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Abstract: Among the various predisposing factors of rainfall-induced shallow landslides, land use
is constantly evolving, being linked to human activities. Between different land uses, improper
agricultural practices can have a negative impact on slope stability. Indeed, unsustainable soil tillage
can modify the mechanical properties of the soils, leading to a possible increase of the instability
phenomena. However, the effects of soil tillage on slope stability are poorly investigated. To address
this topic, the PG_TRIGRS model (a probabilistic, geostatistic-based extension of TRIGRS) was
applied to a cultivated, landslide-prone area in central Italy, thoroughly studied and periodically
monitored through systematic image analysis and field surveys. A heuristic approach was adopted
to quantitatively evaluate the effect of soil tillage on the mechanical properties of the soil: after a first
run of the model with unbiased parameters, the slope stability analysis was carried out assuming
several percentages of reduction of the effective soil cohesion to mimic an increasing impact of soil
tillage on the strength conditions. Then, a comparison between observed landslides and the spatial
distribution of the probability of failure derived from the application of PG_TRIGRS was carried
out. A back analysis with contingency matrix and skill scores was adopted to search for the best
compromise between correct and incorrect model outcomes. The results show that soil tillage caused
a 20 to 30% reduction in soil cohesion in the analyzed area.

Keywords: land use; landslide modelling; shallow landslides; soil cohesion; soil tillage

1. Introduction

Shallow landslides induced by rainfall are very common phenomena that occur in
hilly and mountainous areas, causing loss of human life and environmental and economic
damage [1,2]. The main triggering factors of shallow landslides are represented by intense
or prolonged rainfall [3–5], while the main predisposing factors are represented by lithology,
morphology [6,7], and soil conditions—such as land cover and land use [8,9]. In particular,
land use is constantly evolving, and its changes affect landslide occurrence [10–14]. Indeed,
changes in vegetation cover have an impact on the landscape diversity [15] and relevant
effects on the hydrological processes and mechanical structure of the soil, with either posi-
tive or negative consequences for slope stability [16–19]. Moreover, agricultural practices,
on one hand, contribute positively to landscape and on the other hand, can have a negative
impact on the slope stability. As an example, unsustainable agricultural practices character-
ized by heavy mechanization, such as soil tillage, can generate an excessive pressure on the
soil, making the soil more susceptible to instability and degradation phenomena [20].

Several scientific contributions, among others, show the positive effects of vegetation
cover on slope stability [21–25]: from a hydrological point of view, the vegetation dissipates
most of the kinetic energy of the raindrops, weakening the erosion action, with a degree of
interception depending on the density of the leaves and the size of the plant [26]; from a
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geo-mechanical point of view, the most important effect is represented by the mechanical
reinforcement exerted by the roots [22,27–30], consisting of an increase in the shear strength,
included in the Mohr–Coulomb failure criterion as additional soil cohesion [31,32]. In
particular, the main contribution of roots to soil strength is related to the presence of small
roots in the most superficial soil layers, which increase the compound matrix strength. Such
an effect has been largely known as root reinforcement [33]. Another action involves large
roots which intersect the shear surface and mobilize a soil–root friction force instead of the
entire tensile strength [14]. Moreover, root reinforcement depends on the density of roots
in soils and root diameters. As an example, grasses provide significant reinforcement to the
shallower layers of soil, while woody roots of trees and shrubs provide reinforcement over
a greater depth of soil through a combination of both fine, fibrous roots and coarser, woody
roots [34].

