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Abstract: Three-dimensional geovisualization in landscape design can be used to evaluate the efforts
of mitigating CO2 emissions. This study evaluated subjects’ emotional preferences for 3D landscape
design through an eye movement tracking experiment. In the case that the color of the building
materials was positively correlated with low carbon emissions, green, blue, and gray were typical
representatives of low carbon emissions. Through the eye movement tracking experiment, subjects’
emotional preferences for different building colors were obtained. The results show that the fixation
trajectory is consistent with the preset green and energy saving parameters, and the design effect of
the architectural landscape can be evaluated by detecting virtual eye movement tracking. There is
a coupling relationship between virtual eye movement tracking, expert interviews, and evaluation
results, so that it presents a logical relationship between virtual eye movement, the color of low-
carbon materials, and carbon emissions. In addition, the affective preference analysis and entropy
weight method confirmed their effectiveness in the evaluation of the 3D landscape design effect,
which had a positive impact on the CO2 emission reduction of the construction industry. These results
will contribute to the development of 3D landscape design in the architecture industry and provide
new ideas and methods for the carbon peak project.

Keywords: virtual reality; eye-tracking; behavioral preference; landscape design

1. Introduction

During the general debate of the 75th session of the United Nations General Assembly,
China announced an ambitious plan to peak carbon dioxide emissions by 2030 and become
carbon neutral by 2060. China aims to form collective actions for sustainable development
and green lifestyles, as well as aiming to promote the construction of “ecological civiliza-
tion” and “beautiful China” [1–4]. Excessive emissions of carbon dioxide are a serious and
urgent problem. The key to addressing climate change is to “control carbon emissions”,
and the path must be to achieve peak CO2 emissions and then carbon neutrality [5–8].
The construction industry, which takes up about 36% and 39% of annual global energy con-
sumption and carbon emissions, respectively, is a key area for carbon emission reduction [9].
China tops the world in terms of CO2 emission peaks, accounting for about 30%, whereas
the construction industry sits second among its three other major sector counterparts
(i.e., energy, transport, and life) in terms of carbon emissions [10,11]. The progress toward
completing the CO2 emissions peaking task by 2030 looks grim. According to statistics,
CO2 emissions peaking in 2018 reached approx. 2.1 billion tons, taking up about 20% of
total emissions nationwide [12–15]. The primary task of green building design is to ensure
the effective application of 3D landscape technology [16–18]. Firstly, the application of 3D
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landscape design can avoid the problems caused by the lack of energy and eliminate the
impact of landscape design on the natural environment. For engineering and construction
design, it should provide the air needed, control carbon dioxide emissions, protect the
natural environment, and avoid environmental pollution [19,20]. Secondly, 3D landscape
design can apply solar walls to enhance the insulation of engineering construction and
reduce energy losses, thus, geothermal energy technology and biomass energy technology
should be proactively introduced [21,22]. Moreover, establishing a resource recycling sys-
tem through geothermal energy in 3D landscape design can meet the basic needs of energy
use and avoid the waste of energy resources [23]. Finally, bio-intelligence technology can be
used to design an energy and material recycle and reuse system and transform all the waste
produced in the 3D landscape design process into recyclable resources, so as to achieve the
goal of carbon peaking and ultimately achieve the great vision of carbon neutrality [24,25],
as shown in Figure 1.
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The implementation of dual carbon planning is a complex system, and in addition to
the guidance of traditional methods, it is necessary to introduce new technical means to
update the system [28–31]. VR technology can be applied to the field of building design
and community planning [32]. Some scholars use VR technology to build a prototype
framework for carbon emissions prediction, simulate the carbon emissions of each con-
struction operation, and explore strategies to reduce carbon emissions of the construction
industry [33]. Virtual eye-tracking tracks eye movements by locating eye fixation points
or eye movements relative to the head using the principle of the infrared reflective [34].
Through the synchronous recording of the 3D spatial location of eyes/head, fixation dura-
tion, pupil size, blinking count, eyelid twitching, eyelid closure, and various other data,
the eye-tracking technology identifies factors that attract people’s attention, investigates the
visual means through which people perceive their surroundings, and analyzes the driving
factors of people’s decision-making. These allow the natural reactions unaffected by the
awareness of either the subjects or the examiners to be captured before eventually being
recorded and feedback is given in real time [35,36].

