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Abstract: The spatial variation of correlation between Cd accumulation and its impact factors plays
an important role in precise management of Cd contaminated farmland. Samples of topsoils (n = 247)
were collected from suburban farmland located at the junction of the Yellow River Basin and the
Huaihe River Basin in China using a 200 m × 200 m grid system. The total and available contents
of Cd (T-Cd and A-Cd) in topsoils were analyzed by ICP-MS, and their spatial distribution was
analyzed using kriging interpolation with the GIS technique. Geographically weighted regression
(GWR) models were applied to explore the spatial variation and their influencing mechanisms of
relationships between major environmental factors (pH, organic matter, available phosphorus (A-P))
and Cd accumulation. Spatial distribution showed that T-Cd, A-Cd and their influencing factors
had obvious spatial variability, and high value areas primarily cluster near industrial agglomeration
areas and irrigation canals. GWR analysis revealed that relationships between T-Cd, A-Cd and
their environmental factors presented obvious spatial heterogeneity. Notably, there was a significant
negative correlation between soil pH and T-Cd, A-Cd, but with the increase of pH in soil the
correlation decreased. A novel finding of a positive correlation between OM and T-Cd, A-Cd was
observed, but significant positive correlation only occurred in the high anthropogenic input area
due to the complex effects of organic matter on Cd activity. The influence intensity of pH and OM
on T-Cd and A-Cd increases under the strong influence of anthropogenic sources. Additionally,
T-Cd and A-Cd were totally positively related to soil A-P, but mostly not significantly, which was
attributed to the complexity of the available phosphorus source and the differences in Cd contents in
chemical fertilizer. Furthermore, clay content might be an important factor affecting the correlation
between Cd and soil properties, considering that the correlation between Cd and pH, SOM, A-P
was significantly lower in areas with lower clay particles. This study suggested that GWR was an
effective tool to reveal spatially varying relationships at field scale, which provided a new idea to
further explore the related influencing factors on spatial distribution of contaminants and to realize
precise management of a farmland environment.

Keywords: spatial variation; Cd; kriging interpolation; GWR; influential factors

1. Introduction

Farmland quality and soil health are important issues of concern to the international
community, while contamination of soils with cadmium (Cd) is a serious problem world-
wide [1]. Human industrial and agricultural activities, such as mining, smelting, transport
activities, fertilization and sewage irrigation, have resulted in varying degrees of Cd
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contamination in farmland soils in many parts of the world [2–5]. Cadmium (Cd) con-
tamination is the most extensive source of pollution in Chinese farmland [6]. According
to the Ministry of Land and Resources and the Ministry of Environmental Protection in
2014, the over -standard rate of Cd for farmland soil in China exceeded 7%, the highest of
the eight super-standard metal elements. Cd contamination in farmland soils leads to Cd
accumulation in the edible part of crops, and thus might affect human health by entering
the food chain [7]. Therefore, it is necessary to take measures to effectively control Cd
contamination and its harm to human health. Cd bioavailability is strongly influenced by
soil properties, which further affects the absorption and accumulation of heavy metals by
crops and humans [8–10]. However, Cd accumulation and soil properties, as well as their
relationship, usually show great spatial variability, which brings problems for effective
farm management at field scale. The study of Oliveira et al. (2019) showed that uniform
management of agricultural soil, without considering the local soil and the spatial vari-
ability of its properties, may accelerate the soil degradation process, while dividing the
field into homogeneous management zones according to spatial variation can result in
more adequate and sustainable soil management [11]. Therefore, it is of great significance
to make clear the spatial variability of Cd accumulation in soils and its relationship with
influencing factors in order to promote quantitative research into the soil environment and
the implementation of precision agriculture.