Conversely, the effects of agricultural practices, and in particular of soil tillage, on
slope stability conditions are poorly investigated. In this case, some studies show that the
modification of soil’s mechanical properties can be related to the tools used to till the land.
In particular, some studies investigated how the soil characteristics vary in response to
practices with the aim of assessing the efficiency of agricultural machinery, e.g., [35]. As
an example, tillage with a rotary paraplow can be considered as a conservation technique
leaving the soil state unchanged [36]. Other works, e.g., [37], show that the effect of tillage
tools on the soil depends on the nature of the soil (fine-grained or coarse-grained soil). In the
case of paddy soils, different laboratory experiments were conducted to determine the effect
of tillage operations on the soil’s physical, rheological and mechanical properties [38,39]. A
negative impact of the tillage operation was found in soil bulk density, while a change in
the rheological behavior of paddy soil according to the variation of the moisture content
was observed [38]. Some authors have performed field-scale analyses aimed at evaluating
the effect of different tillage techniques (conventional or conservation) on soil erosion, also
in comparison with non-tilled cases [40–42]. Overall, considerable increases in soil erosion,
runoff, and sediment loss are observed in the cases with conventional tillage as compared
with the cases with soil saving technologies (conservation tillage or no-tillage) [41,42]. On
the other hand, no significant differences in hydraulic conductivity were observed [40].
Recently, Straffelini and co-authors proposed a physical modeling approach to assess
runoff and soil erosion in vineyards under different soil managements and observed that
continuous tillage aggravated soil erosion as compared to reference tillage, single tillage,
and nectariferous [43].

To our knowledge, no articles regarding particularly the impact of soil tillage on slope
stability and shallow landslide occurrence in hilly environments are currently present
in the literature. Indeed, most studies have focused on steep, often terraced landscapes
[see, e.g., [20] for further references] or on erosion hazards, e.g., [41,42]. Quantitative
measurements of the link between tillage operations and soil mechanical characteristics
are not straightforward. However, there is a general consensus that tillage, plowing, and
leveling generate a modification of the mechanical properties of the soils involved, leading
to a possible increase in the propensity to slope failures of an area. In particular, soil tillage
could lead to a decrease of the soil cohesion (e.g., due to soil disaggregation) and an increase
of the friction angle (e.g., due to soil compaction). Quantitative data on this topic are rarely
available: a table reporting quantitative changes in the mechanical parameters was found
only in Albiero et al. (2014) [44].

In this paper, we analyze the decrease of the soil cohesion due to soil tillage, through a
back-analysis approach and with the application of a probabilistic, physically-based model
for the triggering of rainfall-induced landslides [45] in an agricultural environment. The
choice of a probabilistic model is motivated to take into account the natural changes of the
physical and mechanical properties of soils and rocks, which are characterized by high vari-
ability in space both in horizontal and vertical dimensions [46]. In probabilistic approaches,
the safety level of the slope is given by the probability of failure (PoF), i.e., the probability
associated with a value of factor of safety ≤1. Probabilistic approaches can provide a high
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level of reliability when a detailed description of the study area is available in terms of
slope topography and physical, mechanical, and hydraulic soil properties. For landslide
prediction, probabilistic approaches, which assume input data as random variables de-
fined through their probability density functions, are more suitable than deterministic
approaches, which assume the input data without uncertainty [47].

The model is applied to the Collazzone area, a cultivated area located in central Italy,
characterized by a high susceptibility to landslides. The area has been the subject of several
studies, e.g., [48–50] and is periodically monitored through systematic image analysis and
on-site surveys [51,52]. This allowed a preliminary quantitative assessment of the effect
of the crops on the stability conditions of the area. Through a back-analysis approach and
with the support of sensitivity indices, a quantitative evaluation on the effect induced by
soil tillage on the mechanical properties of the soil has been provided. The contribution
is divided as follows: after the introduction, an overview of the theoretical aspects of the
landslide model and the method used in this study are illustrated in Section 2. The descrip-
tion of the study area and the database available for the mechanical soil characterization
are part of this paragraph. In Section 3, after defining the geotechnical and hydrological
assumptions considered for the reliability analysis, the results of the model are shown and
discussed. The conclusions and future research developments represent the final section of
the paper (Section 4).