The evaluation methods for the visual preferences for design schemes include the
entropy method, the analytic hierarchy process, and the principal component analysis
method [37–40]. The analytic hierarchy process involves qualitative and quantitative anal-
ysis, and can tackle numerous practical problems that cannot be solved with traditional
optimization techniques. It allows the decision makers and decision analysts to com-
municate with each other, thus improving the decision-making process. The principal
component analysis method obtains the relationship between the factor variable and the
original variable by rotating the factor matrix. A comprehensive evaluation value is offered,
with the variance contribution rate of principal components as the weight.
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The research of applying virtual eye-tracking to achieve the carbon summit target is
still in the early stages, which is mainly reflected in the following aspects: (1) Theoretical
research is still in its infancy. Since 2020, this is a landmark announcement as China has
set out an ultimate end-point emissions target, and only a few researchers have engaged
in the theoretical exploration of VR technology and emission peak plan. Nevertheless,
there is still a long way in terms of moving on from the implementation of practical
cases [41]. (2) The research method has not yet formed a complete evaluation system.
Virtual eye-tracking and the concept of carbon peak are still emerging fields in recent years.
Until now there has not yet been a consensus among scholars about the national assessment
standards and conceptual framework, which leads to the demonstration period of carbon
peak building design based on virtual eye-tracking [42,43]. (3) Endogenous opportunity
and macro policy support are insufficient. Three-dimensional landscape design will take
more vigorous and effective approaches when pursuing an interdisciplinary integrated
system, which is made up of ecology, naturalization, design, and building theories. A lot of
research and demonstration are needed to form a complete endogenous opportunity and
macro policy [44].

In the conclusion, we suggest that: (1) virtual eye-tracking experiments are utilized
throughout the 3D landscape stage to determine the optimal design schemes, so as to facili-
tate the achievement of the low carbon emissions effect in the green building; (2) that virtual
eye-tracking is utilized to evaluate the visual preferences of the 3D landscape design effect,
and verifies the feasibility and timeliness of the evaluation method; therefore, this paper
intends to use the eye-movement tracking data in VR technology to evaluate the design
effect of low-carbon buildings, and introduce the stress color emotion characteristic ex-
periment that represents the concept of low-carbon to test the feasibility of the design
effect of low-carbon buildings, so as to provide a new concept and method for carbon peak
action plan.

2. Materials and Methods
2.1. Study Area

This research selected the design of a museum in Wuhan, Hubei Province of China
as the case study. The preliminary field survey found that the design of this museum
advocates the principles of green, environmental protection and sustainability, and it
invited bids for the design for the museum worldwide. A total of 15 design firms signed
up for the bidding. Experts in the field of 3D landscape design reviewed the conceptual
design schemes and determined that the top six candidates submitted six design schemes
as candidate schemes, as shown in Figure 2.

The thermal conductivity coefficient, building density, and green space ratio men-
tioned in this paper are provided by the bidding design company. Thermal conductivity
refers to the thermal conductivity of a 1 m cross-sectional area within 1 h in a stable thermal
conductivity state when the thickness of the material is 1 m, the temperature difference
between the two surfaces is 1 C, the main indicator is the thermal conductivity of the mate-
rial, and another important parameter is also the measurement of the thermal insulation
performance—the smaller the value, the better the thermal insulation effect [45]. Building
density refers to the coverage rate of buildings, specifically the ratio between the total base
area of all buildings within the scope of project land and the area of planned construction
land [46]. Green land ratio refers to the ratio between the green space area within the scope
of planned construction land and the area of planned construction land [47].

