
under grassland and secreted more acidic compounds and directly or indirectly (e.g.,
through feeding microbes) produced more phosphatase enzyme in the rhizo-sphere [40].
These mechanisms helped grassland plants acquire P from complex inorganic and organic
P-containing compounds at the interface between the roots and soil [40].The AP content of
grassland was higher than that of shrubland, implying that grassland had a higher P-use
efficiency than shrubland because the phosphorus efficient-use strategy ensured that plants
maintained photosynthesis and growth under low-phosphorus conditions [41]. The AP
content of grassland was lower than that of forestland in the 0–30 cm soil layer, due to
the positive correlation between AP and TP (Figure 6), and AP was influenced by soil
TP [42]. However, the AP content of grassland was higher than that of forestland in the
10–20 cm and 20–30 cm soil layers, most likely due to the large, deep, root-induced gaps
beneath the forestland, which could promote downward water movement and lead to
increased phosphorus leaching [40]. Farmland had the highest P content due to the effect
of phosphorus fertilizers and other phosphorus-containing substances that were applied
during planting (e.g., manure and crop straw) [43]. Some fertilization experiments revealed
that the addition of manure significantly increased the P content [38].

Under all land-use types, the topsoil layer (0–10 cm) had the highest levels of SOM,
N, and P. As nutrients such as SOM and N generally accumulate in the soil’s surface
layer [30], microbially driven apoplast decomposition primarily occurs in the surface
soil [14], increasing nutrient concentrations in the surface soil. Organic matter input
decreases with increases in soil depth due to microbial decomposition activity and reduced
root secretion [44]. In this study, there was no significant change in TP content with
increasing soil depth for the four land-use types. Soil parent material, soil formation, tillage,
and fertilization had the greatest influence on P content, and P migration in the soil was
minimal [45]. The significant decrease in farmland AP with increasing soil depth could be
attributed to the fact that farmland P is mostly inorganic P, which is easily soluble in water,
resulting in a lower soil pH and higher phosphatase activity [40], both of which contribute
to P turnover in the soil.

4.2. Characteristics of Soil C, N, and P Stoichiometric Ratios in Different Land-Use Types

The soil nutrient stoichiometry ratio is a critical indicator for assessments of soil
nutrient supply capacity, soil quality, and function. The C:N of different land-use types
ranged from 10.07 to 13.31 in this study, which is close to the average in China (11.9) [46],
and the C:N and decomposition rate of soil organic matter were inversely proportional [47].
This could be because plant residues with a low C:N ratio, where mineralization and
humification are easier, decompose faster, producing less humus and releasing more N
elements. Soil C:N ratios were significantly lower in farmland than in grassland, shrubland,
and forestland, supporting the findings of Yan et al., 2021 [48] and Huang et al., 2019 [49].
This is primarily due to the greater anthropogenic disturbance of farmland; under the
long-term selection effect of human activities, fertilizer application is primarily chemical
fertilizer with less organic fertilizer, crops are harvested above-ground after maturity, and
the land is not tilled after harvesting, but livestock are driven into the area after harvesting
crops for feeding for 1–2 months, which reduces the exogenous input of organic carbon to
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cultivated land. This is consistent with Ma and Ping’s research in the Nianchu River Basin,
Tibet [50]. The C:N ratios were higher in forestlands and shrublands than in grasslands,
supporting the findings of Gao et al., 2021 [40] and Li et al., 2016 [34]. This could be
because persistent woody materials decompose SOM in soil at a slower rate than unstable
N-containing compounds, and soil N losses under woody plants are higher than those
under grasses, increasing C:N in forestlands. Meanwhile, forestlands are widely distributed
in this basin, dominated by Salix xizangensis, Hippophae tibetana, and other trees and shrubs,
and the more stable stand structure accumulated a rich, dead layer in the understory, which
consists of materials that are more difficult to biochemically degrade (especially aliphatic
biopolymers) and less suitable for use as microbial substrates than the dead material of
residual grasses. This more recalcitrant apoplastic material may decompose more slowly,
leading to a higher soil carbon-to-nitrogen ratio [51].