2. Materials and Methods
2.1. Study Area and Data

The Collazzone area extends for 80 km2 in the Perugia province, Umbria region, central
Italy (Figure 1A). The geology of the area has been investigated several times [53,54]: it
consists of the alternation of recent fluvial deposits along the valley bottoms, continental
gravel sand and clay, travertine deposits, sandstone and marl in various percentages and
thinly layered limestone. The digital elevation model (with a 20 m resolution) reveals that
the territory is mainly hilly with elevations ranging between 145 and 634 m a.s.l.; the slopes
that stand on the area have a gradient varying between 5◦ and 50◦, with the highest values
in the northern part of the area (Figure 1B).
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Fanelli et al., (2016) [55]; the green circles represent the landslides.



Land 2022, 11, 912 4 of 15

For the purposes of this work, defining the mechanical parameters needed in in-
put by the model: the geotechnical classification of the Perugia province proposed by
Fanelli et al., (2016) [55] was adopted, which includes an estimation of the physical and
mechanical properties of the soil types constituting the near-surface cover. According to
this classification, which reports the geotechnical parameters and a general description of
the stratigraphy, the central part of the study area is covered mainly by clays, while the
rocks (e.g., marl and travertine) are distributed in the south-eastern part of the study area
(Figure 1C).

The area studied represents a high percentage of cultivated land (Figure 2) and the
soil is inventoried as arable land. According to the last Agriculture Report, published on
the Umbria region website (https://www.regione.umbria.it/agricoltura/statistica, last
accessed on 28 April 2022), about 75% of the total agricultural area is used. According to
the reference soil groups of the international soil classification [56] and to the map of the
soils of the Umbria region [57], most of the area can be classified as a calcaric cambisol.
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uncultivated areas in the study area.

Despite the presence of vegetation, the area presents a high landslide susceptibility,
typically, the slope failures are triggered chiefly by meteorological events, including intense
and prolonged rainfall and rapid snow melting [53]. Using aerial and satellite images,
Fiorucci and co-authors [51] estimated the landslide mobilization rates in the area in
the period 2004–2005 and speculated that the remarkably high yearly rate of landslide
mobilization observed in the area in the analyzed period might be due to the agricultural
and land use practices. Considering the interesting case study for the period 1941–2005, a
multi-temporal landslide inventory map analyzing different sets of aerial photographs and
field surveys is available for the area [53]; even now, numerous annual surveys continue to
be made in the area and an ongoing mapping has also been made using remote sensing
product such as Lidar, monoscopic and stereoscopic satellite images [51,52,58], and field
surveys carried out after intense or prolonged rainfall, when images were not available.
The last survey was carried out by CNR-IRPI on 20 December 2020, following the copious
rain that affected the area in the first ten days of the month. In particular, on 8 December
from 03:00 A.M. to 15:00 P.M. (local time), 50 mm of cumulative rainfall fell (Figure 3),
corresponding to a mean intensity of 4 mm/h (0.07 mm/min) and a peak intensity of
9.2 mm/h (0.16 mm/min).

https://www.regione.umbria.it/agricoltura/statistica
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The landslide information was obtained through a reconnaissance survey of the area
(20 December 2020) driving and walking along main, secondary, and farm roads [59]. The
investigators stopped at viewing points to check slopes where single or multiple landslides
were identified and took photos of each landslide or group of landslides using a camera
provided with GPS, and prepared a rapid (raw) mapping of the landslide. In the laboratory,
the geolocated photographs were used to improve the location of the individual landslides
and to characterize the type and the size. Landslides identified in the field and in the
photographs were mapped on Google Earth. The main weakness of the reconnaissance
inventory is the completeness, since from viewing points some slopes are not entirely visible,
and an undetermined number of landslides may not have been identified and mapped.

