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Abstract: Seasonal alternations of extreme weather such as continuous drought and rare rainstorms
significantly influence farmers’ adoption of agricultural technologies. Compared with traditional tillage,
no-tillage technology has more advantages to cope with extreme weather. It is hypothesized that the
cultivation of contiguous farmland is still minimal in spite of the transference of farmland on a large
scale in China, which ultimately halts the adoption of no-tillage technology and influences the income of
households. The current study used 793 farmland transferees’ data from Shaanxi, Gansu, and Ningxia
provinces of China to explore this phenomenon empirically. By employing the endogenous switching
regression model, the study revealed that contiguous farmland significantly promotes the adoption of
no-tillage technology and positively influences households’ agricultural and non-agricultural income.
Meanwhile, the moderating effect of the stability of farmland rental contracts is explored. Further, it was
also found that education level, organizational participation, relationship networks, and information
acquisition channels influence the income of transferees who opt for no-tillage technology. The study
further revealed that if a transferee who opts for no-tillage technology switches to traditional technology,
their agricultural and non-agricultural income will decrease by 0.2893 and 1.6979 ten thousand yuan
(RMB), respectively. In contrast, if a transferee who opts for traditional technology then switches to
adopt no-tillage technology, their agricultural and non-agricultural income will increase by 0.1919 and
1.3044 ten thousand yuan (RMB), respectively. Conclusively, the current study’s empirical findings offer
policymakers possible guidelines to devise strategies and encourage transferees to opt for no-tillage
applications to increase their families’ income.

Keywords: contiguous farmland cultivation; no-tillage; traditional tillage; farmland rental contract;
family income structure

1. Introduction

In 2021, the floods in Europe and China and the rising temperature of California con-
firmed the evolution of “extreme events” as “regular trends” [1]. The rising trend of extreme
events coupled with greenhouse gases and global warming intensified the frequency and in-
tensity of damage and even unduly distressed the countries with poor resource settings [2–4].
The developing countries in the monsoon season are more susceptible to extreme weather
events such as drought and flood, etc. [5–8]. Researchers argue that poor infrastructure, ex-
tensive agricultural farming, and less adoption of new agricultural technologies are the major
factors that hinder developing countries from dealing with extreme weather patterns [6,9–11].
In turn, extreme weather also influences agricultural production patterns and technology
innovation [12–15]. In this regard, no-tillage technology is found helpful to deal with the
seasonal fluctuations of continuous drought and rainstorms [16–18]. No-tillage technology
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refers to farming that does not require plowing the soil except for sowing and fertilization
and uses only drillers for sowing. The amount of soil plowed under no-tillage technology
does not exceed the cultivated area by more than 25% [19–21]. Since the soil is less plowed
and rotated, and seeds are directly deposited into untilled soil that retains the previous crop
residues, the soil’s organic matter increases. Many prior studies affirmed that no-tillage tech-
nology is helpful to maintain soil’s moisture and water content and improves crop resistance
towards soil erosion [22–26]. Thus, no-tillage technology is found to be an effective and
innovative technology to deal with extreme weather damage sustainably.

Further, during the era of COVID-19, food security issues worldwide have attracted
the attention of the government, institutions, and researchers, particularly due to economic
recession and downturn, regional conflicts and instability, and broken food supply chains in
developing countries [27–33]. The recent report of the United Nations Food and Agriculture
Organization documented alarmingly that the number of hungry people in the world
increased sharply by 161 million in 2020, and if developing countries progress at the same
pace, it will be impossible to achieve the goal of “zero hunger” by 2030 [34]. Though
many factors at the national and regional levels lead to food shortages, the most crucial
factor is the decline in the quality of farmland caused by long-term over-farming, which
adversely influences food production globally [35–38]. Thus, it is recommended to promote
conservational tillage technology such as no-tillage technology to improve the quality of
farmland and intensify food production sustainably [20,26].

It is noteworthy that farmers in developing countries are reluctant to adopt no-
tillage technology [39,40], but recently, certain factors have led them to adopt no-tillage
technology [41,42]. For instance, the lower production efficiency of small farmers us-
ing the conservational method of farming on fragmented farmland results in lower in-
come [43–45], which creates difficulty in sustaining daily life expenditures and children’s
education etc. [46–51]. Moreover, it is believed that rural−urban migration and non-
agricultural employment shape the rational economic behavior of individuals [52–54].
Thus, reduced farming and abandoning of farmland in rural areas has lessened the food
production and supply [46,55–57], which in turn, has promoted the farmland transfer and
rental markets in developing countries [58,59]. It is believed that the farmland rental market
has encouraged farmland transferees to adopt no-tillage technology more widely.

As mechanized sowing methods mainly implement no-tillage technology, the scale
effect significantly affects the adoption of no-tillage technology [60]. However, this phe-
nomenon, which links farmland transfer with scale operation and farmers’ technology
adoption, is controversial. Some scholars hold that farmland transfer helps in improv-
ing the efficiency of farmers to adopt mechanized and labor-saving technology, reducing
the cost of production, etc. [61–68], while others believe that farmland transfer does not
necessarily foster adoption of technology due to scale operation [69]. Scale operation
depends on farmland resources, socioeconomic characteristics, technical equipment, and
political and historical conditions [42,70]. In this vein, it is pertinent to say that farmland
transfer does not improve farmers’ efficiency in adopting agricultural technology [65]. The
fundamental reason for the disputes mentioned above is that the existing research ignores
the quality of scale operation, which is mainly characterized by the degree of contiguous
farmland cultivation. In developing countries, the development of the farmland rental
market has only increased the number of transferees’ land holdings, but some transferees
still implement fragmented agricultural production, and in this way, their family income
and welfare are not raised [36,65,71–74]. Moreover, it is proposed that farmland rental
contracts should be stable for contiguous farmland cultivation because the transferee can
only adopt new agricultural technology and enable inter-period gains within a longer
rental term [60,75–77].

So, based on the above discussion, the current study explores the role of contiguous
farmland cultivation and the adoption of no-tillage technology in improving the income
structure of transferees. In the prevailing literature, many studies have explored the factors
affecting farmers’ adoption of no-tillage technology, including farmers’ characteristics, such
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as gender, age, education level, and political status [78–80]; family characteristics, such as
the number of laborers, the area of arable land, the number of pieces of machinery, and the
family income [81,82]; the operating characteristics, such as the degree of specialization
and the degree of non-agricultural work [83,84]; cognitive characteristics, such as risk
perception, risk preference, risk aversion, environmental literacy, environmental protection
awareness, farmland protection awareness [85,86]; and policy measures, such as technical
training and government subsidies [87,88], but these studies found inconclusive results.
Moreover, farmers’ adoption of new agricultural technology is mainly determined by
agricultural production costs and benefits from land economics and management. Un-
fortunately, the existing research has not explored the relationship between the farmland
transferees’ adoption of no-tillage technology and their agricultural income.