Cd accumulation and bioavailability are not only influenced by pollution sources, but
also closely correlated to soil properties such as pH and OM [8,9,12,13]; thus the spatial
pattern of Cd contents is also related to the heterogeneity of soil properties. However,
previous research on spatial distribution of heavy metals and soil properties in soils of a
specific region were mainly based on traditional statistical analysis (such as correlation
analysis, regression analysis, et al.) [14,15]. Thus, the obtained results only presented a
global trend for the data structure or spatial distribution, which lacks in-depth interpreta-
tion of spatial information from the data itself and the heterogeneity of the relationships
between heavy metal accumulation and its influencing factors. Actually, the relationships
between heavy metal accumulation and environmental factors often showed an obvious
spatial heterogeneity [16]. With the development of the geographical information system
(GIS), mapping based on GIS in conjunction with statistical methods has become a powerful
approach to describe the spatial distribution of contaminants in soils [17–20]. Geographi-
cally Weighted Regression (GWR) proposed by Fotheringham et al. (1998) is an important
method to solve the spatial heterogeneity of data, which embedded spatial location of
data into a linear regression model and made regression coefficients vary with spatial
location [21]. Brunsdon and Fotheringham (1996) first applied the GWR model to study
the spatial distribution of disease in 1996, which showed that the GWR model had a better
fitting effect than that of the general linear regression model [22]. Then, the GWR model
was used in the ecological and economic fields [23–25]. More research confirmed that the
GWR model was superior to traditional methods such as the least squares linear (OLS)
regression model and multiple linear regression (MLR), in terms of exploring the spatial
variation relationship between various factors [26–28]. With the improvement of the GWR
model, it has been gradually applied to study the spatial variability of the relationships
between environmental pollutants and their influencing factors. For instance, Chen et al.
(2016) and Xiao et al. (2018) studied the spatial and temporal distribution of air quality and
its impact factors using GWR [29,30]. Li et al. (2017) used the GWR model to study the
correlation between soil pollution and landscape variables at different scales in the Pearl
River Delta [31]. Yuan et al. (2020) explored spatially varying relationships between Pb
and Al in the urban soils of London at the regional scale using the GWR model [32]. Xu
and Zhang (2021) applied the GWR model to investigate spatially varying relationships
between total organic carbon contents and pH values in European agricultural soil [33].
However, most GWR analysis was still conducted at a larger scale, such as for cities [34] and
provinces [35,36], and lacking in fine-grained analysis oat a field scale. Especially, research
on spatial variability of the relationship between Cd accumulation and soil properties is
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still scarce. Previous studies have shown that a general linear model cannot effectively
describe the local spatial differences, while the local GWR can better reflect the spatial
variability of the correlation between each influencing factor and the contents of available
heavy metal in soil, which can provide powerful information for precise management and
sustainable development of agricultural land.

Our study selected a peri-suburban farmland area located at the junction of the Yellow
River Basin and the Huaihe River Basin in China as a study case, which was a typical
complex polluted area affected by sewage irrigation, industrial and agricultural activities.
The objective of this study was to analyze the spatial heterogeneity of Cd accumulation and
soil properties in the study area by Kriging interpolation method with the GIS technique,
and to apply the GWR model to explore the spatial variability of the relationships between
Cd accumulation and major soil factors. This study can provide a theoretical basis for the
precise control of farmland non-point source pollution and the accurate remediation of Cd
pollution in farmland soil.

2. Materials and Methods
2.1. Description of Study Area

The study area is approximately 20 km2 in size and is located in the Huanghuai
junction of the Yellow River Basin and the Huaihe River Basin, which is an important
agricultural production zone 8n China (Figure 1). This area has a continental monsoon
climate, characterized by a wide seasonal variation in rainfall (annual 627.5 mm). Eutyic
Cambisols is the predominant soil type in this area (United Nations soil classifications), which
was developed from the Yellow River alluvial deposits. Wheat and corn are important crops
grown in the area. Some industrial and mining enterprises including chemical fertilizer
plants, zinc smelting plants, a carbon factory, pharmaceutical companies, a thermal power
plant, etc., are clustered in the study area. The Huafei River, running from north to
south through the study area, receives plenty of wastewater from these industrial sources.
The Huafei River has been used for agricultural irrigation in the area since 1962. Thus,
the study area presented a state of coexistence for sewage irrigation and industrial and
agricultural pollution.
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2.2. Sampling and Experimental Analysis
2.2.1. Sampling and Sample Preparation

Topsoil samples from 247 sampling sites were collected from the study area using a
200 m × 200 m grid method. At each sample site, five topsoil (depth, 0–20 cm) subsamples
were gathered in a 10 × 10 m2 area, and were mixed into a composite sample. Sample sites
are shown in Figure 1. The coordinate of each sampling site was obtained by GPS (WGS-84
coordinate system). Soil samples were air-dried, then grounded with a porcelain mortar
and passed through a 0.149-mm pore-size nylon sieve.

2.2.2. Sample Treatment and Elemental Analysis
Soil Properties Analyses

Soil properties were measured using routine methods [37]. Soil pH was measured
in a 2.5:1 water/soil suspension using a pH meter; soil organic matter (SOM) content
was measured with the K2Cr2O7-H2SO4 oil-bath-heating digestion method; the available
phosphorus (A-P) contents were analyzed by Molybdenum-antimony Anti-colorimetric
method, and measured by ultraviolet-visible spectrophotometer (UV-3600, Shimadzu,
Kyoto, Japan). The particle size of soil samples was analyzed using a Mastersizer 2000 laser
particle size analyzer (Malvern, England) after pretreatment with 10% H2O2, 10% HCl and
0.05 mol L−1 (NaPO3)6 dispersant (Lu, 2000).