During this last field survey, an event inventory was defined, including 26 shallow
landslides. For the aim of this work, the landslides located in areas classified as rocks
according to Fanelli et al. (2016) [55] and in uncultivated areas were excluded from the
analysis; thus only 19 landslides (shown in Figure 2) were considered for modelling and
analysis. As can be seen from Figures 1 and 2, these 19 landslides are located in the central
portion of the area; the soils involved (Figure 1C) are clays, characterized by a cohesive
resistance. Figure 4 shows an example of a shallow landslide (soil slide) mapped during
the field survey.
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2.2. Method

In order to evaluate the effect of soil tillage on the stability conditions of the area, the
method applied in this research includes the comparison between landslides observed
in situ and the PoF distribution deriving from the application of the PG_TRIGRS model.
PG_TRIGRS (probabilistic, geostatistic-based, transient rainfall infiltration and grid-based
slope stability model) is a probabilistic extension [45] of the deterministic version imple-
mented in the original TRIGRS code, developed by Baum et al., (2008) [60], which treats
each cell of the study area, subdivided into a GIS grid, as an infinite slope. Referring to
deterministic slope stability analysis, TRIGRS allows the coefficient of failure FS along the
slip surface to be evaluated with respect to translational sliding as:

Fs(Z, t) =
τf

τm
=

tan φ′
tan α

+
c′ − γwψ(Z, t) tan φ′

γZ sin α cos α
, (1)

where τm is the mobilized shear stress, τf is the available shear strength, c′ and φ′ are the
effective cohesion and friction angle of the soil, respectively, ψ = u/γw is pressure head, u
is the pore water pressure, γw is the water unit weight, α is the slope angle and γ is the
unit weight of the soil. In transient flow conditions, the factor of safety varies with Z and t,
due to the evolution with time and space of the pressure head ψ generated by the rainfall
infiltration process [60].

In the deterministic analysis, Fs depends on 12 parameters, briefly represented as:

Fs = f (α, h, dw, γs, c′, ϕ′, Eed, ks, θs, θr,aα,, ILT
)
, (2)

in which, in addition to the quantities identified above, θs and θr are the saturated and
residual volumetric water content, Eed the soil stiffness, dw the initial pre-storm water table
depth, aα and ILT the pre-storm infiltration rate parameters; h the thickness of the soil cover
and ks the hydraulic conductivity.

The parameters present in Equation (2) are deterministic quantities, considered exact
values without uncertainty, but soils and rocks are described by parameters characterized
by high variability in space both in horizontal and vertical dimension [61]. For instance,
mechanical properties show their uncertainty not only from site to site and within a given
stratigraphy, but also within homogeneous covers, as a consequence of natural deposition
processes [62]. When the randomness of the quantities is considered, the stability conditions
are expressed by the PoF and the input quantities are random variables. This is the
approach followed by PG_TRIGRS which considers random variables c′, φ′ and ks; the
PoF is evaluated cell-by-cell, through the probabilistic point estimate method approach.
The code, validated over different areas of the Umbria Region characterized by different
landslide susceptibility levels [46,63,64], has been used to evaluate the PoF distribution
linked to the rainfall event described in Section 2.1. In particular, different analyses were
carried out considering different scenarios of reducing the mechanical properties of the soil
linked to soil tillage.

Considering the spatial distributions of slopes and soils (Figure 1), it could be observed
that the landslides were not localized in areas with higher slopes. Conversely, the landslides
were mostly localized in human-modified clay soils in the central part of the study area,
where the land is more easily cultivated than in the eastern part of the area, where fine-
grained soils alternate with rocks.

These findings highlight the impact of agricultural practices on the soil’s mechanical
characteristics. In fact, arable land often requires conventional tillage that is able to alter the
intrinsic physical properties of the soil, such as soil structure, porosity, pore-size distribution,
aggregation, particle size distribution, water retention capacity and permeability but above
all the effective cohesion of soil [65].

Moreover, agricultural practices induce changes on the slopes. Indeed, in the rainiest
periods there are freshly tilled soils without vegetation, while in the driest periods they
are covered with vegetation. To this purpose, two images of the study area gathered in
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April 2018 and October 2019 and are shown in Figure 5. Moving from autumn to spring,
the seasonal transformations undergone by the slopes can be seen; these changes are very
likely associated with agricultural practices that are supposed to reduce soil strength.
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vegetated (green). Background images from Google Earth.

