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Abstract: Forest is one of the most important surface coverage types. Monitoring its dynamics
is of great significance in global ecological environment monitoring and global carbon circulation
research. Forest monitoring based on Landsat time-series stacks is a research hotspot, and continuous
change detection is a novel approach to real-time change detection. Here, we present an approach,
continuous change detection and classification-spectral trajectory breakpoint recognition, running on
Google Earth Engine (GEE) for monitoring forest disturbance and forest long-term trends. We used
this approach to monitor forest disturbance and the change in forest cover rate from 1987 to 2020
in Nanning City, China. The high-resolution Google Earth images are collected for the validation
of forest disturbance. The classification accuracy of forest, non-forest, and water maps by using
the optima classification features was 95.16%. For disturbance detection, the accuracy of our map
was 86.4%, significantly higher than 60% of the global forest change product. Our approach can
successfully generate high-accuracy classification maps at any time and detect the forest disturbance
time on a monthly scale, accurately capturing the thinning cycle of plantations, which earlier studies
failed to estimate. All the research work is integrated into GEE to promote the use of the approach on
a global scale.

Keywords: continuous change detection and classification; Landsat time series; forest dynamics
monitoring; spectral trajectory breakpoint recognition

1. Introduction

Forests are the most extensive vegetation type with the most extensive coverage area,
broadest distribution, most complex compositional structure, richest biodiversity, and
highest primary productivity [1-3]. Forest can improve the quality of the human living
environment and provide habitat for organisms. More importantly, it plays a vital role
in the global carbon cycle [4]. Monitoring of forest dynamics is significant for regional
ecosystem and climate change research, forest resource investigations, forestry develop-
ment, and forestry policy-making. It is mainly reflected in the following two aspects. Firstly,
forest variation information is essential for terrestrial ecological carbon storage estimation,
regional climate change research, and regional ecosystem stability assessment [5,6]. Sec-
ondly, real-time monitoring of forest distributions and their dynamic changes is informative
to regional ecological environment restoration and reconstruction projects and scientific
evaluation of the performance of forest protection projects [7]. Landsat image archives, as
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the image data set with the longest duration of Earth observation, play an important role in
forest monitoring [8,9].

In general, the existing forest monitoring algorithms based on Landsat time series (LTS)
can be categorized into three types [10]: (1) multidate comparison by classification or differ-
ence; (2) spectral trajectory-based analysis; (3) the continuous change detection method.

Early multidate comparison methods included image differencing, principal compo-
nent analysis, tasseled cap transform, post-classification comparison, and change vector
analysis [11-13]. The ideas behind these methods are that changes are detected by com-
paring the difference between images taken at two different time phases. Nevertheless, it
is difficult to set suitable thresholds for acquiring high-accuracy change detection results
using these methods, and the empirical threshold can not be transferred to other study areas
characterized by different vegetation types and vegetation densities. Another disadvantage
is that these methods cannot meet the needs of analyses of forest dynamics and change
processes [14]. To minimize the spectral differences caused by intra-annual variation in
phenology and sun angle differences, the multidate compositing and classification methods
are applied [15-18]. One of the advantages is that these methods can include a broad suite
of features such as Landsat bands, their derivatives, as well as auxiliary information such
as nighttime data, precipitation and tree cover, etc., for classification.

However, these methods can only capture the forest deforestation and forest degra-
dation information on a yearly scale, and the selection of classification features to achieve
high accuracy is also a problem. In addition, these methods are not suitable for the direct
continuous change process analysis.

The spectral trajectory-based analysis methods have been proposed to meet the
needs of changing process analysis. Such algorithms included the vegetation spectral
change tracking algorithm (VCT) [19], vegetation regeneration and disturbance estimates
through time (Verdet) [20], Landsat-based detection of trends in disturbance and recov-
ery (LandTrendr) [21] algorithms, etc. The VCT algorithm is a threshold-based spectral
trajectory algorithm that uses a parameter called the integrated forest z-score (IFZ) for time
series analysis. However, the empirical threshold was set according to the regional forest
types and forest densities, and the VCT algorithm can not be directly extended to global
forest monitoring. The Verdet and LandTrendr are trajectory segmentation algorithms by
temporally dividing the time series into differently sloped segments, and each segment
corresponds to a different vegetation change state. These algorithms have been proven to
can be applied in different geographical regions.

The common feature of the multidate compositing and classification and the spectral
trajectory-based analysis methods is that they minimize the seasonal variation and solar
altitude differences by reducing the time series to a single image for each year, typically
from a date near the peak of the growing season, using either best pixel approaches or
another [22-24]. However, these two kinds of algorithms also have two obvious deficiencies.
One is that mutation timing is hard to be captured accurately, and the detected moment
of change is usually delayed by more than one year. Another is that the information on
surface changes within the year is always ignored [14,25]. Hence, such change monitoring
algorithms are not continuous change detection algorithms in the true sense.

