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Abstract: A change in agricultural land management scale leads to the recombination and adjustment
of production factors, which have an important impact on agricultural carbon emissions. There
are few studies on the connection between the scale of land management and agricultural carbon
emissions. In this study, we empirically examined the relationship between planting scale and
agricultural carbon emissions using the threshold model, which allows the data to endogenously
generate several regimes identified by the thresholds. The results showed that from 2003 to 2018,
carbon emissions from planting first increased and then decreased, reaching their highest in 2015.
Across the whole country in the main rice- and wheat-producing regions, the scale of planting land
has a threshold effect on agricultural carbon emissions, showing an inverted “U” shape. Carbon
sinks and natural disasters significantly affected planting carbon emissions in the above three regions.
The amount of fiscal support for agriculture significantly affects planting carbon emissions in the
national and main wheat-producing regions, while peasants’ per capita income significantly affects
planting carbon emissions in the main rice- and wheat-producing regions. This study provides policy
makers with new ideas, in that continuously expanding the scale of agricultural land management is
conducive to reducing agricultural carbon emissions.

Keywords: planting CO2 emissions; scale of farmland management; threshold effect; main grain-
producing area

1. Introduction

The increasingly serious greenhouse effect has become the most pressing global envi-
ronmental problem [1,2], and the main cause of the greenhouse effect is the large amount
of carbon dioxide emissions. At present, China is the world’s largest carbon emitter, ac-
counting for 35.6% of global greenhouse gas emissions [3]. With the speedy development
of China’s economy, agricultural modernization, the rapid development of chemical agri-
culture, petroleum agriculture, and mechanical agriculture, China’s total grain production
continues to improve. Meanwhile, China’s carbon emissions from agriculture are also
growing significantly [4]. China’s crop production accounts for more than 50% of full
agricultural output, making it the main component of agriculture. Wheat, corn, and rice
account for more than half of the planting space of food crops [5]. However, within the
methods of grain production in China, the costs of resources and of environmental im-
pacts are too high. In the past 30 years, the total grain output has increased by 90%, but
fertilizer consumption and greenhouse gas emissions have increased by 180% and 103%,
respectively [6,7].

An appropriate scale-up of agricultural land is the only way to develop modern
agriculture [8], which will promote cultivated productivity, ensure food safety, increase
peasants’ incomes, and advance rural maintenance. Large-scale farmers have much more
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potential to assume maintainable farming practices. However, some scholars [9–11] believe
that the environmental pollution caused by large-scale agricultural production, especially
in the use of agricultural chemicals and energy, will be magnified due to the limitations of
farmers’ educational levels and scientific farming technical abilities. Moreover, this will
ultimately aggravate the emission of carbon dioxide and thus accelerate deterioration of
the ecological environment.

In recent years, agricultural carbon emissions have received extensive attention [12].
Previous studies have primarily targeted the effects that influence agricultural carbon emis-
sions, in addition to agricultural production categories [13,14], technology progress [15,16],
and farmers’ costs and income [17,18]. The results showed that research and development
(R&D) events can cut carbon emissions through refining agricultural production technol-
ogy [19]. Additionally, resources for R&D activities are very important in increasing the
amount of advanced agricultural production technology, ultimately reducing carbon emis-
sions [20]. Other studies have proven that R&D support can effectively enhance the potency
of agricultural production, thereby dropping its carbon emissions [21,22]. Ma et al. [23]
indicated that population, affluence, and technology constitute the biggest impacts on
CO2 emissions. Other studies have considered whether demographic structure can also
affect agricultural CO2 emissions. For example, Li and Zhou [24] explored the effect of
a series of demographic structural influences on agricultural CO2 emissions, concluding
that average house size, and therefore the dependency magnitude relation, place negative
impacts on agricultural CO2 emissions. Based on the spatial political economy model,
Liao et al. [25] investigated the CO2 emissions of entirely different crops planted in the
Kingdom of Sweden’s agriculture sector.