In the absence of quantitative information and specific studies on this topic, to take
into account the impact of soil tillage in the analysis of the stability conditions of the area,
a heuristic approach was here adopted. In particular, the slope analysis was carried out
assuming a decrease of the effective cohesion c′ equal to 10, 20, 30, 40 and 50% in all arable
areas (cf. Figure 2B) to mimic an increasing impact of soil tillage on the geomechanical
conditions. In all model runs, the same triggering rainfall event was considered as input.
In this way, only the effect of soil tillage on the stability conditions was evaluated.

3. Results and Discussion
3.1. Statistical Analysis

As mentioned, the random variables considered in the PG_TRIGRS approach are:
(i) the effective cohesion c′; (ii) the effective friction angle ϕ′ and (iii) the saturated hydraulic
conductivity ks. The random variability is described, for each variable, by theoretical
probability density function (pdf); the pdf definition was evaluated on the basis of in situ
measurements available for different soils of the Perugia Province [55]. The correlation
coefficient (ρ) between c′ and ϕ′ is assumed to be equal to−0.5 [66–68], while the correlation
between ks and the soil strength parameters is assumed equal to 0. Major details of the
stochastic characterization of the mechanical properties of the soil are presented in the
work of Fanelli et al., (2016) [55] and Salciarini et al. [45,69]; for further information, the
stochastic soil characterization is summarized in Table 1.
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Table 1. The table summarizes the stochastic parameters (mean value and coefficient of variation,
CoV) used to characterize the soils in the study area (according to Fanelli et al., 2016 [55]). In the
reliability analyses, rocks such as limestone, marl limestone, conglomerate, marl and travertine are
not considered.

c′ (kPa) ϕ′ (◦) Ks (m/s) CoV (c′) CoV (ϕ′) CoV (ks)

Alluvium 3 28 5 × 10−8 0.25 0.05 0.9
Terraced alluvium 6 29 1 × 10−7 0.25 0.05 0.9

Clay 15 26 5 × 10−11 0.25 0.05 0.9
Eluvial deposit 7 29 1 × 10−9 0.25 0.05 0.9

Landslide deposit 0 31 5 × 10−8 0.40 0.09 2.4
Sand 0 30 5 × 10−5 0.40 0.09 2.4

Turbidite 5 30 5 × 10−7 0.25 0.05 0.9

In the absence of detailed information or recorded data, the initial pre-storm water
table depth (dw) was set equal to 50% of h, and the steady pre-storm infiltration rate
(ILT) was assumed to be negligible. The soil covers were considered completely saturated
(Sr = 1) and the soil thickness did not exceed 2 m. The stability analyses were conducted
under saturated conditions, as conservative assumptions, therefore evaluations about the
estimated soil moisture or the groundwater level change were not considered in the study.

3.2. Modelling Results

Starting from the soil characterization shown in Table 1, the model was applied to the
study area considering the rainfall event described in Section 2.1 (Figure 3). The results
show that the area is mostly stable (Figure 6). The stability conditions vary considering the
critical rainfall event, but the PoF values are negligible in most part of the area. A small area
with PoF between 0.3 and 0.5 is located in the northwestern part, which is characterized by
high slopes and Turbiditic soils (with low values of c′).
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Observing the landslide distribution, we noticed that the movements occurred on the
portions of the study area characterized by modest slopes; the soil mainly involved is clay
(according to Fanelli et al., 2016 [55]). This evidence suggested that agricultural techniques
such as soil tillage could significantly reduce the effective cohesion of the soil covers. As
previously mentioned, a reduction in the average value of cohesion was considered for the
arable soils in the study area. Figure 7 shows the PoF spatial distributions, evaluated at the
end of the considered rainfall event, assuming reductions of c′ in arable areas respectively
equal to 20 (Figure 7A), 30 (Figure 7B), 40 (Figure 7C) and 50% (Figure 7D).
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The 20% reduction for c′ amplified the portions of the area originally identified by
PG_TRIGRS and shown in Figure 5; however, the central sector of the area, where shallow
landslides were localized, was still affected by a negligible PoF. The central sector is
characterized by gentle slopes, ranging from a minimum of 3◦ to a maximum of 18◦,
therefore, the triggering causes of the observed landslides were likely due to the changes in
the mechanical characteristics of the soil.