According to the different properties of the internal functions of the 3D landscape,
the floor area ratio, thermal conductivity coefficient, and green area ratio of the 3D landscape
project in scheme A are controlled at 2.20, 0.93, and 38.30, respectively, which takes green,
ecological, and energy-saving concepts into full consideration to achieve the harmony and
integration between people, and between humans and nature. The 3D landscape style
of scheme B adheres to the basic principle of integration with the overall style of the old
Wuhan, retaining the red brick walls of the original landscape to maintain the spirit of
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the place. The floor area ratio, thermal conductivity coefficient, and green area ratio of
the landscape project are controlled at 0.92, 11.32, 34.19, respectively. In scheme C, the 3D
landscape adopts an enclosed layout, which fits into the texture of the site. The space
is enclosed, yet not blocked. The interior and exterior are interwoven. The floor area
ratio, thermal conductivity coefficient, and green area ratio of the landscape project are
controlled at 10.07, 29, 1.60, respectively. The illusory space set inside scheme D makes
people feel as if they were in a scene of steep canyon and ravine. The floor area ratio,
thermal conductivity coefficient, and green area ratio of the landscape project are controlled
at 0.81, 13.5, 35, respectively. Scheme E reflects the overall 3D landscape style in a simple,
pragmatic, harmonious, solemn, and comfortable manner, and it pursues a kind of modern
rhyme. The floor area ratio, thermal conductivity coefficient, and green area ratio of the
landscape project are controlled at 10.2, 21.6, 1.23, respectively. In scheme F, multiple
3D landscape courtyards are formed through enclosed spaces and semi-enclosed spaces.
The floor area ratio, thermal conductivity coefficient, and green area ratio of the landscape
project are controlled at 0.23, 9.37, 35.50, respectively, as shown in Table 1.

 

 

 

 

 

  

(a) Three-dimensional landscape location (b) The scheme of groups A–F 

 

 

 

Figure 2. Three-dimensional landscape location identification and overview. 

 

Figure 2. Three-dimensional landscape location identification and overview.

According to the selection procedures for these design schemes, although opinions
and suggestions from experts in building planning at home and abroad were extensively
solicited, and taking cost reduction into consideration, experts were also invited to have a
virtual immersion experience so as to choose the optimal scheme from the perspective of
VR technology.
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Table 1. Green parameter control objectives for design schemes.

Classify Thermal
Conductivity (λ)

Coefficient of Heat
Accumulation (s)

Specific Heat
Capacity (Cp)

Building
Density (ρ)

Greening Rate
(%)

Floor Area
Ratio (%)

Scheme A 0.93 11.37 1050 19.80 38.30 2.20
Scheme B 0.92 11.32 1050 28.97 34.19 1.23
Scheme C 0.81 10.07 1050 29 35 1.60
Scheme D 0.81 10.07 1050 13.50 35 1.17
Scheme E 0.45 10.20 920 21.60 35 1.23
Scheme F 0.23 9.37 1620 27 35.50 1.23

(Source: The green parameter control target values are from the standard limits in the Thermal Design Code for
Civil Building (GB50189-2015), the Unified Standard for Green building (GBT/50378-2019), and the Curtain Wall
for Building (GB/T 21086-2007)).

2.2. Data Sources

(1) Experimental Study on Behavior Preference: According to the literature retrieval,
the combination of VR and the ErgoLAB human–machine environment synchronized
(ErgoLAB) the platform for test experiments that can visualize the subjects’ eye-
movement tracking data. It is conducive for monitoring the green and 3D landscape
effects of different schemes, so as to improve the 3D landscape monitoring efficiency
of the whole process from design to construction to operation [48–51].

(2) Experiment Hypotheses: In order to explore the positive impact of virtual eye-
movement behavior, a preference experiment on the green and 3D landscape effects
of design schemes was conducted. This paper conducts research on these schemes,
and the following hypotheses are proposed.

Hypothesis 1 (H1). The subjects with different job roles have a psychological preference for the
3D landscape design effects of different schemes. According to the parameters, such as the thermal
conductivity coefficient, specific heat capacity, and volume ratio, obvious instructions were set to
obtain the psychological response of the subjects to the variables of design schemes, thereby obtaining
their motivation to select the optimal scheme.

Hypothesis 2 (H2). The saccadic trajectory distribution of the subjects is basically consistent with
the advantages and disadvantages of the preset green and 3D landscape control parameter values
of the design schemes, reflecting that the degree of visual behavioral preference of the subjects is
positively correlated with the green and 3D landscape effect of the schemes.

Hypothesis 3 (H3). The evaluation method based on the degree of visual behavior preference of
virtual eye movement can be used to monitor the schemes and enrich the implementation of the CO2
emissions peaking plan in the 3D landscape sector.