As agriculture is the dominant sector in China and, albeit conjointly, the first driver
of environmental degradation, the scale of cultivated land takes center stage in environ-
mental protection debates [26,27]. In this respect, studies have shown that the relations
of different farm sizes in nearly all aspects, such as efficiency of agricultural production,
use of pesticides and fertilizers [28], employment, and income, are highly relevant. With
an increase in the scale of planting, a scale economy effect will be reached. Economies
of scale are inherently associated with capital-intensive technological development: with
the increasing number of foreign technological inventions, each unit of land can scale up
production productivity and labor utilization, and thereby reduce input costs [29] in the
meantime. That is to say, the larger the land occupied, the smaller the carbon footprint
per unit of land. In order to realize economies of scale, China has introduced a number
of policies, such as the No. One Documents, and a series of different agricultural policy
documents in 2013 and 2014, whose goals are to market various kinds of large-scale farm-
ing [30]. In particular, the “separating three property rights” policy broadcasted in 2014
separated the possession, constricting, and management rights of farmland [31,32], and
this further helped farmers achieve large-scale units [32]. However, some scholars say that
compared with small-scale management, large-scale planting cannot protect the ecological
environment. Wiggins et al. [33] argued that a converse relationship between land area
and efficiency exists, owing to diseconomies of scale, as well as an absence of economies of
scale in agriculture. Knickel et al. [34] and Ashkenazy et al. [35] also questioned whether
large-scale farming supports sustainable agriculture. Accordingly, it is significant to ex-
plore the relationship between the scale of cultivated land management and agricultural
environmental pollution.

The existing research results mainly discuss the impact of agricultural economic
development level, production efficiency, structural factors, and labor scale on agricultural
carbon emissions [17,23]; however, little consideration is given to reducing carbon emissions
by adjusting the scale of land. The mode of agricultural production under large-scale
management is bound to be very different from that of small-scale peasants. The massive
transfer of labor toward non-agricultural sectors, and the outflow of cultivated land have
resulted in changes in the scale of agricultural land management [24]. These changes led
to the recombination and adjustment of production factors, which will inevitably have a
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significant influence on future agricultural carbon emissions [29]. Meanwhile, whether
or not expanding the planting area can reduce carbon emissions is still controversial. In
addition, most of the existing studies carried out research on farmers in specific areas
through micro-surveys [33,35]. These data obtained are cross-sectional, which can not
reveal underlying macro laws; furthermore, less consideration is given to the continuous
changes of agricultural factor input and carbon emissions in time.

Therefore, the innovation of this paper is mainly reflected in two aspects. Firstly,
based on an analysis of the impact mechanism of land scale on carbon emissions, this
paper tested the threshold effect of land scale on the carbon emissions from the planting
industry. Secondly, different crops have different effects on carbon emissions as a result of
their planting areas, input of production factors, and farming systems. Therefore, taking
the three major grains in China (corn, wheat, and rice) as an example, this paper further
discusses whether there are differences between these crops in the relationship between
planting scale and carbon emission.

The remainder of this paper is organized as follows: Section 2 outlines the theoretical
frameworks; Section 3 describes the methodology and data; Section 4 presents the results
and discussion; and Section 5 finishes with conclusions and policy implications.

2. Theoretical Framework

Figure 1 depicts the theoretical framework. In theory, the scale of land management
can affect agricultural carbon emissions through indirect paths such as natural disasters [36],
fiscal support for agriculture, farmers’ per capita income [37], planting structure, pesticide
input [38], and agricultural machinery input [39]. When encountering the same natural
disaster, the larger the scale of land management, the larger the affected area of agriculture
and the greater the reduction in yield, which will cause a greater distinction between the
anticipated agricultural yield and the real yield. In order to make up for the “loss” caused
by natural disasters, farmers with larger land management scales are more likely to change
their original farming methods, thereby affecting agricultural carbon emissions. In terms
of fiscal support for agriculture, farmers with a larger land management scale pay more
attention to maintaining the land for sustainable use. Therefore, subsidies for soil-testing
formula fertilizers and for slow and controlled-release fertilizers can be used to reduce the
amount of chemical input and increase use efficiency. Subsidies are more conducive to
the use of less toxic and less harmful agrochemicals, thereby reducing carbon emissions.
Moreover, for farmers with a larger business scale, a purchase subsidy for agricultural
machinery can significantly increase the investment intensity of their machinery and
equipment, promote the consumption of fossil fuels and increase carbon emissions. Finally,
an increase in the direct grain and producer subsidies obtained by farmers with a large
planting scale can significantly enhance the enthusiasm of farmers to grow grain, in turn
increasing the area of grain planting and thereby promote a relative reduction in the carbon
emissions of planting. For peasants with a larger land management scale, an increase in
their per capita income can lead to a greater energy demand for agricultural production.
At the same time, peasants’ demand for electricity, natural gas, and other energy sources
involved in production and living will also increase. Under the inflexible conditions
that the energy consumption of the whole society is subjugated by carbon-based energy,
agricultural carbon emissions will also increase. Different crops use different amounts
of agricultural chemicals, such as pesticides and fertilizers, due to their different growth
characteristics. Studies have shown that food crops emit less carbon than cash crops.
Therefore, as the proportion of the food crop operation scale increases, carbon emissions
relatively decrease. Peasants with larger management scales are more inclined to adopt new
technologies such as efficient fertilization, which increases the efficiency of chemical input
requirements and reduces environmental pollution and carbon emissions. The scale of land
management affects the input intensity of agricultural machinery, which conversely affects
agricultural carbon emissions. With an increase in the scale of land management, the level
of mechanization will continue to increase, thereby accelerating the consumption of energy
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such as petroleum fuels, which in turn will increase carbon emissions. In summation, the
use of agricultural machinery is conducive to improving agricultural production efficiency
and reducing carbon emissions relatively.
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Figure 1. The mechanisms of the scale of land management on the carbon emissions of the
planting industry.