Determinations of Total Cd and A-Cd Contents in Soils

A weight of 0.1000 g of each dried soil sample was digested with a 5 mL HNO3-HClO4-
HF (3:1:1, v/v/v) mixture using the full automatic graphite digestion instrument (ST-60,
Polytech Instrument Ltd., Beijing, China) for the determination of total Cd (T-Cd) [38].
The available contents of Cd (A-Cd) were extracted by DTPA (0.005 mol L−1 Diethylene-
triamine-penta-acetic acid (DTPA), 0.01 mol L−1 CaCl2 and 0.1 mol L−1 Triethanolamine
(TEA)) methods and can be regarded as the metal bioavailability in soils [39]. Finally, the
Cd concentrations in the solution were determined by inductively coupled plasma mass
spectrometry (ICP-MS, Thermo Fisher X-Series II).

Instrumentation and Reagents

During the experiment, all the reagents used were guaranteed as pure, and the experi-
mental water was prepared by an ultrapure water treatment system (>18.2 MΩ, milli-Q,
America). DTPA is the extracting agent of diethylene-triamine penta-acetic acid, which is
made of the following materials and steps: 1.967 g DTPA, 14.92 g (13.3 mL) TEA and 1.11 g
CaCl2 in 950 mL were dissolved in ultrapure water, and adjusted the pH to 7.30 with 6 mol
L−1 HCl (pH = 3.5), then fixed the volume to 1 L with ultrapure water, stored in a plastic
bottle (GB/T 23739-2009). 5 mL HNO3-HClO4-HF (3:1:1, v/v/v) (3 mL HNO3 at 120 ◦C 1 h,
1 mL HF at 140 ◦C 1 h and 1 mL HClO4 at 160 ◦C, respectively) were added into polytetraflu-
oroethylene beakers in a digestion instrument. After digestion, samples were transferred to
a volumetric flask of 50 mL. We calibrated ICP-MS according to Calibration Specification
for Quadrupole Inductively Coupled Plasma Mass Spectrometers (JJF 1159-2006). The
multi-element standard solution (GSB 04-1767-2004, 100 mg L−1, Guobiao (Beijing) Testing
& Certification Co., Ltd., Beijing, China) is used to build the calibration curve.

Quality Assurance and Quality Control (QA/QC)

Replicates (three parallel), blanks, and reference materials GSS-2 (soil from National Re-
search Center for Standard Materials, China, concentration of Cd at 0.071 ± 0.014 mg kg−1)
were included for quality control. Mean recoveries for Cd in soil were within 100 ± 5%, of
the standard material recoveries. Method blanks in each batch of samples were negligible.
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2.3. Spatial Analysis
2.3.1. Data Integration and Selection of Influencing Factors

Based on previous research [16,40–42], major environmental factors, including pH,
SOM, A-P and soil particle compositions, were selected, as shown in Table 1. In ArcGIS
10.4, the data ID is used as the unique attribute to connect with the spatial coordinates to
obtain the vector data used for mapping analysis.

Table 1. T-Cd, A-Cd and their influencing factors in soils.

No. Variables Unit Explanation

1 T-Cd mg kg−1 The content of total Cd in soil
2 A-Cd mg kg−1 The content of available-Cd in soil
3 pH - Soil pH
4 SOM mg kg−1 Soil organic matter content
5 A-P mg kg−1 Available P content in soil
6 Clay % Clay content in soil
7 Silt % Silt content in soil
8 Sand % Sand content in soil

2.3.2. Kriging Spatial Interpolation

Kriging spatial interpolation is an important part of geo-statistics, first proposed by
Krige, a South African mineral engineer [43]. The principle of Kriging interpolation is to
estimate the unknown sample points linearly and in an unbiased fashion, using the original
data of regionalized variables and the structural characteristics of variation functions. Its
formula is

Z(x0) =
n

∑
i=1

λiZ(xi) (1)

In the formula, Z(x0) denotes the predicted value of the unknown point, n is the
number of sample points, and λi, Z(xi) is the weight and attribute value at sample site i,
respectively. In this study, Kriging interpolation was carried out by geo-statistical analysis
in ArcMap 10.4, and a regular kriging method was selected to generate spatial interpolation
maps of Cd, A-Cd contents and their influencing factors.

2.3.3. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is used to test spatial agglomeration, which is the basis
of establishing geographic weighted regression [44]. Global autocorrelation is used to test
whether there is autocorrelation between observed values of the same variable in adjacent
areas. This paper uses Moran’s I [45], the formula as follows:

I =
N ∑i ∑j Wij

(
Xi − X

)(
Xj − X

)
(∑i ∑j Wij)∑i (Xi − X)

2 (2)

where N is the total number of sampling points; Wij is the spatial weight; Xi and Xj are
the realizations (or observed values) of the attribute variable located in regions i and j,
respectively; and X bar is the mean of the observed values. At a given significance level,
Moran’s I is between (−1, 1). The closer the I value is to 1, the more significant the positive
correlation of the research unit; the closer the I value is to −1, the stronger the negative
correlation; when Moran’s I approaches 0, it is randomly distributed.