(3) Experimental Design. This paper explores whether a virtual eye-tracking experi-
ment has a positive impact on the selection of schemes. The experiment adopted
a single-factor and two-level (high interest and low interest) design between the
subjects. The subjects referred to the green and 3D landscape parameter values set
in the design schemes. The subjects were divided into an experimental group and
control group for an independent reading of the design schemes, respectively, and the
virtual eye-movement tracking data with high interest or low interest were obtained.
The experimental group included the subjects in the virtual eye-movement tracking
experiment. The control group included the expert interviewers after the experiment.
The goal of this experimental design is to use the virtual eye-movement behavior
preference degree to evaluate design schemes. In addition, the experimental group
aims to obtain participants’ emotional preferences for low-carbon building colors
by detecting eye movement data. Expert interviews in the control group were con-
ducted to assist the experimental group in the study of the carbon emission effect.
According to evidence in the literature, it was found that the color of building ma-
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terials was correlated with low-carbon building emissions [52,53], so as to present a
logical relationship between virtual eye movement, the color of low-carbon materials,
and carbon emissions.

(4) Subjects and Materials. Design of the Subjects: Based on the preliminary interviews,
40 3D landscape design experts, scholars, and workers were randomly invited from
the research area as the subjects, with an average age of 35 ± 2, and a male/female
ratio of 1:1. All subjects had an uncorrected or corrected visual acuity of 5.0 or
above, and no symptoms of color blindness or weakness. All were right-handed.
Twenty subjects were randomly assigned to the experimental group, and twenty to the
control group, and they had not previously participated in any virtual eye-movement
related experiments. To avoid the impact of familiarity on experimental accuracy,
all subjects were required to have practical experience in design scheme, construction,
post maintenance, and so on. Before the experiment, the subjects were informed that
they might experience dizziness and they signed the informed consent form.

Experimental Equipment: The experimental instruments were a Tobii X2-30 virtual
eye-tracker from Sweden, which contained two 120 Hz eye-tracking lenses with a viewing
angle of 110◦ and an accuracy of 0.5–1.1◦, and a HUNDEROBOT III computer operating
platform. The experimental platform was the ErgoLAB developed by Beijing KINGFAR
Technology Co., Ltd., which is the experiment shown in Figure 3. The hardware and
software operated coordinately to ensure the scientific assessment of the 3D landscape
effect evaluation in the schemes [33].
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Stimulus Material: In accordance with the implementation of the standards of the
National Emissions Peaking Initiative, 3D Max software and BIM modeling were employed
to extract the virtual renderings of 3D landscapes and junctions, and output a total of
120 pieces of image data in 20 groups with 1920x1200 pixels and 300 dpi, in order to
guarantee a comfortable gaze distance for the subjects when answering questions on visual
behavioral preference and spatial perception.

Questionnaire Material: The experimental questionnaire was set as a post-experiment
questionnaire to ensure that the subjects had the memory of design schemes A–F. The content
of the questionnaire was derived from the green and 3D landscape parameter control goal.
The five-grade marking system using a Likert scale (the numerical value from high to
low respectively corresponding to: like very much, like, do not like very much, dislike,
and so on.) was adopted to analyze the subjects’ different degrees of appreciation of the 3D
landscape design schemes on the ErgoLAB platform, and the content validity proved the
scientific nature of the questionnaire survey data. The questionnaire basically reflected the
tested content while containing good content validity.

(5) Experimental Process and Settings. All subjects were invited to the site by the head of
the experiment to familiarize themselves with the experimental environment, process,
instructions, and so on, to ensure the accuracy and reliability of the experimental
process and to eliminate possible interferences. Before the experiment, the instructions
(technical parameters of the design schemes) were practiced repeatedly so that the
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subjects could be immersed in the experiment within a shorter period of time, and their
anxiety, excitement and other emotions could be alleviated. The experimental scene
was shown in Figure 4. The whole experimental process was divided into three stages:
the pre-experiment stage, the experiment stage, and the post-experiment stage.
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Pre-experiment Stage: First, all subjects filled in the demographic information (in-
cluding gender and age) and were divided into different groups by their job attributes.
Then, all the devices were calibrated on the ErgoLAB platform to ensure that the error
margin of 5 viewpoints was within 20 pixels. Once the mapping function generated by the
eye-movement parameters had been determined, the test could be started. The test time
was set to 1 min to guarantee the integrity of the experimental procedure.

Experiment Stage: During the experiment, the head of the experiment asked the
subjects to recognize and read the stimulus material (video) for 3 min independently
in accordance with the instructions, and then they recorded their virtual eye-movement
parameters in real time and mapped the faze points. The above steps were repeated until
all 20 subjects completed the experiment.