3. Methodology and Data
3.1. Calculation Method of Planting Carbon Emissions

Based on the research results of many scholars, this paper determined the planting
carbon emissions from the following two aspects: The first aspect is the carbon emissions
from the input of production factors. Based on the research results of existing scholars,
the carbon sources of planting production were classified into five categories in this paper:
agricultural fertilizer, diesel oil, pesticide, plastic film, and irrigation. Planting carbon
emissions include those from the use of agricultural fertilizers, diesel pesticides, and plastic
film, and from the use of machinery and electricity for agricultural irrigation. Taking into
consideration that tillage does not apply to all food crops, carbon emissions from tillage
are not accounted for. The second aspect is the carbon emissions from growing wheat,
corn, and rice, which produce nitrous oxide and methane gas. Methane emissions from
rice cultivation have been incorporated into the planting carbon emission measurement
system. Wheat, corn, and rice are the three major grain crops in China, and they are
of equal importance in agricultural production. Meanwhile, because the growth habits
of the three grain crops are quite different, they produce different types of greenhouse
gases as they grow. Therefore, this paper divided the three major grain crops into spring
wheat, winter wheat, corn, upland rice, medium rice, and double-cropping late rice, and
considered the nitrous oxide and methane gas produced by them in the planting carbon
emission measurement system. When adding up the planting carbon emissions, replace C,
Methane (CH4), and N2O into standard C. The replacement criterion used was as follows:
the greenhouse effect induced by 1 t of nitrous oxide (N2O) is equivalent to that induced by
81.2727 t of C (2.98 million t CO2), and that induced by 1 t of methane (CH4) is equivalent
to that induced by 6.8182 t of C (25t CO2). Planting carbon emissions can be measured in
the following way:

C(t) = ∑ Ti · σi (1)

where C(t) is the total carbon emissions of the three food crops in year t, 104 t; T represents
the amount of carbon emission sources; i represents the type of carbon sources; and σ
represents the carbon emission coefficient of each source.
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The carbon emission coefficients for each factor of production are shown in Table 1,
and the gas emission types and corresponding emission factors for each food crop are
shown in Table 2.

Table 1. Carbon emission coefficients for each factor of production.

Carbon Source Emission Coefficient Unit Data Reference Source (Basis)

Agricultural fertilizer 0.8956 Kg CE/kg ORNL (Oak Ridge National Laboratory)

Diesel oil 0.5927 Kg CE/kg IPCC (Intergovernmental Panel on
Climate Change)

Pesticide 4.9341 Kg CE/kg ORNL (Oak Ridge National Laboratory)

Plastic film 5.1800 Kg CE/kg IREEA (Institute of Resource, Ecosystem
and Environment of Agriculture)

Irrigation 266.48 Kg CE/hm2 Duan et al. [40]

Table 2. The gas emission types and corresponding emission factors according to food crop.