The continuous change detection and classification (CCDC) algorithm is representative
of the continuous change detection algorithms. It was proposed by Zhu Zhe using a
harmonic model to fit a time series of spectral information, which minimizes the differences
due to seasonal variation and makes use of the various characteristics of the spectrum
in the time interval [26]. Combined with statistical breakpoint detection methods and
random forest classifiers, the CCDC algorithm can achieve the goal of acquiring land cover
classification results at any time, so it also has the advantages of classification comparison
methods. However, the original CCDC algorithm has two disadvantages. One of the
disadvantages is the selection of the multiply classification features for high accuracy.
Another is that the precise abrupt change time at a month scale can not be acquired.
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In general, the classification comparison methods, the spectral trajectory analysis
methods, and the continuous change detection methods all have their own advantages. The
classification methods can easily acquire the yearly classification maps, which is beneficial
to forest cover rate analysis year by year. The spectral trajectory analysis methods can be
helpful to change process analysis [27]. The continuous change detection methods can be
more effective to detect the change during the year, and no need for empirical thresholds.
Thus, this paper developed a new algorithm for forest monitoring by combining the
advantages of three types of change detection methods.

In this study, disturbance indicated all kinds of forest loss (land cover conversion from
a forest land cover to non-forest land cover). The objectives of our study are: (1) to monitor
forest disturbance on a monthly scale and improve the classification accuracy of the CCDC
algorithm; (2) to map forest classification and estimate forest cover rate each year. Here,
we developed a new approach to continuous change detection and classification—spectral
trajectory breakpoint recognition (CCDC-STBR). The new algorithm integrates the CCDC
algorithm and spectral trajectory breakpoint recognition method. The CCDC algorithm is
mainly used to monitor the change of land cover area year by year, while STBR is mainly
used to monitor the disturbance of long time series at a monthly scale that current studies
failed to estimate. For landcover classification, the optima subset selection method was used
to achieve higher classification accuracy than the original CCDC algorithm. For spectral
breakpoint recognition, we applied the continuous time series fitted by the harmonic mode,
multiply indexes are adopted to recognize the breakpoints in the time-series trajectory to
improve the confidence of forest disturbance monitoring, and the change magnitude factor
is defined to estimate the disturbance degree. The morphological closing operation and
the unsupervised clustering method are also applied to eliminate salt and pepper noises.
CCDC-STBR runs on Google Earth Engine, which can generate yearly classification maps
and monitor forest disturbance on a monthly scale. It is easy to be adjusted and applied to
other regions.

We take Nanning as the case study of forest monitoring to extend this approach to
a global scale, and forest disturbance and classification maps are produced for each year
from 1987 to 2020. All the monitoring work in this paper was integrated into the GEE
platform, and all the related code would be opened to promote the use of this approach on
a global scale.

2. Materials and Methods
2.1. Study Area

Located to the south of Guangxi (22°12'-24°2' N, 107°19'-107°37’ E), Nanning is at
the junction of south China, southwest China, and the Southeast Asia economic circle
(Figure 1). It is also at the intersection of the Pan-Beibu Gulf Economic Cooperation Circle,
Greater Mekong Subregion Cooperation Circle, and Pan-Pearl River Delta Cooperation
Circle. In recent years, the government of Guangxi Province has also attached importance
to ecological environment construction as part of its local economic development. The
implementation of ecological restoration, a key type of ecological project, has also gained
certain achievements. Nanning has a warm climate, abundant rainfall, and distinct dry and
wet conditions, which are especially suitable for forest growth. It is also known as a “Green
City”, having the most extensive artificial forest plantation area of any prefecture-level city
in Guangxi Province. It is also the key demonstration area for afforestation, artificial pure
forest transformation, and rocky desertification integrated rehabilitation by the Guangxi
Autonomous Region Government (Figure 1). The research area measures 22,100 km? and is
covered by eight Landsat tiles.
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Figure 1. Location of the study area.

2.2. Data Source and Preprocessing

The Landsat series of satellites have observed the Earth for nearly 50 years. From
1980 to 2020, the data set has gone through four generations of satellites: Landsat 4, 5, 7,
and 8 [28]. The sensors corresponding to these four satellites have similar spectral bands
and wavelengths, and spatial resolution. At present, the Landsat time series data set has
been integrated into the GEE platform, and only a small amount of code can be used to
complete the preprocessing [29]. There are two existing Landsat surface reflectance data
sets: (1) Landsat Collection 1 Surface Reflectance and (2) Landsat Collection 2 Surface
Reflectance. This paper used data from Collection 1. Cloud, cloud shadows, water, and
snow were masked by using the pixel_qa, radsat_qa, and sr_aerosol quality bands. From
1987 to 2020, 4053 Landsat images are available for Nanning City. The number of Landsat
images available each year is generally more than 30. The average annual cloud cover rate
is <50%, which meets the demands of continuous change detection. (Figure 2, Table 1). In
addition, this paper also collected high-definition images from Google Earth and forest
masks of Nanning City from 2000 for land classification and forest change detection.