Post-experiment Stage: The head of the experiment imported the experimental data into
Excel and eliminated one piece of data with a larger error to obtain 19 saccades tracking
data. Subsequently, SPSS 21 was used to analyze the reliability of the experimental data
and the control data. The experimental results showed the Kronbach coefficient (α) = 0.882,
KMO = 0.767, confirming that the subjective questionnaire results were statistically significant.

(6) Analysis of Experimental Results: Comparison of behavioral preference degree of the
subjects. It aims to investigate whether there is a significant psychological difference
in the degree of behavioral preference for green and 3D landscape effects. The score of
behavioral preference for green and 3D landscape design was taken as the dependent
variable, and saccades tracking times were taken as the independent variable to
conduct the independent sample T test. The results showed that the scores of the
two groups were different in the degree of behavioral preference (p = 0.171 > 0.05).
This finding indicates that the scores of the two groups of subjects in the degree of
behavioral preference are not statistically significant and are comparable.

A comparison of the behavioral preference degree on the 3D landscape design effect
took place. In order to determine the influence of the behavioral preference degree of the
subjects with regard to the design schemes, the behavioral preference degree of the two
groups of subjects was calculated, and the results showed that there was no statistical signif-
icance in the average saccades’ tracking times in the experimental group (p = 0.141 > 0.05).
In the control group, the average level of behavioral preference with a behavioral preference
was higher than that without a behavioral preference (p = 0.037 < 0.05), as shown in Table 2.
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The experimental results showed that the behavioral preferences of the subjects in the
virtual eye-movement situation could increase the awareness and understanding of the
3D landscape design effect, verifying the positive impact of the virtual eye-movement
behavioral preference experiment on the 3D landscape design effect. Thus, the hypotheses
are valid; however, the influence of virtual eye-movement behavior preference on dif-
ferent design schemes is still unknown, and needs further analysis and verification for
future exploration.

Table 2. Comparison of behavioral preference between the experimental group and control group.

Group Category N M SD p

Experimental group With behavioral preference
19

7.01 1.79
>0.05Without behavioral preference 6.91 1.76

Control group With behavioral preference
20

6.54 3.54
<0.05Without behavioral preference 6.11 3.32

2.3. Data Analysis
2.3.1. Evaluation Indicators

In the research ranking the 3D landscape design schemes, the visual preferences are
most related to the subjects and the design schemes. This research selects 21 virtual eye-
tracking indicators, among which, 8 are virtual eye-tracking fixation indicators, 8 are virtual
eye-tracking gaze indicators, 3 are pupil diameter indicators, and 2 are virtual eye-tracking
experiment indicators, as shown in Table 3.

Table 3. Evaluation indicator system and indicator interpretation (the number of the subjects’ fixation
points in one experiment).

Target Layer Criterion Layer Eye Movement
Tracking Index Interpretation

Evaluation of the design
scheme based on
VR technology

Virtual Eye
Movement Fixation

Number of Fixations Number of subjects’ fixation points in an
experimental project.

Duration of Fixation Total fixation time of subjects in an experimental project.
Average Fixation
Duration

The average fixation time of subjects in an
experimental project.

Fixation Standard
Deviation

Standard deviation of subjects’ fixation time in an
experimental project.

Maximum Fixation Time The longest fixation time of subjects in an
experimental project.

Fixation Ratio The number of subjects’ fixations per unit time in an
experimental project.

Fixation’s Sum of
Deviation

The sum of the difference between the subjects’ single
fixation time and the average fixation time in an
experimental project.

Fixation’s Maximum
Deviation

The maximum value of the difference between the single
fixation time and the average fixation time of subjects in
an experimental project.

Virtual Eye
Movement Gaze

Number of Gazes Number of gaze points of subjects in an
experimental project.

Duration of Gaze Total gaze time of subjects in an experimental project.

Average Gaze Duration The average gaze time of subjects in an
experimental project.

Gaze Standard Deviation Standard deviation of subjects’ gaze time in an
experimental project.

Maximum Gaze Time The longest gaze time of subjects in an
experimental project.

Gaze Ratio The number of subjects’ gazes per unit time in an
experimental project.

Gaze’s Sum of Deviation
The sum of the difference between the subjects’ single
gaze time and the average fixation time in an
experimental project.