So to explore the phenomenon empirically, the current study used data of 793 farmland
transferees from Shaanxi, Gansu, and Ningxia provinces of China. Compared with the
previous research, the current study contributes to the literature in the following ways.
For example, firstly, the research gathered data from farmland transferees who have been
adopting no-tillage technology rather than common farmers. Secondly, our study used
the ratio of the largest acre of contiguous farmland to the total farmland area to measure
the degree of contiguous farmland cultivation, unlike the studies of Wang and Yang [89]
and Xu et al. [90], which used discrete binary variables to assess farmland as contiguous or
fragmented. Thirdly, previous research mainly explored the family income or farmers’ wel-
fare [91–93], but the present research categorized the transferees’ income into agricultural
income and non-agricultural income. Moreover, considering the endogenous issue caused
by sample selection bias in the adoption of no-tillage technology, this study employed the
endogenous switching regression (ESR) model to construct a counterfactual assumption to
deal with the possible endogenous issue and further explore the role of contiguous farm-
land cultivation and adoption of no-tillage technology in improving transferees’ income
structure. Finally, due to the separation of farmland owners and users, we further analyzed
the moderating effect of the stability of farmland rental contracts and the influence of
contiguous farmland cultivation on transferees’ no-tillage technology adoption and their
income structure.

The rest of the paper is organized as follows. Section two highlights the research
background, and theoretical and conceptual frameworks are presented in section three.
Section four describes the data and methodology. Section five reports and discusses our
empirical results. In the final section, conclusions are drawn, and some policy implications
are proposed. Finally, the limitation of the study is also presented in the last section.

2. Research Background

As a typical monsoon-affected zone of the Northwest Pacific, China is deeply affected
by greenhouse gas emissions and global warming. In 2015, China’s Extreme Climate
Events, Disaster Risk Management, and Adaptation Assessment Report showed that ex-
treme weather events have significantly altered over the past 60 years with a steep rise in
temperature and rainfall [94]. The rural areas of China, with huge poverty levels, were more
at risk due to natural disasters from 1978 to 2015 [95]. Agriculture is the most vulnerable sec-
tor, being susceptible to extreme weather, and in this instance, traditional small-scale food
production cannot meet rural households’ growing consumption and expenditure require-
ments [53,96]. Consequently, non-agricultural employment and large-scale rural−urban
labor migration have become the most typical labor spatial characteristics in China in
the 21st century [97–99]. In 2019, the total number of migrant peasant workers in China
reached 290.77 million, with 116.52 million local migrant workers (within township areas)
and 174.25 million migrant workers (outside township areas). Meanwhile, labor mobility
also promoted the agricultural rental land market by reducing farmers’ dependence on
farmland and achieving optimal family labor allocation [100]. By the end of 2020, farmland
transferred in China reached 37 million hectares. Thus, it became essential to adopt agricul-
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tural technological innovation to cope with the unexpected damage of extreme weather
and win the battle against poverty.

In this regard, the no-tillage technology has emerged as an environment-friendly
phenomenon that developed in the 1940s, when the United States suffered from severe
soil erosion, and is now globally adopted [19]. Since 1978, the Chinese government has
been promoting no-tillage technology in the monsoon climate zones where drought and
flood occur. As of 2017, the mechanized no-tillage area accounted for 10.48% of the total
arable farmland [101]. Nevertheless, compared with other countries, the proportion of
mechanized no-tillage technology adopted is relatively low. In this study, we focused on
Shaanxi, Gansu, and Ningxia provinces of China due to the following notable aspects:
firstly, the three provinces are located in the Loess Plateau region, China, and October to
May of each year are dry months and June to September mostly experience concentrated
rainfall [102]. Moreover, soil erosion and water shortage severely affect the agricultural
production of these regions, which encourages farmers to adopt no-tillage technology.
Secondly, since 2001, these provinces have successfully implemented subsidies and training
programs to promote no-tillage technology continuously. In 2019, the mechanized no-tillage
technology area in Shaanxi, Gansu, and Ningxia provinces accounted for 24.52, 27.20 and
17.85% of the conservation tillage area, respectively. Thirdly, these areas are relatively
poor regions in western China, and in 2019, the number of migrant peasant workers was
relatively large with 6.0 million, 1.7 million, and 0.8 million people, respectively [103].
Moreover, farmland transference increasingly occurred, with a transfer rate exceeding
20% of the farmland area. Additionally, due to the vertical and horizontal ravines of
farmland, the degree of farmland fragmentation is severe. Therefore, these aspects make
these provinces a better research area.

3. Theoretical and Conceptual Framework
3.1. Influence of Contiguous Farmland Cultivation on Transferees’ Income Structure

Many previous studies revealed that contiguous farmland cultivation is necessary for
large-scale agricultural practices [43,48,104]. Contiguous farmland cultivation allocates
land use rights and facilitates mechanized farming [104,105]. Contiguous farmland cul-
tivation may have a subtle impact on transferees’ income structure. Firstly, contiguous
farmland cultivation is good for forming economies of scale as compared to fragmented
farmland because fragmented lands are scattered and require huge costs in operating
machinery on small-scale plots [69,106–108]. Studies have confirmed that when a small har-
vester works on a field of 1.35 mu, the time it takes accounts for 15% of the entire 13.15 mu
plot area. If the number of plots increases by one plot, the cost of mechanical operations
will increase by 1.01% [109]. These cumbersome practices lead to the loss of economies of
scale [110]. Secondly, contiguous farmland cultivation is conducive to transferee’s unified
decision-making, instead of the multi-agent decision-making caused by farmland frag-
mentation. Moreover, it can also help implement crop specialization production methods,
form the brand effect of agricultural products, to the competitiveness of the products
in the market [111,112]. Qin and Zhang [113] stated that although diversified planting
can spread farmers’ production and market risks, specialized production is in line with
the mainstream trend of modern agricultural development. Thus, contiguous farmland
cultivation is beneficial to increase the transferee’s agricultural income. Thirdly, contiguous
farmland cultivation helps to reallocate family labor resources. Mechanized farming saves
the transferee family’s surplus labor and encourages them to engage in non-agricultural
employment, thereby increasing the family’s non-agricultural income [114]. Consequently,
keeping in view the above aspects, this research hypothesizes the first assumptions:

Hypothesis 1. Contiguous farmland cultivation can increase the farmland transferee’s agricultural
and non-agricultural income.
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3.2. Influence of Contiguous Farmland Cultivation on Transferee’s Adoption of No-Tillage Technology