Carbon Source Exhaust Gas Emission Coefficient Unit

Spring wheat, N2O 0.4 Kg N2O/hm2

Winter wheat N2O 1.75 Kg N2O/hm2

Corn N2O 2.532 Kg N2O/hm2

Upland rice N2O 0.24 Kg N2O/hm2

N2O 241.0 Kg N2O/hm2

Medium rice and double-cropping late rice N2O 0.24 Kg N2O/hm2

3.2. Panel Threshold Regression Model

This article used the method of Gonzalez et al. [41] to establish the panel threshold
regression model created by Tong, which is often used to divide the interval endogenously
and find the threshold value according to the characteristics of the data itself. Thus,
this approach can effectively avoid the bias caused by artificially dividing the sample
interval, or by using the quadratic term model. The outstanding advantage of this model
is its ability to automatically identify the sample data, in order to estimate the specific
threshold number and value, and to perform a significant test of the threshold effect. In
threshold research, the existing academic achievements mostly use the grouping test and
the cross-item test model. The grouping test sets the dividing point through subjective
experience, and the cross-item test is limited by the uncertainty of the form of the cross-
item; neither approach can implement a significance test for the threshold effect. The
threshold regression model can overcome the shortcomings of the above two methods, and
can also complete a significance test while accurately estimating the threshold value [42].
Specifically, there are four advantages to this model. Firstly, it is not required to establish
nonlinear equations in order to represent the relationships between variables. Secondly,
the sample data decide the value and the amount of the threshold completely. Thirdly, it
can calculate the boldness interval of those parameters with an asymptotic distribution
theorem. Fourthly, the statistical significance of the thresholds can be estimated using the
bootstrap method [43].

The process of estimating the panel threshold regression model is as follows: First, a
value of the threshold variable is arbitrarily selected as the threshold value, the data are
divided into two intervals, and the parameter values of the two intervals are estimated by
the least square method. Then, the total residual of the square of the two interval parameters
is calculated. Then, different thresholds are continuously and repeatedly selected, and
the residual sum of squares corresponding to the threshold sum is recorded. Finally, the
residual sum of squares is compared. Based on this study, the processes are as follows:
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First, a panel threshold model is established in order to check the nonlinear effect of the
scale of agricultural land on agricultural carbon emissions. The basic model is as follows:

ln Yit = α + δ ln Zit + ln xit + uit + εit (2)

Based on Formula (2), it is initially assumed that there is a single-threshold effect to
find a single-threshold model (3); this can then be extended to a double-threshold model (4).

ln Yit = α + δ ln Zit + β1 ln xit · I(ηit ≤ γ) + β2 ln xit · I(ηit � γ) + uit + εit (3)

ln Yit = α +δ ln Zit + β1 ln xit · I(ηit ≤ γ1) + β2 ln xit · I(γ1 ≺ ηit ≤ γ2)
+β3 ln xit · I(ηit � γ2) + uit + εit

(4)

In the above equation, Yit is the explained variable; α is the controlled variable; xit is
the core explanatory variable; ηit is the threshold variable; γ is the threshold value; and
I(∗) is the indicator function. Next, the dummy variable is set as Iit(α) = {ηit ≤ γ} , when
ηit ≤ γ, I = 1; otherwise, I = 0. The variables β1, β2, β3 are the influence coefficients of
the explanatory variables on the explained variables when the threshold variables are in
different threshold intervals. The variable uit represents constant terms; and εit refers to
the random error terms.

For a given threshold γ, the assessed value β of β̂(γ) and the corresponding residual
sum of squares can be obtained after estimating the following model:

Sn(γ) = ê(γ)′ ê(γ) (5)

The variable γ̂ corresponds to the least residual total of squares; Sn(γ) is the optimum
threshold. When deciding the calculable threshold value, the corresponding parameter
values of the model are determined. When deciding the parameter values, the threshold
effect is additionally tested in order to assess the importance of the threshold effect, and
the genuineness of the threshold estimated value.

In order to test the importance of the threshold effect, the hypothesis of the model
test is H0 : β1 = β2; H1 : β1 = β, and the following LM statistics are created to test the
null hypothesis:

F1(γ) =
S0 − S1γ̂

σ̂2 (6)

In this expression, S0 and S1γ̂ are the null hypothesis and the residual total of squares
below the condition of the threshold influence, respectively, and σ̂2 is the variance of the
threshold regression residuals. As the threshold value is not identifiable below the null
hypothesis, F1 does not follow the standard asymptotic distribution, and the crucial worth
cannot be obtained.