As expected, higher probabilities of failure are observed considering a 30% of reduction
for the effective cohesion of the soils (Figure 7B). This decrease of c′ produces, in the central
part of the area, a large sector characterized by PoF values between 20 and 30%; and
most landslides are correctly predicted by the model. The additional decrease of 40% for
c′ provides only an increase in extension of the critical areas already identified, without
significantly improving the model prediction. Finally, considering a reduction of 50% for c′,
a large part of the area becomes unstable.

Figure 8 summarizes the quantitative results obtained from the analyses. Each row
represents the distribution of the cells in the various PoF classes, while for each column
a different reduction of c′ has been considered. As the reduction of c′ increases, as can be
expected, more pixels move towards classes with higher PoF. The pixels decrease, with
reference to first class (white), is minimum passing from a reduction of about 10% to a
reduction of 20% of c′, while it becomes important considering the c′ reduction of 30 to
50%. Pixels belonging to the orange class (0.2 < PoF ≤ 0.3) also increase passing from the
reduction of c′ of 20 to 30%.
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Relating to the spatial distribution of PoF with the landslides observed in situ, the c’
reduction corresponding to the absence of landslides in the first class (0 < PoF ≤ 0.2) is 50%.
In other words, considering a reduction of c′ equal to 50%, the pixels were the landslides
that have been measured and all were located in the second class (PoF > 20%). The
model identified accurately the pixels characterized by landslide occurrence but incorrectly
classified the other stable pixels.

3.3. Reliabaility Analysis

In order to evaluate the reliability of the proposed method, we used the standard
contingencies and metrics adopted for model evaluation. For each case of c′ reduction,
we calculate the number of cells with: landslides correctly hindcasted by the model (true
positives, TP); landslides mapped but not hindcasted by the model (false negatives, FN);
positive outcome from the model and absence of mapped landslides (false positives, FP);
no landslides mapped and negative outcome from the model (true negatives, TN). Given
that the outcome of the model is probabilistic and not deterministic, we set three increasing
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thresholds values for PoF to define a positive and a negative outcome. In particular,
we identified the values of 0.2, 0.3, 0.5 as the threshold PoF value for calculating the
contingencies. As an example, in the case of the PoF threshold fixed at 0.2, we considered
a positive outcome of the model to be a cell with a PoF > 0.2 and a negative outcome a
cell with a PoF ≤ 2; in the case of 0.5 threshold, a positive (negative) outcome was a cell
with a PoF equal or higher (lower) than 0.5. Therefore, for each case of c’ reduction and
for each PoF threshold value, we calculated the four contingencies and some skill scores:
the true positive rate, TPR = TP/(TP + FN); the false positive rate, FPR = FP/(FP + TN);
the Hansen–Kuipers skill score, HK = TP − FN; the predictive power, Pp = TP/(TP + FP).
Detailed results are reported in Table 2. As an example, with reference to the lowest Pof
threshold (0.2), the best HK value is obtained considering a 40% reduction of c′.

Table 2. Values of the calculated skill scores for the five cases of c′ reduction and the three PoF
threshold values. For each case of c′ reduction, the average value for each skill score is also reported.
The best average values for each skill score are in bold.