Previous studies have rarely explored the causal relationship between contiguous
farmland cultivation and the transferee’s adoption of no-tillage technology. No-tillage is
not like abandoned tillage [20]. It mainly reduces cultivated land’s plowing and rotary
tillage and adopts an effective sowing mechanism for agricultural production [115–117]. In
some developing countries, the infrastructure in rural areas is relatively weak [118–120]. If
the cultivated land is highly fragmented, the planter will only access the farmland adjacent
to the road. Hence, farmers are reluctant to adopt no-tillage technology. Accordingly, con-
tiguous farmland cultivation encourages farmers to adopt no-tillage technology. Besides,
no-tillage technology is one of the conservational tillage technologies. Still, some unfavor-
able views concerning the causal relationship between contiguous farmland cultivation
and transferees’ adoption of conservation tillage technologies exist. Some scholars believe
that the transferee usually pays attention to higher yield and neglects farmland investment,
especially in the context of unstable farmland rental contracts [60]. The positive externali-
ties of conservational tillage technology usually have inter-temporal attributes [121–123].
Suppose the rental time of farmland is short. In that case, the transferee is less likely to
adopt conservational tillage technology. Within the lease term, the transferee’s adoption of
conservation tillage technology cannot obtain the technology benefits as expected [124,125].
Thus, the effect of contiguous farmland cultivation on the transferee’s adoption of no-tillage
technology is uncertain, which usually depends on the stability of the farmland rental
contract. Therefore, this research proposes the second assumption as follows:

Hypothesis 2. The impact of contiguous farmland cultivation on the transferee’s adoption of
no-tillage technology is uncertain.

3.3. Influence of Transferee’s Adoption of No-Tillage Technology on Their Family Income Structure

Residents’ family income includes salary, wages, rent, and transfer income [126,127].
However, in rural areas, these incomes are not evenly distributed among the sample house-
holds. In the study, we used agricultural income and non-agricultural income to describe
farmers’ income structure. In the context of farmland transfer, previous studies have rarely
explored the relationship between the adoption of no-tillage technology and the transferees’
income structure. Some scholars believe that no-tillage technology improves the land qual-
ity and crop yield with time, which endorses the law of marginal benefits of adopting green
technology [128–130]. Other scholars hold that no-tillage technology stabilizes agricultural
income by reducing the losses due to climate and natural disasters, such as drought and
soil erosion, and effectively improves crop yields [16,21,26]. Additionally, according to the
previous discussion, no-tillage technology is a capital-intensive rather than labor-intensive
technology. Compared with traditional technology, the adoption of no-tillage technology
encourages rural laborers to engage in non-agricultural employment opportunities and
eventually improves transferees’ family welfare. The increase in non-agricultural income
may also increase transferees’ investment in no-tillage technology [91]. Hence, this research
proposes the following assumptions.

Hypothesis 3. Adoption of the no-tillage technology can increase transferee’s agricultural income
and non-agricultural income and finally exerts an influence on family income structure.

The theoretical and conceptual framework discussed above is exhibited in Figure 1.
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4. Data and Methodology
4.1. Study Sites

Three provinces of China, namely, Shaanxi, Gansu, and Ningxia, were selected as the
study area, located at 92◦13′−111◦15′ east longitude and 31◦42′−42◦57′ north latitude, with a
total area of 697,800 square kilometers (see Figure 2). The areas are the most monsoon-affected
area in China. Moreover, the alternating seasonal patterns of drought and soil erosion also
create challenges for these regions to enhance agricultural production. Additionally, these
provinces have set the trend for adopting no-tillage technology firstly compared to other
areas, with the help of experienced and well-trained staff. Compared with other parts of
China, no-tillage technology has been most widely adopted in these areas.
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4.2. Sample Selection

The data for the current study were collected from Shaanxi, Gansu, and Ningxia
provinces by distributing a questionnaire from 2 January to 16 January 2019. The ques-
tionnaire survey group consisted of 3 associate professors and 7 graduate students who
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had undergone professional training before the formal investigation. Meanwhile, the
questionnaire survey obtained information support from the agricultural departments of
the sampled counties. The survey adopted a combination of stratified and simple random
sampling. First, 4 sample counties in each province were randomly selected, then 5–8 towns
from the sampled counties were randomly selected. Finally, 40–50 households from each
town were randomly selected. The specific questionnaire survey area is about 41,800 square
kilometers, including Shenmu, Zizhou, Yanchang, and Huanglong counties in Shaanxi
Province; Jingchuan, Jingning, Guazhou, and Zhengning counties in Gansu Province; and
Yongning, Tongxin, Yanchi, and Haiyuan counties in Ningxia. The survey gathered data
from 1585 respondents; after removing blank and contradictory questionnaires, 1496 valid
samples were retained, including 703 farmland transferors and 793 transferees, which
comprised 472, 525, and 499 households, respectively, from Shaanxi, Gansu, and Ningxia
provinces. The effective rate of the questionnaire was about 94.39%.

The sampled data for empirical analysis comprised 793 farmland transferees, includ-
ing 267 households from Shaanxi, 251 households from Gansu, and 275 households from
Ningxia. Before the formal survey, the research team conducted a pre-survey in Zhangye,
Gansu province and accordingly modified research content such as households’ charac-
teristics, family characteristics, operating conditions, social capital, adoption of no-tillage
technology, organizational participation, government incentives, etc. Besides, in-depth
interviews with farmland transferees were also conducted during the survey. These inter-
views provided good evidence for interpreting the quantitative findings.

4.3. Variable Selection
4.3.1. Outcome Variables

A variety of crops, such as wheat, corn, potatoes, etc., were planted by the transferees
in the sampled areas. The planting patterns were highly heterogeneous, such as specialized
or multiple planting. Hence, this study did not analyze yield differences between no-tillage
and traditional tillage, but directly converted crop yield into agricultural income. The
main outcome variable in the current study was farmland transferees’ income structure.
The income structure can reflect the main source of household income and serve as the
main channel for assessing farmers’ future income [131–133]. In traditional economics,
the income structure includes wages and operating, property, and transfer incomes. The
wage income comes from non-agricultural employment; the operating income comes from
agricultural planting; property income is from renting houses and vehicles; transfer income
mainly refers to government subsidies for households adopting no-tillage technology. How-
ever, suppose the statistical analysis is performed according to these income classifications
on the sampled data. In that case, some data might drop as most farmland transferees
do not have property income or wage income. Against this backdrop, the current study
categorized the income structure into agricultural income and non-agricultural income by
following the study of Danso-Abbeam et al. [91], Amfo and Ali [134], and Pang et al. [135].