Then, the genuineness of the threshold estimation is tested, for which the matching
null hypothesis is H0 : γ̂ = β0. The precise figures are as follows:

LRγ =
S1γ− S1γ̂

σ̂2 (7)

where S1γ is the unrestrained residual number of squares. At the α level of notable,

LRγ ≤ Cα = −2 ln[1−
√

1− α] (8)

After the first threshold is obtained, the existence of two and three thresholds is sequen-
tially verified until the null hypothesis is accepted. Then, the final threshold is determined.
On the premise of the current research results of the model, and on the assumption of the
existence of threshold effects, the following threshold regression models were constructed
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to study the impact of the single- and double-threshold effects of cultivated land area on
agricultural carbon emissions. The specific models are presented in Equations (9) and (10):

ln ACEit = α +δ ln Zit + β1 ln ARit · I(ηit ≤ γ1)
+β2 ln ARit · I(ηit � γ1) + uit + εit

(9)

ln ACEit = α +δ ln Zit + β1 ln ARit · I(ηit ≤ γ1) + β2 ln ARit · I(γ1 ≺ ηit ≤ γ2)
+β3 ln ARit · I(ηit � γ2) + uit + εit

(10)

In these expressions, ACEit is the explained variable, on behalf of the agricultural
carbon emissions of province i in year t; ARit is the explanatory variable, on behalf of the
area of cultivated land of country i in year t; Z includes carbon sink, natural disasters, fiscal
policy of supporting agriculture, and per capita income of farmers; qit is the threshold
variable, representing the threshold value of different levels; δit is the coefficient of the
control variable; β1, β2, β3 represent the coefficients of the core explanatory variables in
different intervals; I(∗) is the indicator function; uit is the constant term; and εit is the
random error term.

3.3. Data Sources

This study used data from 30 provinces in mainland China, excluding Tibet, from 2003
to 2018. The net output of agricultural chemical fertilizers, the use of agricultural diesel,
the use of agricultural chemicals, the use of agricultural plastic film, the sown area, and the
output of various food crops, were all obtained from China Rural Statistical Yearbooks [44].
The carbon emissions caused by irrigation were calculated from the irrigated area of arable
land, and the data came from the China Water Conservancy Statistical Yearbook [45]. The
population figures were obtained from China Statistical Yearbooks [46] at the end of the
year. The annual gross agricultural production value of each province came from the China
Agricultural Yearbook [47]. For the missing data in the data collection process, the mean
value method was used for supplementation.

Based on the net yield of agricultural chemical fertilizers, the use of agricultural diesel
oil, the use of agricultural chemicals, and the use of agricultural plastic film, all of the data
were the sum of the actual use of all crops in each province and region in the same year.
The data of irrigated area of cultivated land represented the total irrigated area of all crops
in each province and region in the current year. As there were no data on sub-crops, this
article referred to former scholars regarding the output value of the planting industry as
50% of the output value of agriculture, and the input quantity and irrigation area of the
three major grain crops as half of the total input quantity and irrigation area of agricultural
materials in each province.

4. Results and Discussion
4.1. Spatio-Temporal Changes in Agricultural CO2 Emissions

In order to reveal regional differences, Figure 2 shows the provincial distribution of
carbon emissions from cultivation. From 2003 to 2018, the carbon emissions from planting
first increased and then decreased, reaching their highest in 2015, and then showing a
downward trend. Specifically, more than two-thirds of the provinces increased their total
carbon emissions. Among them, Heilongjiang and Henan had the largest increases. The
carbon emissions of the other provinces remained roughly the same or decreased. Hebei
and Zhejiang had the greatest reduction in carbon emissions. The provinces with the
highest carbon emissions were Hunan, Henan, and Heilongjiang. Planting in Qinghai
and Ningxia Hui Autonomous Region had lower carbon emissions. On the whole, the
carbon emission distribution of the planting industry showed a decreasing trend from
southwest to northwest. Judging from the carbon emissions for the three major grains,
those of rice production were much higher than those of the other two grains. It can be
found that the carbon emissions from rice production were positively correlated with
provincial agricultural carbon emissions.
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4.2. Unit Root Test

This paper considered the six variables of agricultural carbon emissions (ACE), carbon
sinks (CS), urbanization level (UR), natural disasters (ND), fiscal policy on supporting
agriculture (FP), and peasants’ per capital income (IN), and used their logarithms for
analysis. This article used LLC and IPS tests. The LLC test is based on the homogeneous
panel unit root hypothesis, while the IPS test is based on the heterogeneous panel unit
root hypothesis. In order to enhance the robustness of the unit root test results, this paper
uses the LLC and IPS tests to determine stationarity. Table 3 reports the results of the
stationarity test of the relevant variables. The horizontal series of the main variables in
the model showed obvious non-stationarity, but the first-order difference series of each
variable showed stationarity at the 1% significance level. Therefore, all of the variables can
be considered to be steady after the first-order difference.
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Table 3. Panel unit root test results.

Variable Test Method
At Level At 1st Difference

t-Statistic Prob. t-Statistic Prob.