2.3.4. Geographic Weighted Regression

As an optimized spatial analysis method, Geographic Weighted Regression (GWR)
is a powerful tool for exploring the spatial relationship between variables by establishing
the local regression equation for each spatial location. In a sense, GWR is a refined moving
windows approach where observations within the windows are weighted based on distance
from the regression point, rather than evaluated equally as in moving windows regression.
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The GWR method embeds spatial location in the regression parameters and considers local
parameter estimates [46]. Instead of estimating global parameter values, by estimating
the parameters at each location GWR generates a continuous surface of spatially varying
parameter values. Mathematically, the GWR is a linear regression model expressed as

yi = β0(ui, υi) +
p

∑
k=1

βk(ui, υi)xik + εi i = 1, 2, 3, · · · , n (3)

where (ui, υi) are the spatial coordinates of each sample point i, β0(ui, υi) is the intercept of
sample i, βk(ui, υi) is the regression coefficient of sample point i, xik is an observation of the
kth environmental variable of sample i, yi is the fitting value of Cd content at sample point i
and εi is the random error. If β1 = β2 = . . . = βn, the GWR method reduces to the earlier OLS
model [21]. In this study, the p value of 1 was selected, i.e., the spatial correlation between
T-Cd, A-Cd and a single impact factor was analyzed from pH, SOM and A-P, respectively.

2.4. Statistical Analysis

Statistical analysis was performed using PASW Statistics 18 for Windows. Statistical
significance of grouped means differences was computed using one-way ANOVA and data
with p < 0.05 were considered significant. The estimated values of the parameters including
local regression coefficient (C), local R2 and significant levels (P), were obtained through
establishing the model with GWR4 soft. All maps were produced using GIS software
ArcMap (version 10.4, ESRI, Redlands, CA, USA). The range of Local R2 values is between
0.0 and 1.0, indicating how well the local regression model fits the observed y values.
Local regression coefficient (C) represents the speed of y changing with x (slope), which
indicates the influence intensity of x change on y value. A local correlation coefficient (r)
was calculated to reveal the correlation between the dependent variable and independent
variable [32]. The formula can be expressed as:

Local r = Sqrt
(

R2
)
× C/Abs(C) (4)

The local correlation coefficient (r) is equivalent to the Geographically Weighted
Pearson Correlation (GWPC), which is based on the concept of local statistics [47].

2.5. Technical Route

This paper took the farmland sewage irrigation area in the eastern suburbs of Kaifeng
city as the research area, collected soil samples, and analyzed the physical and chemical
properties, total and available Cd contents in soils through national standard analytical
methods. Kriging interpolation, Moran’s I and GWR models were respectively and se-
quentially applied to analyze spatial distribution and local autocorrelation of T-Cd, A-Cd
contents and soil properties, as well as spatial variation of the correlation and the influenc-
ing intensity between T-Cd, A-Cd and major soil properties. Then, an in-depth discussion
and explanation was conducted. The technical route is shown in Figure 2.
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3. Results and Discussion
3.1. Descriptive Statistics

The geometric range, mean, standard deviation, skewness, kurtosis and coefficient of
variance for all variables for the studied soils are presented in Table 2. Mean concentration
of total Cd in the studied soils was 1.22 mg kg−1. The number of soil samples exceeding
the soil background values for Eutyic Cambisols, China (0, 10 mg kg−1, National Environ-
mental Monitoring Station of China, 1990) were 100% for Cd. Compared with the soil
environmental quality risk control standard for soil contamination of agricultural land in
China (GB15618-2018), soil samples exceeded the maximum allowable concentration of
Cd in agricultural soils (0.6 mg kg−1) by 67.4%. Based on coefficient of variation (CV), the
contents of total Cd (T-Cd) and available Cd (A-Cd) showed great variability. This result
indicated that high Cd accumulation in soils may be derived from anthropogenic sources
such as industrial emissions, fertilizer application and sewage irrigation.

Table 2. Descriptive statistics of soil properties and the contents of total and available Cd in soils.

Unit Min Max Mean SD Skewness Kurtosis CV

T-Cd mg kg−1 0.25 4.97 1.22 1.07 1.93 3.47 88.16%
A-Cd mg kg−1 0.02 2.23 0.54 0.55 1.46 1.33 101.97%
pH - 6.82 8.96 8.05 0.27 −0.41 2.80 3.38%

SOM g kg−1 1.07 5.46 2.59 0.61 0.60 1.47 23.65%
A-P mg kg−1 0.44 190.50 45.06 31.87 1.86 4.59 70.72%
Clay % 0.20 12.03 1.32 0.86 8.08 96.62 65.75%
Silt % 1.01 91.43 63.61 14.01 −1.41 2.26 22.02%

Sand % 4.06 98.79 35.08 14.35 1.39 2.24 40.92%

Soil environmental quality standards of PR China, 2018 (pH > 7.5).