4.3.2. Explanatory Variables

Some previous research has usually equated farmland transfer with large-scale opera-
tion and regarded transferees’ farmland area as contiguous farmland cultivation [136–138],
while other scholars considered the product of the area of transferred farmland and the
number of plots as the index of contiguous farmland cultivation [68,69]. It is believed
that these studies have neglected the spatial location of cultivated land resources; that is,
cultivated land after farmland transfer may also present a fragmented block distribution
instead of a flaky distribution. So, unlike the previous studies, the current study used
the ratio of the largest acre of contiguous farmland to the total farmland as the degree of
transferee’s contiguous farmland cultivation. Hence, the transferee’s contiguous farmland
cultivation is a continuous variable that lies between 0–1. Additionally, there is sample
self-selection behavior when the transferee adopts no-tillage technology. If the transferee
adopts the no-tillage technology, the value assigned is 1; if the transferee does not opt for
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the no-tillage technology and continually implements traditional tillage, the value is 0. The
sampled data showed that around 335 farmland transferees adopted no-tillage technology,
and 458 transferees continuously used the traditional-tillage method.

4.3.3. Control Variables

The study also included other variables in the model that were expected to impact the
farmland transferees’ income structure. Following previous studies such as Si et al. [139]
and Su et al. [140], the study used transferees’ gender, age, education level, number
of laborers, family loan, organization participation, relationship network, information
acquisition channels, and government skill training in the model as control variables for
empirical analysis. The study additionally included farmland rental contract stability and it
was measured by the term of the farmland rental contract [60]. Moreover, Ningxia province
was added as the control group, while two dummy variables were created for the other
two regions, Gansu and Shaanxi.

4.3.4. Empirical Estimation

To explore the influence of contiguous farmland cultivation and adoption of no-tillage
technology on farmland transferees’ income structure, the following model was structured:

Yi = Xiγ + Diξ + Z′i τ + εi (1)

where Yi represents the transferee’s income structure, Xi is the contiguous farmland cultiva-
tion, Di denotes whether the transferee adopts no-tillage technology, Z′i is control variables.
γ, ξ, and τ are coefficients to be estimated, and εi is the random error term. According
to the utility theory in economics, it is assumed that the utility of the farmland transferee
adopting no-tillage technology is D∗i1, and the utility of adopting traditional technology is
D∗i0. Thus, if D

∗
i = D

∗
i1 − D

∗
i0 > 0, it means transferees will adopt no-tillage technology. Di

signifies an unobservable latent variable, but it can be regarded as a linear function of the
contiguous farmland cultivation and control variables, which is as follows:

D
∗
i = Xiα + Z′i β + µi

Di =


1, i f Xiα + Z′i β + µi > 0
. . . . . . . . . . . . . . . . . . . . . . . .

0, i f Xiα + Z′i β + µi ≤ 0


(2)

where Di, Xi, and Z′i have the same meaning as Equation (1). α and β are coefficients to
be estimated, µi is a random error term. Di is an endogenous variable because it is both
the explained Equation (2) and the explanatory variable of Equation (1). If it is estimated
by the OLS method and logit model, the regression results will be biased. Besides, there
are unobservable factors that might affect transferees’ no-tillage technology adoption and
family income structure simultaneously, which in turn influence the random error terms
of (1) and (2), bringing about a possible correlation between the two error terms and
are further likely to affect the model estimation results. Consequently, the endogenous
transformation regression (ESR) model proposed by Maddala [141] is employed in the
current study to explore the influence of contiguous farmland cultivation and adoption
of no-tillage technology on transferees’ income structure. The ESR model is superior to
other traditional models due to the following features: firstly, it can solve the self-selection
issue of transferees adopting no-tillage technology and the endogeneity caused by other
unobservable factors impacting family income structure; secondly, it can analyze the
influencing factors of transferees’ income structure with no-tillage technology adoption
and traditional tillage adoption, respectively; finally, it can realize counterfactual analysis
to avoid missing related information [142,143].

Moreover, the shortest distance between the contiguous farmland and field road is
chosen as the identification variable introduced into the transferees’ no-tillage decision
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model. The main basis for selecting the identification variable is that the accessibility of field
roads affects the planting operation, which is also a key element that drives a transferee’s
decision to adopt no-tillage technology. The shortest distance between the contiguous
farmland and the field road does not influence a farmland transferee’s income structure.
Accordingly, the transferees’ no-tillage adoption decision model is constructed as follows:

Di
∗ = Xiα + Wiκ + Z′i β + µi

Di =


1, i f Xiα + Wiκ + Z′i β + µi > 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0, i f Xiα + Wiκ + Z′i β + µi ≤ 0

(3)

where Wi denotes the shortest distance between the contiguous farmland and field road,
and κ is the coefficients to be estimated. The family income structure model of farmland
transferee can be built as:

Yi1 = Xi1γ1 + Z′i1τ1 + εi1, i f Di = 1

Yi0 = Xi0γ0 + Z′i0τ0 + εi0, i f Di = 0
(4)

where Yi1 and Yi0 represent the income structure of transferee when adopting no-tillage
and traditional tillage, respectively. Xi1 and Xi0 are the degree of the contiguous farmland
cultivation of transferee with no-tillage and traditional tillage. Z′i1 and Z′i0 are other control
variables, and γ1, γ0, τ1, τ0 are the coefficients to be estimated, εi1 and εi0 are random error
term. We cannot detect the same transferee’s income structure Yi1 and Yi0 simultaneously.
To eliminate the inconsistency of estimation results caused by sample selection bias, the
inverse Mills ratio λi1 and λi0 are introduced, and the covariance σµ1 and σµ0 to modify
the model. Suppose Var(µi) = 1, and the random error terms εi1, εi0 and µi obey the
multivariate normal distribution with the mean vector as a zero vector, and the covariance
matrix is:

Ω =


σ2

1 σ10 σ1µ

. . . . . . . . . . .
σ2

0 σ0µ

. . . . . . . . . . .
1

 (5)

Therefore, the model of a farmland transferee adopting no-tillage is:

E(Yi1|Di = 1 ) = Xi1γ1 + Z′i1τ1 + E(εi1|µi > − Xiα−Wiκ − Z′i β)

= Xi1γ1 + Z′i0τ1 + λi1σµ1
(6)

The model for a farmland transferee adopting traditional tillage is:

E(Yi1|Di = 1 ) = Xi1γ1 + Z′i1τ1 + E(εi1|µi > − Xiα−Wiκ − Z′i β)

= Xi1γ1 + Z′i0τ1 + λi1σµ1
(7)

The ESR model can also estimate the average treatment effect of transferees adopting
no-tillage technology and traditional technology.