LN ACE LLC −5.4921 0.0000 −5.4921 0.0000
IPS −9.1236 0.0000 −9.1236 0.0000

LN CS LLC −1.9174 0.0276 −8.8813 0.0000
IPS −3.1727 0.0008 −4.8100 0.0000

LN ND LLC −5.9798 0.0000 −5.9798 0.0000
IPS −9.4229 0.0000 −9.4229 0.0000

LN FP LLC −4.4048 0.0000 −4.4048 0.0000
IPS −2.3645 0.0000 −2.3645 0.0000

LN IN LLC −7.2105 0.0000 −7.2105 0.0000
IPS −2.4853 0.0000 −2.4853 0.0000

4.3. Threshold Effect Test

Before estimating the threshold of the model, it is necessary to guarantee that the data
have a threshold effect. The panel regression model was used to test whether there is a
threshold effect, and to obtain an accurate threshold. This paper used Stata16.0 to test
the threshold effect (results in Tables 4 and 5). Taking the scale of land management as
the threshold variable, the influence of planting scale on agricultural carbon emissions
in 30 provinces in China was studied, and the relationship between the two was further
explored using the main producing areas of rice, wheat, and corn.

Table 4. Threshold effect test results 1: existence test results.

Object Number of
Thresholds F-Statistic p-Value 1% Critical

Value
5% Critical

Value
10% Critical

Value

All regions Single 32.79 *** 0.000 11.209 9.700 7.613
Double 5.39 0.340 105.944 61.935 28.600

Major rice
production areas

Single 53.82 ** 0.030 69.355 43.201 34.440
Double 44.93 * 0.070 87.376 57.503 38.768

Major wheat
production areas

Single 387.88 *** 0.000 56.009 37.179 30.080
Double 18.12 0.833 184.714 106.258 57.158

Major corn
production areas

Single 17.33 0.547 64.389 44.146 35.612
Double 9.79 0.800 44.040 31.323 27.255

Note: Significance at the 1%, 5% and 10% levels are expressed by ***, **, and *, respectively.

Table 5. Threshold effect test results 2: authenticity test.

Object Number of Thresholds Threshold Value 95% Confidence Interval

All regions Single 2.444 [2.384, 2.493]

Major rice production areas Single 0.896 [0.893, 0.914]
Double 0.903 [0.797, 0.914]

Major wheat production areas Single 0.594 [0.551, 2.473]

The test results show that when studying 30 provinces in China, the single-threshold
F-statistic of LNAR was 32.79, and the double-threshold F-statistic was 5.39; that is, there
was only a single-threshold effect and no double-threshold effect. When studying the rice
planting scale and carbon emissions in the major rice-producing areas in China, the single-
and double-threshold F-statistics of LNAR were 53.82 and 44.93, respectively. When study-
ing the major wheat-producing areas, the LNAR single-threshold F-statistic was 387.88 and
the double-threshold F-statistic was 18.12, in which case there was only a single-threshold ef-
fect. When studying the main maize-producing areas, the LNAR single-threshold F-statistic
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was 17.33, which was lower than the critical value at the 10% significance level, indicating
no threshold effect.

4.4. Regression Results of the Threshold Effect

The threshold effect regression results are shown in Table 6. In China’s 30 provinces,
when the planting scale was less than the threshold 2.444, the estimated coefficient of the
planting scale on agricultural carbon emissions was 0.122. In other words, agricultural
carbon emissions rise with a surge in planting scale. When the planting scale exceeds the
threshold, the influence of planting scale on agricultural carbon emissions was estimated
to be −0.490, which is significant at the 99% confidence level. This illustrates that when the
planting scale exceeds a certain limit, a continuous increase in planting scale can restrain
agricultural carbon emissions. Within the main rice-producing areas, the impact of rice-
planting scale on carbon emissions from rice production has a double-threshold effect.
Under the first threshold of 0.896, the assessed coefficient of the rice planting scale on
carbon emissions was 1.459, which is significant at the 99% confidence level; when the
rice-planting scale was higher than the first threshold but lower than the second threshold
of 0.903, the impact coefficient was 2.345, which is significant at the 99% confidence level;
when the rice-planting scale exceeded the second threshold, the impact coefficient was 0.915,
which is notable at the 95% confidence level. In the main wheat-producing areas, there was
a single-threshold effect on the impact of wheat-planting scale on carbon emissions from
wheat planting. When the wheat-planting scale was lower than the threshold value of 0.594,
the impact coefficient of the wheat-planting scale on wheat-planting carbon emissions was
1.205, which is notable at the 99% confidence level; when the scale was greater than the
threshold value, the impact coefficient was −0.100, which is at the 95% confidence level.
However, in the major corn-producing areas, there was no threshold effect between the
scale of corn planting and the carbon emissions from corn planting.