The studied soils were developed from the Yellow River alluvial deposits. Soil pH
ranged from 6.82~8.96, showing a neutral to mild alkaline feature. The mean value of SOM
was 25.9 g kg−1. Mean concentration of available P (A-P) was 45.06 mg kg−1, and A-P
contents presented high variability with coefficients of variation of 71%, with the further
implication that there were potential anthropogenic sources, such as excessive application
of fertilizers. The general correlation analysis showed that the contents of T-Cd and A-Cd
in the soil were negatively significantly correlated with pH and the contents of clay, silt
and sand particle in soil, and positively significantly correlated with the contents of soil
A-P and OM (p < 0.05), as shown in Table 3.

Table 3. General correlation between soil properties and the contents of total and available Cd in soils.

T-Cd A-Cd pH SOM A-P Clay Silt Sand

T-Cd
correlation 1.000 0.902 −0.388 0.221 0.191 −0.175 −0.203 0.208
significant 0.000 * 0.000 * 0.000 * 0.003 0.006 0.001 0.001

A-Cd
correlation 0.902 1.000 −0.377 0.126 0.136 −0.0224 −0.365 0.370
significant 0.000 * 0.000 * 0.048 0.033 0.000 * 0.000 * 0.000 *

* indicates a significant correlation at the level of 0.01 (p < 0.01).

3.2. Spatial Distributions of Cd and Main Soil Properties

In this study, we first use ordinary kriging interpolation methods to obtain the spatial
distribution of T-Cd and A-Cd contents in soil with soil pH, SOM, and A-P contents, as
shown in Figure 3A–E. The spatial distribution of T-Cd and A-Cd contents in the study
area has similar variability, and shows a general higher trend in the northeast and lower in
the southwest. Their high concentrations mainly cluster in the industrial agglomeration
area including fertilizer plants and zinc smelters. Notably, the T-Cd content is high in the
south of the study area where rivers and irrigation canals are dense. The main reason for
this may be long-term historical sewage irrigation and side infiltration of the river receiving
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industrial wastewater with a large amount of Cd [48]. According to spatial distribution,
lower T-Cd and A-Cd existed in the northwest of the study area, which are weakly affected
by human activities, and mainly from natural sources [38].
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Figure 3. Spatial distribution of total, available Cd contents and soil properties in the topsoils of
study area. (A) presents the spatial distribution of T-Cd contents in topsoils, (B) for A-Cd, (C) for pH,
(D) for SOM, (E) for A-P, (F) for clay, (G) for sand and (H) for silt, respectively.

After kriging interpolation, soil pH in this study area ranges from 7.67 to 8.36, and
generally shows a high trend in the northeast and low in the southwest, as shown in
Figure 3C. High pH value is distributed in the middle and northeast (8.13~8.96), and low
pH value is distributed in the industrial agglomeration area in central and western parts
(7.67~7.90). The reason may be that the wastewater discharged from the factory contains
a large amount of sulfides and fluorides, which cause pH decrease [49]. Totally, OM in
studied soil shows a higher trend in the southeast and a lower in the northwest. Especially,
high OM contents occurred in the industrial agglomeration area located in the central
and western area. This may be related to the high content of organic waste in industrial
wastewater. The soil A-P in the study area shows a low trend in the west and a high in the
east, while high values mainly clustered in the industrial agglomeration area and near the
irrigation canals. This might be related to the intensive application of phosphate fertilizer.
In addition, clay content in soil in the study area is low (less than 6%), and presents a
banded distribution, with the southern river and main channel as the low value center and
gradually increasing from south to north. The silt contents in most area are relatively high
(the average value is 63.61%), its distribution similar to that for clay particles, which is low
in the south and high in the north. Yet sand contents show an opposite high trend in the
south and low in the north.

At the same time, global spatial autocorrelation analysis of T-Cd, A-Cd and main soil
properties was conducted to detect their spatial aggregation. As shown in Table 4, their global
Moran’s I values were in the order: T-Cd > A-Cd > sand > silt > A-P > clay > pH > SOM > 0.
The p-values for all influencing factors are less than 0.01, which means that they are
significant at the 0.01 significance level.

Table 4. Global autocorrelation degree of soil influencing factors.

Moran’s I Z Score p Value

T-Cd 0.615415 18.88 0.000 **
A-Cd 0.547432 16.73 0.000 **
SOM 0.123032 3.86 0.000114
A-P 0.201583 6.28 0.000 **

CaCO3 0.669845 20.55 0.000 **
pH 0.152657 4.77 0.000002

Clay 0.157078 6.23 0.000 **
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Table 4. Cont.

Moran’s I Z Score p Value

Silt 0.529558 16.22 0.000 **
Sand 0.530603 16.25 0.000 **

Note: ** indicates a significant correlation at the level of 0.01 (p < 0.01).