E(Yi0|Di = 1 ) = Xi1γ0 + Zi1
′τ0 + λi1σµ0 (8)

E(Yi1|Di = 0 ) = Xi0γ0 + Zi0
′τ0 + λi0σµ1 (9)

Equations (10) and (11) are the calculation equations for the average family income
structure of farmland transferees adopting no-tillage technology and traditional technology.
Equations (8) and (9) are the average income structure of transferees adopting no-tillage
technology then changing to adopt traditional technology, and transferees using traditional
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technology switching to adopt no-tillage technology, respectively. Consequently, the aver-
age treatment effect (ATT) of income structure of transferee adopting no-tillage technology
can be expressed as the difference between (6) and (8):

ATT = E(Yi1|Di = 1 )− E(Yi0|Di = 1 ) = Xi1(γ1 − γ0) + Z′i1(τ1 − τ0) + λi1(σµ1 − σµ0) (10)

The average treatment effect (ATT) of income structure of a transferee adopting tradi-
tional technology can be expressed as the difference between (7) and (9):

ATT = E(Yi1|Di = 0 )− E(Yi0|Di = 0 ) = Xi0(γ1 − γ0) + Z′i0(τ1 − τ0) + λi0(σµ1 − σµ0) (11)

5. Results and Discussion
5.1. Descriptive Statistics

The descriptive statistics of all variables with their measurement are shown in Table 1.
From Table 1, it can be seen that the main source of farmland transferees’ income was from
non-agricultural sources, and agricultural income only accounted for 32.17%. The farmland
transfer did not significantly improve the fragmentation of cultivated land, and the degree
of contiguous farmland cultivation was less than 50%. The terms of the farmland rental
contracts were relatively short, with an average value of 2.7201. Moreover, the heads of
farmland transferees were mainly males, and the proportion of females participating in
family decision-making was relatively low. The transferees had a relatively low level of
education, and most of them were middle-aged and older adults, accounting for 73.84%.
The family labor resources in the sample area were not highly sufficient, with an average
value of only 3.1677 people. Additionally, 34.05% of households faced loan pressure
from banks, and 46.53% of the transferees actively participated in agricultural cooperative
organizations to increase their family income. Regarding no-tillage technology, only 42.25%
of the transferees adopted this technology, and the technology adoption rate was still
relatively low. In information sources, only 9.08% of transferees obtained technology
adoption information through modern communication modes. Meanwhile, less than 50%
of the transferees received no-tillage training provided by the government free of cost.

Table 1. Descriptive statistics of variables.

Variables Measurement Percentage Mean S.D. Relevant Literature

Transferee’s income
structure

Agricultural income (ten
thousand yuan RMB) 32.17% 1.5065 1.7537

Pang et al. [135]
Non-agricultural income (ten

thousand yuan RMB) 67.83% 3.1603 4.9320

Contiguous
farmland cultivation

The ratio of the largest acre of
contiguous farmland to the total

farmland area
0.4602 0.2497 Qu and Zhao [69]

Adoption of
no-tillage technology

No-tillage adoption = 1 42.25%
0.4225 0.4943 Chaudhary et al. [16]

Traditional tillage adoption = 0 57.75%

Farmland rental
contract stability

Terms of farmland rental contract
(year) 2.7201 3.1486 Si et al. [60]

Gender
Male = 1 96.97%

0.9697 0.1714 Tan et al. [144]Female = 0 3.03%

Age
<40 year 26.16%

52.3228 10.4571 Cao et al. [145]40–60 year 40.35%
>60 year 33.49%
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Table 1. Cont.

Variables Measurement Percentage Mean S.D. Relevant Literature

Education level

<7 year (primary school) 30.25%

5.7755 3.6615 Danso-Abbeam et al. [91]
7–9 year (middle school) 46.79%
10–12 year (high school) 20.08%

>12 year (university) 2.88%

Number of laborers
<4 people 62.15%

3.1677 1.4358 Deichmann et al. [54]4–6 people 30.07%
>6 people 7.78%

Family loan Loan = 1 34.05%
0.3405 0.4742 Zhang [98]

Non-loan = 0 65.95%

Organization
participation

Participation = 1 46.53%
0.4653 0.4991 Zhu and Li [136]Non-participation = 0 53.47%

Relationship
network

Contacts stored in the
phone(people) 73.2283 87.7937 Xu et al. [146]

Information
acquisition channels

Modern communication
equipment such as mobile phones

or the internet = 1
9.08%

0.0908 0.2875 Zhan and Li [126]

Non = 0 90.92%

Government skill
training

Training = 1 46.15% 0.4615 0.4988
Tran and Vu [71]Non-training = 0 53.85%

Gansu Gansu = 1
non-Gansu = 0 0.3594 0.4801 Sheng et al. [133]

Shaanxi Shaanxi = 1
non-Shaanxi = 0 0.2358 0.4248

Source: field survey (2019).

5.2. Statistical Inference

According to the recent study of Abdelhafez et al. [147], it is stated that correlation is a
non-deterministic interdependence relationship; that is, for each value of the independent
variable, the dependent variable is affected by random factors, and its corresponding value
is non-deterministic. We further drew the nuclear density curve to infer the correlation
relationships between the contiguous farmland cultivation and transferees’ adoption of
no-tillage technology (see Figure 3), the contiguous farmland cultivation and transferees’
income structure (see Figure 4), as well as transferees’ adoption of no-tillage technology
and family income structure (see Figure 5). It is apparent from Figure 3 that as the degree
of contiguous farmland cultivation increased, the nuclear density curve of the farmland
transferees’ adoption of no-tillage technology shifted to the right, indicating that contiguous
farmland cultivation and the adoption of no-tillage technology have a positive relationship.
Figures 4 and 5 also show that the higher the degree of contiguous farmland cultivation,
the more the transferees adopted no-tillage technology and increased their agricultural
incomes to be greater than the income obtained by traditional technology. Meanwhile,
the non-agricultural income obtained by the transferees adopting no-tillage technology
was also greater than the non-agricultural income obtained by the transferees adopting
traditional technology.

5.3. Results of Endogenous Switching Regression (ESR) Model

The ESR mode l is used to explore the influence of contiguous farmland cultivation and
the adoption of no-tillage technology by transferees on their agricultural income (Model 1)
and non-agricultural income (Model 2), respectively. The regression results of the models
are shown in Table 2 and reveal that the Wald values of Models (1) and (2) are 161.55 and
162.07, respectively, which are significant at a 1% level, while the LR values are 9.22 and
9.25, respectively, which are significant at 5% levels, indicating that the two models have
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a relatively good fitting effect. Moreover, Equation (1) indicates the transferees’ decision
regarding the adoption of no-tillage technology. In contrast, Equations (2) and (4) represent
the agricultural and non-agricultural income equations of the transferees’ adopting no-
tillage technology. Equations (3) and (5) are the agricultural income and non-agricultural
income equations of the transferees adopting traditional tillage technology. Additionally, to
explore the moderating effect of contract stability in the influence of contiguous farmland
cultivation on the transferees adopting no-tillage technology and their income structure, the
interaction terms of contiguous farmland cultivation and the stability of the farmland rental
contracts (contract stability) were incorporated, and it was found that the main effect of
contiguous farmland cultivation and contract stability remains significant. Hence, Table 3
also shows the ESR results with the interaction term added.
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Table 2. Regression results of ESR model.