Table 6. Threshold effect regression results.

Variables All Regions Major Rice Production Areas Major Wheat Production Areas

LNAR (qit < γ1) 0.122 (0.58) 1.459 *** (3.91) 1.205 *** (23.57)
LNAR (qit ≥ γ1) −0.490 *** (−2.26) −0.100 ** (−2.28)

LNAR (γ1 < qit ≤ γ2) 2.345 *** (6.36)
LNAR (qit > γ2) 0.915 ** (2.37)

LNCS 0.605 *** (4.14) 0.418 *** (3.72) −0.007 * (−2.09)
LNND −0.427 *** (−2.94) −0.472 *** (−4.04) 0.291 *** (4.13)
LNFP 0.170 ** (2.26) −0.587 (−0.95) 0.064 *** (−2.71)
LNIN −0.654 (−0.66) −2.537 *** (−3.43) 4.461 *** (13.69)

Constant 0.868 0.995 0.992
R2 0.874 0.995 0.993

Note: Significance at the 1%, 5% and 10% levels are expressed by ***, **, and *, respectively.

In the main wheat-producing regions across the whole country, the planting scale had
a positive and then negative effect on agricultural carbon emissions. Namely, when the
planting scale was smaller than the threshold, agricultural carbon emissions grew as the
planting scale increased; however, when the threshold was exceeded, agricultural carbon
emissions decreased as the planting scale increased. The reason can be explained as that
with the expansion of planting scale, farmers hope to manage the few arable land on their
own. However, because most farmers use “extensive” farming with more agricultural
chemicals such as pesticides and fertilizers, which are consistent with those of Qin and
LÜ, Li and Shen and Wei et al. [48–50], at this stage, agricultural carbon emissions increase
with the expansion of planting scale. In addition, the transfer of rural surplus labor can
promote the transfer of capital, reflecting the results of Shao et al. and Hao et al. [51,52],
toward technology and other production factors. This is consistent with Yasmeen et al., who
noted that carbon emissions are also significantly decreased by research and development
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investment [19], as well as agriculturally socialized services, such as mechanical farming
services, irrigation services, and pest control services in the agricultural sector. This is
furthermore supported by the findings of Qian et al. who show that outsourced agricultural
machinery services could positively regulate each other’s influence on land leasing [53],
thereby increasing agricultural productivity and reducing agricultural carbon emissions.
However, at this stage, the transfer of agricultural labor is reduced, and laborers may even
return to their hometowns. However, when the scale of planting is further expanded,
farmers are more inclined to hire professional farmers and managers in order to cultivate
and improve production methods, and hence agricultural carbon emissions also begin to
decrease. Therefore, for the country and its main wheat-producing regions, as the planting
area expands, agricultural carbon emissions show an inverted U-shaped change.

Only the planting area of the main corn-producing areas had no threshold effect on
the impact of agricultural carbon emissions, which can be explained by the low soil fertility
and by the variety levels used in these areas. This reason is supported by Xia et al. [54]
who found that the main maize-producing areas had the lowest apparent utilization rate of
nitrogen fertilizer and the lowest yield increase rate of nitrogen fertilizer. However, corn
likes fertilizer; its plant is tall, its root system is developed, its absorption capacity is strong,
thus it absorbs more nutrients. Except for C and hydrogen peroxide (H2O2), which come
from CO2, other nutrients must be absorbed from the soil. Therefore, to produce the same
yield, corn needs more fertilizer. In addition, compared to the main production areas of rice
and wheat, the arable land in the main maize-producing areas is seriously fragmented, and
the quality of its arable land is relatively poor. In order to pursue higher yields, farmers
often apply more fertilizers. On the contrary, the reform of the agricultural technology
extension system is lagging behind, and grassroots agricultural technology extension
organizations are under attack. It is difficult for farmers to obtain scientific information on
fertilization, which invisibly encourages farmers to overuse chemical fertilizers.