3.3. Spatially Varying Relationships between Cd and Main Soil Properties

In order to explore and clearly reveal the spatial variation relationship between Cd
accumulation and major soil properties, the spatial distribution of local regression coeffi-
cient, local correlation coefficient and their significance levels are analyzed, and shown in
Figures 4 and 5.
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Figure 4. Spatial variation of correlation between T-Cd, A-Cd and major soil properties, as well as
their influencing intensity. (A1) shows spatial variation of the correlation between T-Cd and pH;
(A2) for spatial variation of influence intensity of pH on T-Cd; (A3) for the correlation between A-Cd
and pH; (A4) for influence intensity of pH on A-Cd; (B1) for the correlation between T-Cd and SOM;
(B2) for influence intensity of SOM on T-Cd; (B3) for the correlation between A-Cd and SOM; (B4) for
influence intensity of SOM on A-Cd; (C1) for the correlation between T-Cd and A-P; (C2) for influence
intensity of A-P on T-Cd. (C3) for the correlation between A-Cd and A-P; (C4) for influence intensity
of A-P on A-Cd.
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3.3.1. Spatially Varying Relationships between Cd and pH

Soil pH is one of the important factors affecting Cd bioavailability in soil. The pH
affects the availability of heavy metals in soil by affecting their activity [50]. Usually, with
a decrease of soil pH, the available Cd content increases [51]. Throughout our study, it
was found that there was a significant negative correlation between soil pH and T-Cd,
A-Cd content (p < 0.01, as shown in Table 3), which is in good agreement with previous
studies [8,9]. However, spatial distributions of their correlation (r) and regression coefficient
(c) present great variability, which indicates that at different locations, the correlation and
influence intensity of pH on availability of Cd are different, as shown in Figure 4A1–A4.

Generally, the correlation between T-Cd and pH, and between A-Cd and pH show a
high trend in the northwest and low in the southeast (Figure 4A1–A4), which is different
from (or even contrary to) the distribution trend of T-Cd and A-Cd contents. This indicates
that the correlation between pH and T-Cd, A-Cd is weak in the high Cd area caused by
anthropogenic source, while the correlation between pH and T-Cd, A-Cd is relatively strong
via natural source. Notably and importantly, in the low pH (7.67~7.93) region, it is observed
that there is a significantly positive correlation (p < 0.01) between T-Cd, A-Cd and pH,
while their correlation is mostly not significant (p > 0.05) in the high pH (7.93~8.36) region,
as shown in Figure 4A1–A4 and Figure 5A1,A2. This result indicates that with an increase
in soil pH, the correlation between pH and T-Cd, A-Cd decreases. Furthermore, it is found
that high values of the absolute value of the regression coefficient are concentrated around
chemical plants in the middle of the west (the high T-Cd and A-Cd area), while low values
are mostly distributed in the low content area of T-Cd and A-Cd. This result confirms
that under the influence of natural sources, the change of soil pH has a weak influence
on the contents of T-Cd and A-Cd, which is consistent with the research of Wang et al.
(2006) on influencing effects of pH change on Cd availability under natural conditions [52].
However, under the strong influence of anthropogenic sources, the correlation between
pH and T-Cd and A-Cd happen to decrease, while the influence intensity of pH on T-Cd
and A-Cd content in soil increase, which is similar to the findings of Singh et al. (1998) [53].
With the decrease of soil pH, the contents of T-Cd and A-Cd increase significantly. This
result indicates that the high T-Cd and A-Cd contents in soil are greatly influenced by
anthropogenic factors, which may be mainly caused by the discharge of acid wastewater
containing Cd [38].

3.3.2. Spatially Varying Relationships between Cd and SOM

Soil organic matter (SOM) is another important factor affecting soil Cd availabil-
ity [10,54]. In this study, there is significant positive correlation between SOM and Cd
accumulation, as shown in Figure 4B1–B4. The correlations between T-Cd, A-Cd and SOM
show a total high trend in the north and low in the south. However, their significant
correlation (p < 0.01) mainly exists in the high Cd and high OM (2.89~3.46) area, while their
correlation is not significant (p > 0.05) in the low Cd and relatively low OM (1.94~2.88)
area, as shown in Figure 5B1,B2. This suggests that the T-Cd and A-Cd accumulation are
significantly related to the SOM contents in the high Cd area caused by anthropogenic
source. Notably, the obvious positive correlation between A-Cd and SOM is only primarily
concentrated in the farmlands near the chemical plant and both sides of the river.