Variables

Model 1 Model 2

Agricultural Income Non-Agricultural Income

No-Tillage
Decision

(Equation (1))

No-Tillage
Adoption

(Equation (2))

Traditional
Tillage

Adoption
(Equation (3))

No-Tillage
Adoption

(Equation (4))

Traditional
Tillage

Adoption
(Equation (5))

Contiguous farmland
cultivation

0.1725 * 0.2035 *** 0.0922 * 0.3109 *** 0.1604 *
(0.0958) (0.0636) (0.0512) (0.1110) (0.0844)

Contract stability 0.2036 ** 0.0821 ** 0.305 0.0079 * 0.1045
(0.0969) (0.0373) (0.2102) (0.0045) (0.0746)

Contiguous farmland
cultivation*contract stability

0.0982 *** 0.1265 *** 0.0179 ** 0.1136 ** 0.0428 *
(0.0327) (0.3833) (0.0077) (0.0490) (0.0231)

Distance between farmland
and field road

0.3070 ***
−0.1023

Gender
0.0701 0.0425 0.0368 0.0721 0.042

(0.0519) (0.0502) (0.0407) (0.0826) (0.0328)

Age −0.2003 −0.1714 −0.1207 −0.1129 −0.1065
(0.1406) (0.1302) (0.0903) (0.0828) (0.0750)

Education level
0.4075 *** 0.3901 ** 0.3082 * 0.4041 *** 0.4408 *
(0.1405) (0.1773) (0.1751) (0.1412) (0.2395)

Number of laborers
0.0109 0.0602 0.0701 0.0225 *** 0.02721 *

(0.0225) (0.0471) (0.0520) (0.0056) (0.0151)

Family loan −0.3002 ** −0.288 −0.2705 −0.3037 −0.388
(0.1443) (0.2028) (0.2004) (0.2510) (0.2425)

Organizational participation 0.0605 0.0235 *** 0.0182 * 0.0895 * 0.0601 *
(0.0437) (0.0075) (0.0102) (0.0514) (0.0323)

Relationship network 0.5011 *** 0.4020 ** 0.4128 ** 0.6021 *** 0.6288 ***
(0.1566) (0.1896) (0.1929) (0.2020) (0.2082)

Government skill training 0.6012 ** 0.7022 0.6023 0.7625 0.613
(0.2613) (0.5302) (0.5475) (0.5389) (0.4442)
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Table 2. Cont.

Variables

Model 1 Model 2

Agricultural Income Non-Agricultural Income

No-Tillage
Decision

(Equation (1))

No-Tillage
Adoption

(Equation (2))

Traditional
Tillage

Adoption
(Equation (3))

No-Tillage
Adoption

(Equation (4))

Traditional
Tillage

Adoption
(Equation (5))

Information acquisition
channels

0.1306 0.1709 * 0.1045 ** 0.1828 *** 0.1402 *
(0.0921) (0.0988) (0.0486) (0.0630) (0.0779)

Regional variables Gansu 0.0602 * 0.0435 * 0.032 0.0561 * 0.0396 **
(0.0316) (0.0250) (0.0221) (0.0346) (0.0171)

Shaanxi
0.0686 0.0711 0.0602 0.0452 0.0685

(0.0429) (0.0467) (0.0376) (0.0295) (0.0462)

Constant term
0.2022 ** 0.1780 *** 0.1605 ** 0.2121 *** 0.2032 **
(0.0944) (0.0524) (0.0674) (0.0652) (0.0840)

σ1
0.1603 *** 0.2705 **
(0.0577) (0.1218)

σ0
0.1402 *** 0.1803 **
(0.0523) (0.0831)

ρµ1
0.1529 ** 0.2321 *
(0.0632) (0.1349)

ρµ0
0.1211 ** 0.1614 *
(0.0507) (0.0887)

Wald chi2(10) 161.55 *** 162.07 ***
LR chi2(1) 9.22 ** 9.25 **

Log-likelihood −728.259 −730.612

Notes: Coefficients are reported in the table, and standard errors are presented in parentheses. The significance
level at 1%, 5%, and 10% are represented by asterisk ***, **, and *, respectively. Source: Authors’ computation.

Table 3. The average treatment effect of ESR model.

Agricultural Income Non-Agricultural Income

No-Tillage
Technol-

ogy
Adoption

Traditional
Technol-

ogy
Adoption

ATT ATU

No-Tillage
Technol-

ogy
Adoption

Traditional
Technol-

ogy
Adoption

ATT ATU

Transferee adopting
no-tillage technology

(a)
1.5021

(c)
1.2128

0.2893 **
(0.1315) - (e)

3.1004
(g)

1.4025
1.6979 **
(0.7382) -

Transferee adopting
traditional tillage

technology

(d)
1.0025

(b)
0.8106 - 0.1919 *

(0.1066)
(h)

2.6108
(f)

1.3136 - 1.3044 *
(0.6865)

Notes: Coefficients are reported in the table, and standard errors are presented in parentheses. The significance
level at 1%, 5%, and 10% are represented by asterisk **, and *, respectively. Source: Authors’ computation.

5.3.1. Impact of the Contiguous Farmland Cultivation on Transferees’ Adoption of
No-Tillage Technology

Table 2, Equation (1) shows that contiguous farmland cultivation has a positive and
significant effects on a transferee’s adopting no-tillage technology at a 10% significance
level. The results suggest that the higher the degree of contiguous farmland cultivation, the
greater the probability that the transferee adopts no-tillage technology; hence hypothesis
H2 is confirmed. The results suggest that large-scale mechanized farming and reduced pro-
duction costs lead to the diffusion of no-tillage technology. Further, the economies of scale
formed by no-tillage technology reduce the input cost of low-skilled labor in agriculture
and increase capital-intensive technologies’ adsorption effect on farmland. Many previ-
ous studies also explored the phenomenon and had the same outcome [19,20,52,118,143].
Further, the interaction term of contiguous farmland cultivation and contract stability also
positively influences transferees’ adoption of no-tillage technology at a 1% significance
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level, indicating that the farmland rental contract stability plays a moderating role in effect-
ing contiguous farmland cultivation and transferees’ adoption of no-tillage technology. The
findings further reveal that the longer the farmland lease contract term, the more obvious
effect of contiguous farmland cultivation on scale economy. The findings correspond well
with the previous research [64,122,123].