Gaze’s Maximum
Deviation

The maximum value of the difference between the single
gaze time and the average fixation time of subjects in an
experimental project.
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Table 3. Cont.

Target Layer Criterion Layer Eye Movement
Tracking Index Interpretation

Pupil Diameter
Average Pupil Diameter Average pupil diameter of subjects in an

experimental project.

Minimum Pupil Diameter Minimum pupil diameter of subjects in an
experimental project.

Maximum Pupil
Diameter

Maximum pupil diameter of subjects in an
experimental project.

Virtual eye
Movement Experiment

Total Time Total time of subjects in an experimental project.
Subjects Condition Basic conditions of subjects in an experimental project.

2.3.2. Evaluation Method Selection and Weight Analysis

The entropy method determines the discrete degree of an indicator based on the
entropy value [54,55]. The smaller the entropy value, the greater the discrete degree and
impact on the evaluation results of the indicator; therefore, in order to ensure the objectivity
and impartiality of the evaluation index calculation, this study combines the entropy
method and analytic hierarchy process to form a more comprehensive entropy weight
analysis method to calculate the index weight value [56,57].

In the analytical process of index weight, m (the number of evaluation schemes) = 6,
n (the number of evaluation indicators) = 21, and Xij represents the experimental result
data for a specific scheme and evaluation indicator. As the indicators vary in dimensions
and quantities, it is necessary to standardize the initial data of the indicators. The method
to standardize Yij is shown as below:

Yij =
maxxij − xij

maxxij − xij
; i ∈ [1, m], j ∈ [1, n] & Yij =

xij −minxij

maxxij −minxij
; i ∈ [1, m], j ∈ [1, n] (1)

fij = Yij/
n

∑
j=1

Yij (2)

The smaller the result of Formula (1), the better the effect. The greater the result of
Formula (2), the better the effect. The ratio fij of the indicator value of the i-th indicator for
the j-th design scheme.

Define the entropy value of the i-th indicator and calculate the entropy weight wi of
the i-th indicator with the entropy weight method. The formula is shown as below:

Ei = −k
n

∑
j=1

fij ln fij, (k = ln m) & wi =
1− Ei

m−
m
∑

m=1
Ei

, 0 ≤ m ≤ 1;
m

∑
i−1

wi = 1 (3)

By combining the objective weight evaluation results of the entropy weight method
and the evaluation results Wi of the analytic hierarchy process method, the comprehensive
weighting ui is obtained, thus enhancing the accuracy of the weight.

fij = Yij/
n

∑
j=1

Yij & ui = Wiwi/
m

∑
i=1

f = 1 (4)

2.3.3. The Ranking of the 3D Landscape Design Schemes

By combining the objective weight evaluation results of the entropy weight method
and the evaluation results Wi of the analytic hierarchy process method, the accuracy of the
weight is enhanced [48]. The operation steps are shown below:

ui = Wiwi/
m

∑
i=1

Wiwi (5)
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3. Results
3.1. Tracked Saccade Trajectories Are Consistent with the Green Energy-Saving Control
Parameters Preset

This study conducted a virtual eye-tracking experiment of the 6 schemes, obtained the
saccades’ tracking data on 19 subjects (Table 4), and also exported the diagrams of tracked
saccade trajectories from the ErgoLAB platform, as shown in Figure 5.

Table 4. Statistics on the number of saccades of the subjects during virtual eye tracking.

Classify A B C D E F

1 199 118 145 111 136 135
2 221 170 100 136 123 165
3 203 105 142 157 147 136
4 138 91 105 161 130 125
5 257 165 192 175 218 122
6 210 136 191 245 253 222
7 161 160 146 97 33 55
8 193 66 57 91 84 155
9 123 158 134 168 193 59

10 174 170 320 116 69 70
11 111 57 76 69 59 71
12 74 64 89 93 74 104
13 120 98 87 8 107 95
14 123 112 214 119 19 24
15 87 45 69 68 67 69
16 101 32 60 84 83 55
17 119 138 146 94 87 230
18 234 86 155 176 153 154
19 188 104 212 84 114 196