Furthermore, the high values of regression coefficient between T-Cd, A-Cd and SOM
are primarily concentrated near the chemical plant in the southwest (the high T-Cd and
A-Cd area), while low values are mostly distributed in the low T-Cd and A-Cd content area.
This result shows that under natural sources the change of soil OM only causes a weak
alteration of the T-Cd and A-Cd content, yet under the strong influence of anthropogenic
source in the southwest of the study area, influence intensity of SOM on T-Cd and A-Cd
contents is higher. This result indicated that high SOM resulting from human factors has a
significant effect on the accumulation of T-Cd and A-Cd in soil.
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3.3.3. Spatially Varying Relationships between Cd and A-P

Available phosphorus, as an important indicator of soil properties, also affects Cd
sorption capacity [55]. In our study, it is found there is a significant positive correlation
between soil A-P and Cd contents, as shown in Figure 4C1–C4. The high correlation
between soil A-P and Cd contents is prominently distributed in the northeast, while the
low correlation coefficient is locally distributed in the concentrated distribution area of
rivers in the southwest. It is noteworthy that their significant correlation (p < 0.01and
p < 0.05) between Cd and A-P is mainly distributed in frequent farming areas far away
from villages and enterprises (Figure 5C1,C2), which might have resulted from the large
application of phosphorus fertilizer containing a large amount of Cd transformed from raw
phosphate rock (the average Cd content is 0.60 mg kg−1) [56]. However, in high Cd area,
no significant correlation exists between Cd and A-P, which means that the high Cd content
is mainly caused by the emission of industrial pollution sources. It was found that the
obvious correlation between A-Cd and A-P exists only in a few areas, while the correlation
is not significant in most areas.

Furthermore, the high values of the regression coefficient are mainly concentrated near
the irrigation canals in the southeast and the northern area, which is usually high intensity
farming area with frequent application of phosphate fertilizer, but not high Cd contents.
The low values of the regression coefficient are mostly distributed around the chemical
plants in the southwest, where was high Cd content resulted from strong anthropogenic
sources, such as sewage irrigation.

3.4. Explanation and Potential Influencing Factors of Spatially Varying Relationships

The spatial distribution of T-Cd and A-Cd contents in the study area presents a general
higher trend in the northeast and lower in the southwest. The high T-Cd and A-Cd
concentrations are mainly concentrated in the industrial agglomeration area including
fertilizer plants and zinc smelters, together with farmlands in the south of the study area
where rivers and irrigation canals are dense. Long-term historical sewage irrigation and
side infiltration of the river receiving industrial wastewater with a large amount of heavy
metals Cd is likely to be the primary cause of high Cd content in the area [48]. The
results obtained by GWR showed that the content of T-Cd and A-Cd had complex spatial
relationships with pH, SOM, A-P and soil particle size.

3.4.1. Interpretation and Potential Reasons for Spatially Varying Relationship between Cd
and pH

The wastewater discharged from the factory contains a large amount of sulfides and
fluorides. This causes a drop in pH in farmlands located in industrial agglomeration area
and in the south of the study area where rivers and irrigation canals are dense. GWR
analysis shows that the correlation (r) and regression coefficient (C) between pH and Cd
present great spatial variability. The results showed that a significantly positive correlation
(p < 0.01) between T-Cd, A-Cd and pH exists in a low pH region (7.67~7.93), while the
correlation is not significant in a high pH region (7.93~8.36). Our result confirms that under
the influence of natural sources, the change of soil pH has a weak influence on T-Cd and
A-Cd contents, while under the strong influence of an anthropogenic source, the influence
intensity of pH on T-Cd and A-Cd contents in soil increase. Thus, it is suggested that, for
high cadmium areas, some measures should be taken to appropriately improve soil pH,
effectively decrease the bioavailability of anthropogenic Cd, restrain the absorption of Cd
by crops, and thus reduce the risk to human health.

3.4.2. Interpretation and Potential Reasons for Spatially Varying Relationship between Cd
and SOM

The wastewater with high organic matter content discharged from anthropogenic
sources also led to a high content of soil organic matter near the industrial agglomeration
area located in central and western parts of the area. The correlation between SOM and
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T-Cd, A-Cd presented obvious spatial variability as a result of the complex effects of soil
organic matter on the behavior of heavy metals [12,13,57]. On the one hand, organic matter
has strong adsorption of heavy metals, especially macromolecular organic matter which
can promote the formation of complex sediments [58]; on the other hand, dissolved organic
matter (especially low molecular weight organic matter) is easy to form soluble substances
with heavy metals, which can promote the migration of heavy metals [13]. The significant
correlation (p < 0.01) between Cd and SOM mainly existed in the high Cd and high OM
(2.89~3.46) area, from anthropogenic source. Here, the increase of SOM could cause the
high elevation of the total amount and the availability of Cd in soil. The possible reason is
that exogenous organic matter could adsorb more Cd into the soil, resulting in the increase
of total Cd. At the same time, the existence of soluble organic matter increases the extraction
rate of Cd from the soil, activates soil Cd [39,59] and promotes the availability of heavy
metal [13]. So, it can be seen that the increase of organic matter helps to improve soil
fertility, but it may also activate toxic heavy metal in soil and increase health risk. Therefore,
it is suggested that organic matter containing components conducive to the formation of Cd
complex precipitation should be appropriately applied in farmlands with high Cd content.