It is also revealed that no-tillage technology has inter-temporal benefits and has higher
marginal effects of technology adoption; the short-term direct effects of no-tillage tech-
nology also exist, which suggests that more farmland transferees should be encouraged
adopt no-tillage technology actively. These results contradict the previous researchers who
did not find short-term effects such as the increase of food production as a result of the
adoption of green technology [131,148]. In terms of identification variables, the findings
reveal that the shortest distance between the contiguous farmland and field road positively
and significantly influences a transferee’s adoption of no-tillage technology at a 1% sig-
nificance level. The results are analogous with the findings of Adnan et al. [148], Teruel
and Kuroda [149], and Urquía-Grandeand Rubio-Alcocer [150]. The findings affirm that
improving agricultural infrastructure such as field roads is essential for the development
of large-scale and mechanized farming and an important source for the innovation and
promotion of agricultural technology. In terms of control variables, the findings reveal that
educational level promotes transferee adoption of no-tillage technology at 1% statistical
level. The results suggest that if a transferee’s educational level is higher, they are more
inclined to adopt no-tillage technology to control the risks of extreme weather shocks.
Gerdes et al. [151] and Sharifzadeh and Abdollahzadeh [152] also stated that education
level influences an individual’s ability to obtain information, awareness of adopting tech-
nology, and management capability of farming risk. Moreover, family loans showed a
negative and significant impact on transferees’ adoption of no-tillage technology at the
5% statistical level. The results are expected as no-tillage technology is capital-intensive
and requires investment in a planter for seeding. If the transferee is under great financial
pressure, it is not easy to adopt no-tillage technology. Jia and Qian [153] also had the same
verdict and held that credit constraints negatively affect farmers’ investment in production
and technology adoption activities.

Besides, relationship networks were found to be positively significant in influencing
a transferee’s adoption of no-tillage technology at a statistical level of 1%. The outcome
reveals that a relationship network is likely to promote farmers’ adoption of green agri-
cultural technologies through information sharing, risk sharing, mutual learning, and the
peer effect. Likewise, government skill training was found positively significant at a 5%
significance level and suggests that the major bottleneck in developing countries is farmers’
lack of skills. Thus, the government skills training is likely to alleviate the information
asymmetry between farmers and the technology supply market, reduce the costs of farmers’
technology acquisition and use, improve farmers’ ability to adapt to climate and market
risks and eventually promote transferees’ adoption of no-tillage technology. Many ear-
lier studies also revealed the same findings [154–159]. Additionally, the regional dummy
variables were also found to be significant, indicating the great regional disparity in the
adoption of no-tillage technology; the possible reason is that the income effect of technology
adoption varies from region to region, which is consistent with the research conclusion of
Xu et al. [160].

5.3.2. Impact of the Contiguous Farmland Cultivation on Transferees’ Income Structure

According to Equations (2)–(5) in Table 2, it is apparent that contiguous farmland culti-
vation positively and significantly influences the agricultural income and non-agricultural
income of transferees adopting no-tillage at a 1% significance level. Hence, assumption
H1 is also confirmed. Meanwhile, according to group regression, it was found that there
was a big difference between the income structure of the transferees adopting no-tillage
technology and traditional tillage technology, indicating that the adoption of no-tillage
technology positively and significantly influences transferees’ income structure and en-
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dorses the H3 assumption. During the field survey, it was found that the higher the degree
of contiguous farmland cultivation, the higher the proportion of adoption of no-tillage and
resultantly, the farming skills of the transferees also improved. Consistent with the research
of Bernard de Raymond [111], Xu et al. [160], and Ntihinyurwa and de Vries [108], our
findings show that the contiguous farmland cultivation can increase family agricultural
income by improving the level of specialized production, enhancing the brand effect and
market competitiveness of agricultural products, and continuously improving the efficiency
of agricultural production. Accordingly, the adoption of no-tillage technology also helps in
improving agricultural production efficiency. The findings further reveal that the scale and
mechanized farming enabled on contiguous farmland, coupled with no-tillage technology
adoption, promoted the planting area of cash crops such as peanuts and vegetables larger
than other grain crops such as wheat and rice. These are contrary to the findings of Li and
Liu [161], Liu and Zhou [35], and Muraoka et al. [162].

In the context of global food security, the findings provide a realistic basis for the
rising risk of food crop plantings in the development of the farmland rental market. The
fundamental reason is that cash crops’ prices and income are far higher than those of
food crops [163]. Moreover, contiguous farmland cultivation promotes the rural−urban
migration of rural labor and also enhances non-agricultural income, which results in the
development of labor-intensive urban industries and enables developing countries to
reduce poverty [164–168]. Further, the stability of farmland rental contracts also exerts
a positive and moderating effect in the influence of continuous farmland farming on the
agricultural income and non-agricultural income of transferees adopting no-tillage at 1%
and 5% significance levels, respectively. The stability of farmland rental contract not
only increases a transferee’s agricultural production, adoption of no-tillage technology,
capital investment, agricultural operational risks reduction, but also effectively leads to the
implementation of all agricultural technologies with inter-periodical attributes represented
by no-tillage technology [58,59,106].

Further, the educational level is also positive in influencing the agricultural and non-
agricultural income of the transferee adopting no-tillage at 5% and 1% significance levels,
respectively. The higher the education level, the more transferees can utilize no-tillage tech-
nology and the more obvious the technological economy and scale effect. Meanwhile, the
higher the education level, the more opportunities for non-agricultural employment, and
the higher the income, as revealed by the studies of Qi et al. [169] and Li and Wang [170].
The number of laborers positively affects the non-agricultural income of transferee adopted
no-tillage at a 1% significance level. Chen et al. [171] also exposed the same verdicts and
stated that agricultural technological innovation is essential for allocating rural labor in
the marketplace. Moreover, organizational participation also exerts a positive and signif-
icant influence on the agricultural and non-agricultural income of transferees adopting
no-tillage technology at a 1% and 10% significance level. On the one hand, social organiza-
tions such as cooperatives expand their interest level with farmers by providing technical
guidance, safe production, and management of crops, etc., to boost the effectiveness of
social organizations, and finally realize the continual increase of farmers’ agricultural in-
come [172–174]. On the other hand, social organizations are also important channels for
absorbing local non-agricultural employment and continuously increasing non-agricultural
family income [175,176]. Moreover, farmers can also engage in agricultural production
during busy periods to achieve a two-way interactive increase in agricultural income and
non-agricultural income [177].