Total 3036 2075 2640 2252 2149 2242
(Source: Groups A–F come from Scheme A, Scheme B, Scheme C, Scheme D, Scheme E, and Scheme F; Groups 1–19
come from 19 subjects).
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According to the visualization results shown in Figure 5, among the tracked saccade
trajectories of the 19 subjects when seeing 6 groups of 120 pieces of stimulus material
in three minutes, schemes A and C have the largest number of saccades, which is 3036
and 2640, respectively; the total number of saccades for schemes D, E, and F is 2252,
2149, and 2242, respectively; scheme B has the lowest total of saccades, which is 2075.
The experimental results found that the characteristics of the tracked saccade trajectories
are highly consistent with the green energy-saving control parameters preset in the six
design schemes, and these schemes are in the sequence of Scheme A > Scheme C > Scheme
D > Scheme F > Scheme E > Scheme B, according to the trends of tracked saccade trajectories
from schemes A to F.

3.2. Confirmation of Significant Effect of the Eye-Movement Emotion Preference Experiment on
Low-Carbon Architectural Design

Through an analysis of complete data on visual behavioral preferences, it was found
that the selection of the 3D landscape design scheme is closely related to the degree of
virtual eye-tracking visual behavioral preference. Furthermore, the paired-samples T test
showed that there are significant differences between the 6 design schemes through a
virtual eye-tracking visual behavioral preference indicator (F = 1.23, p = 0.11 > 0.05), but the
differences between them in minimum fixation duration are not significant F(1, 149) = 9.20,
(p < 0.01). As for the indicator for the number of fixations, there are significant differences
between the six design schemes in the number of blinks, fixation duration, and the number
of saccades F(1, 149) = 70.23, (p < 0.01). Regarding the indicator for average fixation duration,
there are insignificant differences between the number of blinks, fixation duration, and the
number of saccades F(1, 149) = 6.89, (p < 0.01). For the indicator for the frequency of
fixations, there are significant differences between them in the number of blinks, fixation
duration, and the number of saccades F(1, 149) = 55.62, (p < 0.01), as shown in Figure 6.
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According to the analysis shown in Figure 6, there are significant differences between
the 6 groups of design schemes in eye-tracking emotional preference indicators for the
following reasons. Firstly, in the saccades’ tracking behavior of the subjects, the average
number of fixations and frequency of fixations are 823 N and 149 N/min, respectively,
indicating that the eye-tracking emotional preference for different design schemes is in
direct proportion to average number of fixations and frequency of fixations, as the larger the
number of fixations and the higher the frequency of fixations, the stronger the preference
of the subjects. Moreover, the number of blinks and frequency of blinks in Figure 6A are in-
versely proportional to the saccade number and saccade frequency in Figure 6C, indicating
that under the influence of instructions, the subjects can clearly distinguish between the
advantages and disadvantages of the carbon emission effects of different schemes through
the frequency of fixations. Secondly, when the saccades track the emotional behavior of the
subjects, the average lasting duration and maximum fixation duration times are 0.81 s and
0.16 s, respectively, indicating that the virtual eye-tracking emotional preference for differ-
ent design schemes is directly proportional to the lasting duration and fixation duration,
as the longer lasting duration and fixation duration, correlates with the stronger emotional
preference of the subjects. In addition, in Figure 6B, blink duration is inversely proportional
to maximum saccade duration, indicating that under the influence of the instructions,
the subjects can clearly reflect the advantages and disadvantages of the carbon emission
effects of the green schemes through fixation duration. In general, the subjects’ virtual
eye-tracking emotional preference degree can track the green design effect of schemes
effectively, which could promote the benefits to the government to improve the carbon
emission efficiency of 3D landscape.