C′ Reduction PoF Threshold
Skill Scores

FPR (%) Pp (%) TPR (%) HK (%)

10%

0.2 3.6 5.2 11.1 7.5
0.3 62.5 8.4 100.0 37.5
0.5 9.1 0.0 0.0 −9.1

Mean 25.1 4.5 37.0 12.0

20%

0.2 5.3 3.6 11.1 5.8
0.3 49.9 7.1 100.0 50.1
0.5 9.9 0.0 0.0 −9.9

Mean 21.7 3.6 37.0 15.3

30%

0.2 21.6 2.6 33.3 11.8
0.3 24.1 3.6 33.3 9.2
0.5 11.4 10.6 25.0 13.6

Mean 19.0 5.6 30.6 11.5

40%

0.2 38.6 2.8 63.0 24.3
0.3 55.5 0.8 23.5 −32.0
0.5 9.8 4.8 20.0 10.2

Mean 34.6 2.8 35.5 0.9

50%

0.2 48.4 2.5 70.4 22.0
0.3 64.8 2.0 52.6 −12.2
0.5 11.6 10.3 37.5 25.9

Mean 41.6 4.9 53.5 11.9

Finally, we calculated the mean values of the skill scores for each case of c′ reduction,
averaging the values obtained for the three PoF thresholds values (Table 2). The average
TPR closest to 1 (i.e., the optimal value) was observed for a c′ reduction equal to 50%;
however, this condition also generated many FP, thus, other considerations were needed.
Indeed, if we considered the average values of FPR and HK, the best model performance
was obtained considering a 20 and 30% reduction of c′, respectively. Overall, the best
compromise between correct and incorrect model outcomes was obtained considering a
20% reduction of c′ between 20% (best values for HK) and 30% (best value for FPR and Pp).

4. Conclusions

The paper presents a study focusing on the effect of soil tillage due to agricultural
activity on slope stability conditions in a hilly environment. To this aim, a back analysis
has been performed using the PG_TRIGRS model on the study area of Collazzone, central
Italy. The code has already been used for the prediction of shallow landslides in the Umbria
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Region, but it has not been tested on areas where landslides, triggered by a specific rainfall
event, have been directly observed. The proposed probabilistic approach which assumes
input data as random variables defined through their probability density functions, can
provide a higher level of reliability than deterministic approaches, which assume the input
data without uncertainty.

For this preliminary study, we decided to perform the stability analyses under sat-
urated conditions and we have not considered the randomness of the initial water table
depth dw in order to have only three random variables in input (c′, ϕ′, and ks). This choice
allowed us to reduce the computational times and to better identify the effect of soil tillage
on the soil’s mechanical properties. However, future upgrades of the method will include
the piezometric variability, the unsaturated conditions, and the soil thickness analysis.
The study area selected for this purpose is of particular scientific interest because it is
characterized by intense agricultural activity that greatly increases its susceptibility to
landslides. The latter appears to be related to agricultural management systems which
modify the physical and mechanical properties of the soil. During the year the ground
is tilled and denuded in the rainiest period, while in the summer and spring months the
slopes appear covered by vegetation. The continuous change in soil conditions alters the
mechanical characteristics of the soil in a non-negligible way. The use of unsustainable
agricultural machinery should be limited to avoid loss of cohesion in the cover soil.

From the results obtained in this study, with reference to the area analyzed, soil
tillage due to agricultural activity caused a reduction in cohesion of between 20 and 30%;
this estimation agrees with the results obtained in studies aimed at evaluating the effects
produced by specific tillage on soil’s mechanical properties [44]. With reference to the
results, the slope stability model is able to predict surface landslides but it classifies, as
a precaution, the areas not affected by landslides. In any case, in order to safeguard the
Collazzone area from shallow sliding phenomena, it is necessary to practice planned and
appropriately selected agricultural techniques.

The method presented in this work is quantitative and reproducible, thus can be
applied in other areas with similar environmental contexts, also for comparison with in
situ and laboratory tests to refine and optimize the evaluation of the effect of soil tillage on
slope stability.
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