Moving ahead, relationship networks also positively and significantly affect the agri-
cultural income and non-agricultural income of the transferees adopting no-tillage at 5%
and 1% levels. The results suggest that most economic activities are closely embedded
in the relationship network. A relationship network plays a vital role in developing trust
and boosting human relations in promoting no-tillage technology at the government level
and increasing agricultural income growth by reducing transferees’ cost of technology
adoption [178,179]. Meanwhile, relationship networks can also alleviate the information
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asymmetry between the market labor demand and the non-agricultural employment of
rural labor [180]. Information acquisition channels positively impacted the agricultural
income and household income of transferees who adopted no-tillage technology at 10%
and 1% significance levels. The previous studies of Gao et al. [85], Abdullahi et al. [147],
and Sharma et al. [181] also revealed that contemporary communication channels such as
mobile phones or the internet have a structural influence on boosting farmers’ production
behavior by enhancing the production factors and the conditions for obtaining technical
information. Modern information acquisition channels reduce the cost of information,
accelerate the information exchange, reduce the information asymmetry, bridge the “digital
divide,” promote farmers to make decisions concerning adoption of no-tillage technol-
ogy, and increase farmers’ non-agricultural employment opportunities [182,183]. Besides,
regional differences were also found as expected in the income structure of transferees
adopting the no-tillage technology.

5.4. Average Treatment Effect of Contiguous Farmland Cultivation and Adoption of NT Technology
on Transferees’ Income Structure

The study further analyzed the average treatment effect of the stability of contiguous
farmland cultivation and adoption of no-tillage technology on transferees’ agricultural
income and non-agricultural income in Table 3. The results show that (a) and (b) represent
the actual agricultural income of transferees adopting no-tillage and traditional tillage
technology, respectively, and (c) and (d) represent counterfactual assumptions. The ATT
and ATU are the average treatment effects. The results proved that the average treatment
effect (ATT) of the transferee adopting no-tillage technology is positive and significant at 5%
level, indicating that the actual agricultural income (a) of the transferees opting conserva-
tional tillage was higher than the counterfactual hypothesis (c), i.e., if the transferee opted
for no-tillage technology then switched to adopt traditional tillage, the agricultural income
would decrease by 0.2893 ten thousand. Likewise, the average treatment effect (ATU) of
transferees adopting traditional tillage is also positive and significant at 10% level, indi-
cating that the counterfactual hypothesis (d) is higher than the actual agricultural income
of the transferee (b), i.e., if the transferee adopted traditional tillage decides to switch to
adopt no-tillage technology, the agricultural income will increase by 0.1919 ten thousand
yuan. Similarly, suppose the transferee adopting no-tillage technology switched to adopt
traditional tillage. In that case, the non-agricultural income will decrease by 1.6979 ten
thousand yuan. If the traditional tillage-opting transferee adopts no-tillage technology, the
non-agricultural income would increase by 1.3044 ten thousand yuan. Our findings further
show that the income gap between farmland transferees adopting no-tillage and traditional
tillage is widened; that is, the family income of transferees adopting no-tillage technology
was much greater than that of transferees reliant on traditional tillage practices.

6. Conclusions and Policy Implications

The extreme altered seasonal patterns have posed more grim effects on agricultural
production, specifically in the monsoon-affected regions. In this regard, technological
innovation is assumed to improve the farmer’s adaptability to cope with drastic climate
changes. Moreover, the rural−urban migration of labor and the large-scale farmland
transfer also influence the farmers’ technology adoption in China. The current study
employed the ESR model and counterfactual framework to empirically explore the influence
of contiguous farmland cultivation and the adoption of no-tillage technology on transferees’
income structure. The study also analyzed the moderating effect of the stability of farmland
rental contracts.

The overall findings revealed that contiguous farmland cultivation significantly pro-
motes the adoption of no-tillage technology by farmland transferees. The findings further
revealed that education, organization participation, relationship networks, and government
skill training also stimulate transferees to adopt no-tillage technology actively. However, a
family loan inhibits the technology adoption. Moreover, regardless of the intertemporal
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nature of no-tillage technology, its adoption is likely to increase the transferee’s agricultural
and non-agricultural income directly. Meanwhile, contiguous farmland cultivation also
increases agricultural and non-agricultural income of transferees who adopted no-tillage
technology. Education level, organization participation, relationship networks, and infor-
mation acquisition channels also profoundly impact the income structure of transferees
with no-tillage technology. The moderating effect further showed that farmland rental
contract stability moderates the relationship between contiguous farmland cultivation,
transferees’ no-tillage adoption and family income structure. Lastly, addressing selection
bias of no-tillage technology adoption and counterfactual assumptions, the results revealed
that a transferee could improve their agricultural and non-agricultural income by switching
to no-tillage technology. It is noteworthy that the income gap can be further widened
between farmland transferees with no-tillage and transferees still practicing traditional
tillage technology.

Based on the empirical findings, the study offers valuable implications for policymak-
ers to devise strategies to encourage transferees to opt for no-tillage technology sustainably.
In this regard, firstly, the government should establish a farmland transfer information
system to effectively link farmland transferors with transferees, reduce the information
asymmetry between the supply and demand sides, and encourage the farmland transfer-
ees to achieve the greatest degree of concatenation farmland cultivation. Secondly, the
government should ensure the stability of formal lease contracts, encourage smooth and
orderly farmland transfer, provide employment skills training for farmland transferees,
and finally provide a good system guarantee for transferees’ long-term adoption of no-
tillage technology. Thirdly, the government should reduce the cost of transferees’ no-tillage
technology adoption and increase the enthusiasm and initiative of transferees to adopt
this technology by increasing the subsidy standards and carrying out training guidance.
Finally, considering that non-agricultural income is far greater than the agricultural income
obtained through no-tillage adoption, the government should extend the agricultural in-
dustry chain, increase the value of agricultural products, and continuously increase the
agricultural income of transferees adopting no-tillage technology by creating scale and
branding effects of agricultural products.

7. Limitation

Of course, our research still has some shortcomings. Firstly, conservation tillage
technologies include no-tillage, sub-soiling, and straw being returned to the field. Apart
from no-tillage technology, other technologies may also help farmers cope with drought
and soil erosion. This study has not yet compared the roles of no-tillage technology with
others in agricultural production. Secondly, the adoption of no-tillage technology requires
planters for farming. Due to the lack of survey data, our research has not considered the
heterogeneity of topography, such as plains and mountains. Thirdly, input costs, such
as machinery, pesticide, labor input, etc., may also influence the transferee’s no-tillage
adoption and family income structure. Limited to the data obtained, we did not explore the
effects of cost factors. Finally, this research only addressed the sample selection bias of no-
tillage technology adoption. As the transferee’s family income increases, it may adversely
affect the adoption of no-tillage technology, which is likely to cause severe endogeneity.
However, these issues provide adequate directions and ideas for future in-depth research.
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