Carbon sinks (LNCS) have a significant positive influence on agricultural carbon
emissions in the country and the main rice-producing areas, but curb agricultural carbon
emissions in the main wheat-producing areas. Natural disasters (LNND) play a positive
role in promoting agricultural carbon emissions throughout the country, as well as in the
main rice- and wheat-producing areas. The Financial Support to Agriculture Policy (LNPS)
has a significant negative impact on agricultural carbon emissions in the country and its
main rice-producing areas. The results are consistent with those of Kärkkäinen et al. [55].
However, it has a significant positive impact on agricultural carbon emissions in the main
wheat-producing areas. The reason could be that China has relatively substantial financial
support for rice planting, as the world’s largest rice producer. From the perspective of
the input effect of the fiscal policy mechanism for supporting agriculture, the purchase
of agricultural machinery and tools directly increases the machinery and equipment in
agricultural production. The investment intensity promotes the consumption of fossil fuels,
thereby increasing carbon emissions. Alternatively, for farmers seeking to maximize output,
financial support for agriculture creates a certain pressure or incentive, and they can increase
output through the intensification of chemical inputs. Therefore, in the main rice-producing
areas, fiscal support-based agriculture policies can significantly promote agricultural carbon
emissions. The per capita income of farmers (LNIN) promotes agricultural carbon emissions
across the country and in the main rice-and wheat-producing areas. In other words, with
the development of the rural economy and the increase in per capita income, an increase in
planting scale can promote agricultural carbon emissions. The result is similar to that of
Kolte et al. [56]. In areas with higher economic levels, agricultural production tends to be
capital-intensive rather than labor-intensive; investment in agricultural input increases, and
the use of agrochemicals in agricultural production also increases, which objectively leads
to an absolute increase in total greenhouse gas emissions. In addition, from the viewpoint
of farmers’ lifestyles, the use of electricity and other energy sources also increases, thereby
further increasing agricultural carbon emissions.
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5. Conclusions and Policy Implications

Based on the data of 30 provinces in China from 2003 to 2018 in this study, we used a
threshold model to quantitatively study the impact of planting scale on agricultural carbon
emissions. Then, taking the main rice-, wheat-, and corn-producing areas as examples, we
further explored the impact of the scale of planting land on agricultural carbon emissions.
The conclusions that can be drawn are that, firstly, the distribution of carbon emissions from
the planting industry shows a decreasing trend from southwest to northwest, and that the
national carbon emissions from the planting industry also decrease. Secondly, the threshold
value of planting scale on agricultural carbon emissions is 2.444, the threshold effect is
99%.; it has an inverted “U” shape. Thirdly, a threshold effect of farmland management
scale on agricultural carbon emissions exists in the main rice- and wheat-producing areas,
and there is a double-threshold effect in the main rice-producing areas, but not in the main
corn-producing areas. Fourthly, the fiscal policy of supporting agriculture positively affects
agricultural carbon emissions.

Based on the above findings, this study has the following implications:

(1) The government should establish a unified carbon accounting system, in order to mon-
itor the scale of planting land and agricultural carbon emissions in all provinces, so as
to maximize the ecological effect of planting land. In terms of carbon emissions reduc-
tion, we can establish files on the basic situation of farmers’ agricultural production
and operation, calculate and formulate standards of use for pesticides, chemical fertil-
izers, and plastic film by farmers, and formulate reward and punishment measures,
in order to achieve the effect of carbon emissions reduction. It is suggested to reduce
the redundancy of agricultural production resources, promote the rational utilization
of agricultural factor resources, and protect the rural ecological environment.

(2) Continuously expanding the scale of agricultural land management is conducive to
reducing agricultural carbon emissions. We should constantly improve China’s land
transfer system, further clarify the property rights of agricultural land, issue policy
documents and measures to promote and reward the legal transfer of agricultural
land, and guide various forms of large-scale transfer. In particular, the main rice-
and corn-producing areas should speed up large-scale operation in order to reach
the inflection point of the inverted “U” shape as soon as possible. For the main
wheat-producing areas, the planting scale does not have an inverted “U”-shaped
impact on agricultural carbon emissions, but continuously promotes an increase in
carbon emissions. Therefore, the planting area of wheat-producing areas should be
reasonably planned to control carbon emissions.

(3) The government should increase investment in scientific research and encourage
scientific research in institutes, agricultural colleges, and enterprises, in order to carry
out research and development of low-carbon production technologies related to grain
production. At the same time, enterprises and scientific research institutions should be
supported to establish scientific research teams, in order to provide technical support
for agricultural carbon emission reduction.

This paper only analyzes the impact mechanism of land scale on planting carbon
emissions from a macro perspective. In the future, farmers’ level data can be further used
to study the impact path of agricultural land management scale on agricultural carbon
emissions, in order to verify the robustness of these conclusions.
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