The soil C:P is an important indicator of soil phosphorus mineralization capacity,
whereas N:P indicates soil N and P availability. In this study, soil C:P variation ranged
from 12.38 to 25.18 and N:P variation ranged from 1.01 to 2.24 for basin land-use types,
both of which are lower than the average values in China (C:P: 61.0, N:P: 5.2) [46]. Low
C:P ratios increase soil C loss [48]. Plant growth is N-limited when N:P < 14 and soil
C:N < 30 indicate a high risk of nitrate leaching [52]. This suggests that there may be
some N loss and deficiency in the soils of terrestrial ecosystems in this basin. He et al.,
2019 [53] discovered that N limitation was more common in cold biomes. Zhang et al.,
2022 [54] discovered low C:P in farmland in Jiangxi Province (C:P: 7.18–132.19) and very
low soil C:P in the Nianchu River basin farming environment. As a result, it is advised
that basin soils be fertilized with greater nitrogen and less phosphorus due to straw return,
combined application of chemical and organic fertilizers, and low SOC and C:P [54]. Soil
C:N, C:P, and N:P were all considerably and positively connected with SOM and AN, and
soil C:N was also significantly and strongly correlated with AP, according to correlation
analysis (Figure 6). The findings of Zhang et al., 2022, are in line with ours [54], with
grassland having the highest SOM and N content and the lowest TP content, resulting
in the highest C:P and N:P, while high C:P resulted in less C loss in grassland than in
forestland, shrubland, and farmland. Basin shrubland had a significantly lower SOM and N
than forestland and farmland, and soil C:P and N:P were significantly positively correlated
with soil SOM and AN (Figure 6). Faster-growing plants had higher N and P concentrations
according to Zechmeister-Boltenstern et al., 2015 [6]. C:N and C:P were significantly higher
in shrubland plants than in farmland plants in this study (Figure 3), and soil C:P and N:P
were significantly negatively correlated with plant C:N and C:P (Figure 6), indicating that
shrubland soil C:N and N:P were lower than in farmland. As a result, among these three
land-use types, shrubland C:P and N:P were the lowest. N:P ratios can also indicate soil
salinity [55]. This is consistent with this study’s findings, which show that N:P and pH
are negatively correlated (Figure 6). The shrubland’s higher C:N and lower C:P and N:P
indicate that plants store N in poor soils. Plants typically use storage strategies to adapt to
poor habitats, most likely due to nutrient deficiency in the shrubland [56].

AN and AP in the soil are critical nutrients for crop growth. AN:AP was significantly
higher in grassland than in shrubland, forestland, and farmland, which could be attributed
to grassland’s high AN content. AN:AP was significantly higher in forestlands than in
farmlands. The variability of AN and AP in forestlands was not strong (Table 1), and both
concentrations were low. This could be because forestlands are less influenced by human
activities and receive less external N and P inputs from fertilizer application, whereas the
application of fertilizer typically results in relatively high concentrations of AN and AP in
farmland soils [57]. AP is positively correlated with TP, according to correlation analysis
(Figure 6). Insoluble P dominates soil P in the watershed. Soil soluble phosphorus rises in
tandem with soil phosphorus buildup [58]. The basin’s agricultural soils are dominated by
meadow soils and grey-cinnamon soils, and the plants of farmed meadow soils have been
removed, resulting in a considerable rise in nutrient effectiveness. Within the basin, soil N:P
and AN:AP showed good agreement, but N:P was higher in farmland than in shrubland,
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and AN:AP was higher in shrubland than in farmland. This could be because farmland
fertilizer is mostly inorganic P, which is easily converted to AP, and the AP content in the
farmland is higher than that in shrubland compared with the TP content.

Soil C:N ratios tend to increase as soil depth increases. Gao et al., 2014 [14] discovered
that soil C:N decreases with depth, which contradicts the current study. The increase in soil
C:N indicates that humus decomposition is lower in deeper soils and humification is lower
in subsoils [59]; that soil C and N losses are not proportional; and that the percentage of
soil N loss is greater than that of C. As the basin is N-limited, plant N storage may occur,
resulting in less N accumulation than C accumulation in the soil. Grazing is common in the
basin, and causes an increase in deep soil C:N. This is because frequent trampling activities
in the topsoil can significantly disrupt soil aggregates, accelerate the decomposition of
soil organic matter, and increase soil susceptibility to water and wind erosion, resulting
in a significant decrease in soil C storage. However, this has a weaker effect on soil N
storage [53]. The soil C:P and N:P levels decreased with increasing soil depth, correlating
with the findings of Hui et al., 2021 [60]. As the soil TP content was stable, the soil C and N
contents decreased as the soil depth increased.

5. Conclusions

The findings of this study revealed that land use type has an impact on soil nutrients
in alpine terrestrial ecosystems. In the surface soil, there was no discernible difference in
C and N content among land types, probably due to the low nutrient content of all land
types in the basin. Forestlands and shrublands contained less C and N and had a higher
C:N ratio than grasslands, suggesting that thicker grass layers at higher elevations may
have a greater impact on soil C and N accumulation than trees. The reduced C content and
greater N and P content of farmland could be owing to tillage-induced C loss, whereas the
high N and P content could be attributable to anthropogenic fertilization. The low C and N
contents, C:P and N:P ratios, and high C:N ratios of shrublands indicate that shrubland
organic matter decomposition is slow in the basin, N losses are significant, and shrubland
soils are likely being lost, all of which should be slowed down as soon as feasible by actions
such as planting. With increasing soil depth, soil C, N, and P levels, as well as C:P and N:P
ratios, decrease, which could be due to the combined influence of microbes and apoplastic
matter. Grazing in the basin may be responsible for the increase in soil C:N with depth. The
study area was classified as a C and N limited area based on all C:N:P ratios. Management
such as grazing management or moderate fertilization to promote the growth of forage and
trees could help to restore the ecosystem by managing the basin pastures and forestlands.
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