3.3. Virtual Eye-Tracking Vision and Expert Interviews Have a Fitting Relationship with
the Evaluation

In the evaluation of the degree of visual preference of the subjects in the virtual
eye movement experiment, the entropy weight method was used to calculate through
Formulas (1) and (2), to obtain the weight of 21 indicators wi = [0.021, 0.071, 0.047, 0.135,
0.023, 0.061, 0.022, 0.041, 0.003, 0.042, 0.032, 0.025, 0.012, 0.004, 0.027, 0.042, 0.023, 0.054,
0.031, 0.003, 0.001]. The analytic hierarchy process was employed to calculate through
Formulas (3) and (4), to obtain the weight of 4 criterion layers (virtual eye movement
fixation, virtual eye movement gaze, pupil diameter, virtual eye movement experiment)
W = [0.386, 0.302, 0.230, 0.082], and the consistency test was passed. C.R. (Consistency
Ratio) was calculated as 0.014, and C.R. < 0.10, which indicates that the consistency test
was in line with expectations. According to Formula (5), the entropy weight method and
the analytic hierarchy process were combined, after weighting the visual preference-based
comprehensive evaluation value of the 3D landscape design scheme, which was calculated
as ui = [0.613, 0.322, 0.585, 0.504, 0.495, 0.501]. The evaluation results are ranked by value as
Scheme A > Scheme C > Scheme D > Scheme F > Scheme E > Scheme B, and the evaluation
results have a fitting relationship with the evaluation results of the virtual eye-tracking
visual behavioral preference. The results show that the evaluation based on virtual eye-
tracking or expert interviews can both be applied to the selection of 3D landscape design,
and can both interact with each other, providing a scientific and reasonable basis for the
field of landscaping to achieve CO2 emissions peaking as early as possible.

4. Discussion and Conclusions

This paper conducts an experimental study on the 3D landscape effect by using
the virtual eye-movement emotional preference degree, which is more objective than the
traditional expert review and questionnaire interview, and also enriches the technical means
of implementing the CO2 emissions peaking initiative in the construction industry. This is
consistent with the feasibility assessment of the implementation of CO2 emissions peaking
initiative in China’s construction industry [58,59]. It is proven that in the monitoring
of the 3D landscape design effect, the emotional preference evaluation, which is based
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on the virtual eye-movement experiment, has a significant impact on data visualization,
data disclosure and cost saving, compared with peer review, and can also promote the
scientific rationality for 3D landscape design.

Studies show that there is no unified technical evaluation system in the identification of
landscape designs. In this paper, virtual eye-tracking is introduced in design identification.
Computer visualization helps enhance the optimization efficiency of the design schemes.
To improve the identification and evaluation system of 3D landscape design schemes, it is
suggested that electroencephalogram technology is leveraged [60], as it tends to facilitate
the integration of these technologies into the system from the perspective of the five senses,
it improves the identification quality of design schemes, and it builds a sound evaluation
system of green ecological landscape design.

Stress color change plays a boosting role in the evaluation of the 3D landscape design
effect. The results show that color stress emotional change will play an increasingly
important role in bridging the emotional preference experiment and carbon emission peak
program. We tried to use the emotional preference experiment to evaluate the design
effect of the 3D landscape, and introduced the color stress emotional change to verify
the evaluation results, which has an important reference value for verifying the research
results. Although the evaluation of the 3D landscape design effect not only includes
concentrated areas of green and blue, but gray in the glass curtain wall, with a strong
sense of science and technology, the above three colors are typical representatives of low
carbon emission and play a boosting role in the quantitative and qualitative research of
green and low carbon. This is consistent with the research results of Kim et al. (2019),
Ammann et al. (2020) and Latini et al. (2021) who used VR technology for the visualized
analysis of human and animal sensory recognition in the fields of environment, color,
and carbon emission [61–63]. Moreover, this research also has some limitations. Firstly,
the proficiency of the handle operation was used as the control variable and the spinning
sensation and movement sensitivity would affect the accuracy of experimental data to
a certain extent. A pre-experiment could be carried out in the front-end stage of the
experiment and the subjects could perceive the experimental environment and handle
the operation mode in advance to improve the accuracy of experimental data. Secondly,
only 20 subjects were randomly invited during the experiment and the overall sample size
was still slightly insufficient.

In 2020, China promulgated the criterion documents including the General Code for
Building Energy Conservation and Renewable Energy Utilization, General Code for the
Built Environment, General Code for Building Energy Conservation and the Renewable
Energy Utilization that clarify the mandatory indicators and basic requirements for the
design, construction, commissioning, acceptance, and operation management of three
aspects: energy-saving design of new constructions, energy-saving design of existing
buildings, and utilization of renewable energy. The General Code for the Built Environment
stipulates the mandatory indicators and basic requirements for the design, and testing
and acceptance from four aspects, namely, building an acoustic environment, building
a light environment, and building thermal engineering. Different documents all cover
the detection and evaluation of building and landscape design efficiency [64]; therefore,
the application of VR technology in 3D landscape design not only helps improve the
application evaluation system and related laws and regulations, but also facilitates the
construction industry to achieve CO2 emissions peaking as early as possible.
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