3.4.3. Interpretation and Potential Reasons for Spatially Varying Relationship between Cd
and A-P

Usually, the increase of available P in soil can cause substantial precipitation of P-Cd
complexes (such as Cd3(PO4)2 and CdHPO4) and decrease the bioavailability of Cd [54,55].
That is to say, available phosphorus should be negatively related to available Cd, which is
not consistent with our research. In our study, soil A-P is totally positively correlated to
soil T-Cd and A-Cd (Figure 4C1–C4), yet the correlation is not significant for Cd and A-P
in a high Cd area. In most areas, the correlation between A-Cd and A-P is not significant.
The reason might be that the sources of phosphorus and Cd are different for the whole
study area. It further confirmed that the high Cd content in the industrial agglomeration
area including fertilizer plants and zinc smelters, together with farmlands in the south of
the study area where rivers and irrigation canals are dense, were mainly caused by the
emission of industrial pollution sources. For most farmlands of the study area, a large
amount of phosphate fertilizer application is the main factor leading to Cd enrichment in
corresponding soil. However, in this study, no significant correlation between phosphorus
and Cd is attributed to the complex effects of phosphorus fertilizer application. On the
one hand, as a result of the phosphate fertilizer raw materials containing Cd, applying
phosphate fertilizer will increase the amount of Cd in soil. On the other hand, phosphate
(or hydrogen phosphate) ions in phosphate fertilizer could form complex precipitation
with Cd in soil, so as to reduce the bioavailability of Cd in soil and inhibit the absorption of
crops [60,61]. In addition, available Cd contents in phosphorus fertilizer are also different
(from 4.62% to 53.79%) [56], which might be another reason leading to no significant
correlation between A-Cd and A-P. In view of this, it is suggested to apply bio-char
compounded with phosphorus, etc., in the farmlands with high Cd content, which not
only helps to immobilize Cd in soil and reduce Cd absorption by crops, but also helps to
improve soil fertility and crop growth.

3.4.4. Interpretation and Potential Reasons for Spatially Varying Relationship between Cd
and Soil Particle Size

Soil particle size is also one of the important factors affecting the content, distribution,
migration and transformation of heavy metals. Most heavy metals in the soil are concen-
trated on the particle surface, and the particles are used as the carrier for migration and
transformation [62]. The content and availability of heavy metals are closely related to
particle size. The different occurrence of clay minerals, hydrated oxides and organic matter
in different particle sizes will affect the enrichment and migration of heavy metals [63,64].
Generally speaking, clay minerals, hydrated oxides, CEC and organic matter are easy to
be enriched by fine particles, so the finer the particles, the higher the content of heavy
metals [57,59]. The research of Zhang and Feng (2014) showed that the adsorption capacity
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for Cd by soil clay, silt and sand was from strong to weak [65]. In this study, there are
relatively low clay content (less than 6%) in most areas, especially the southern river and
main channel with a low value center (Figure 3F). The silt contents are relatively high
(the average value is 63.61%), but are also present low in the south and high in the north
(Figure 3H). Contrary to clay and silt particles, sand particle contents show a high trend
in the south and low in the north (Figure 3G). GWR analysis shows that the correlations
between Cd and pH, SOM, A-P are obviously low in farmlands near the southern river
and main channels with low clay particles and high sand particles (Figure 3). The result
indicated that soil particle size not only affects the adsorption of heavy metals and organic
matter, but also has an influence on the relationship between heavy metals, organic matter
and pH. Properly increasing the content of soil clay is conducive to promoting the improve-
ment of soil organic matter and CEC, and reducing the bioavailability and health risk from
heavy metals.

4. Conclusions

Identifying the spatial heterogeneity of heavy metals, influencing factors and their
relationship in agricultural land is of great significance for realizing farmland fine man-
agement and sustainable development. In our study, based on the spatial distribution of
Cd and main soil properties, the spatial heterogeneity of the relationship between Cd and
soil properties (pH, organic matter and available phosphorus) were analyzed by GWR,
and their influencing factors were explored. T-Cd and A-Cd contents in the study area
presented a general trend of higher in the northeast and lower in the southwest. GWR
analysis suggested that in the low pH region, soil pH was positively related to available
Cd, and had a great impact on the availability of Cd. Significant correlation between Cd
and OM mainly existed in the high Cd and high OM area, a possible reason being that
the existence of soluble organic matter promote the activation of Cd from the soil. Due
to the difference and complication of phosphorus and Cd sources in soil, there was no
significant correlation between A-P and Cd contents. In addition, the correlations between
Cd and pH, SOM, A-P were obviously low in farmlands near the southern river and main
channels with low clay particles and high sand particles. GWR analysis effectively revealed
spatially varying relationships between Cd and soil properties at the field scale, which
provide a new idea for precise control and management of farmland environment. Here, for
areas with high Cd content, it is suggested to properly apply alkaline materials containing
phosphorus, high molecular organic matter and high clay to regulate soil pH, organic
matter and particle size, enhance cadmium immobilization and reduce soil Cd activity and
health risk, while strictly controlling the emission of pollution sources.
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