Table 1. Original data sets used in this study.

Data Description Source
4053 Landsat surface reflectance images of
Nanning City, with all water and snow pixels
Landsat4, 5,7, 8 masked. Spatial resolution = 30 m. Seven bands Google Earth Engine Data Catalog

High-resolution images

Global Forest Change

were used for change detection: NIR, Red, Green,
Blue, Swirl, Swir2, and Temp
For verification of land surface change detection
results and Landsat image classification
Nanning Forest Mask in 2000 Google Earth Engine Data Catalog

Google Earth
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Figure 2. Annual count and mean cloud cover percentage of acquired Landsat images.

2.3. Research Framework

The application of the CCDC-STBR algorithm to forest monitoring can be divided into

four steps (Figure 3): (1) selection of breakpoint recognition bands or detection indexes;
(2) time series fitting with a harmonic model; (3) land cover classification and mapping;
and (4) forest disturbance detection by breakpoint detection method.

Among them, the first three steps are mainly used to monitor the change of land cover

area, and the last step is used to detect the disturbance. In the first three steps, we adopt
the optimal subset selection method to choose the best feature set for higher classification
accuracy than the original CCDC algorithm.

For the last step, we applied a new breakpoint recognition method to detect the distur-

bance based on the harmonic fitted time series. The following improvements are made:

1.

According to the characteristics that forest disturbance is usually accompanied by an
increase in soil composition and a decrease in greenness, the normalized difference
fraction index (NDFI) and soil index based on the spectral mixture analysis (SMA)
model was adopted. The normalized burn ratio (NBR) and the normalized difference
vegetation index (NDVI) index are also used for breakpoint identification, for they
are frequently used in forest disturbance detection [30,31]. That is, only when the
multiply features have changed the pattern is judged as a forest disturbance event;
To further improve the disturbance detection accuracy and precisely record the change
time at a monthly scale, the continuous harmonic fitting segments are used to extract
the disturbance time. The sum confidence was defined as the sum value of the
confidences of NDVI, NBR, and NDFI (Equation (4)). For every breakpoint in the
yearly time-series curve fitted by the harmonic model, only the breakpoint with the
highest sum confidences of NBR, NDVI, and NDFI was extracted. To eliminate salt
and pepper noises, the morphological closing method and the superpixel clustering
algorithm are adopted.

Finally, the sum confidence, yearly forest-loss detection results, and yearly classifi-

cation results were separately acquired (Figure 3). The sum confidence map was used
to evaluate the disturbance degree, the loss year detection result was used to detect the
disturbance characteristics, and the yearly classification maps were used to monitor forest
development in Nanning.
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Figure 3. Overview of processing steps. The sum confidence result, loss year detection result, and
yearly classification maps were separately generated from the Landsat segments. The sum confidence
is used to evaluate the magnitude of forest disturbance, the loss year map is helpful for disturbance
year evaluation, and the yearly classification map is useful for evaluating the forest cover rate and
spatial forest distribution.

2.3.1. Forest Monitoring Indexes
The NBR and NDVI indexes are commonly used in forest monitoring. Here, the NDFI

index was chosen for its higher sensitivity to forest disturbance, and correlated research has
proved the NDFI is more sensitive to slight forest disturbance such as forest degradation.
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Souza et al. proposed the NDFI and successfully applied it to the monitoring of tropical
forest degradation [32]. The Landsat pixels can be decomposed into fractions of green
vegetation (GV), non-photosynthetic vegetation (NPV), soil, and shade through SMA. The
SMA model assumes that the pixels can be represented by linear functions of four types of
end members: shade, soil, greenness (GV), and non-photosynthetic vegetation abundance
(NPV) [33]. Greenness and shade should be normalized before constructing the NDFI index
(Equation (1)), and the NDFI index is composed of the normalized value of GV and the
summed value of NPV and soil (Equation (2)).

GV
G Vihade = 100 — Shade M
NDF] — GVshude_ (NPV+SOIZ) (2)

GVihade + (NPV + Soil)

The value of NDFI ranges between —1 and 1. In theory, pure forest pixels have higher
greenness and canopy shadow values. The value of GV is higher, and the summed value
of NPV and soil is lower, so the higher the forest coverage, the higher the NDFI value.
After forest disturbance, the NPV and soil values increase significantly, and the NDFI value
decreases significantly, so the NDFI index is sensitive to forest disturbance detection.

2.3.2. Breakpoint Detection and Time Series Segmentation Fitting

The CCDC algorithm uses a harmonic model with variable coefficients to fit and
predict each spectrum or index of Landsat data on a specified date. The harmonic model
has three patterns (four, six, and eight parameters), and the corresponding minimum
numbers of observations are 12, 18, and 24 (Equation (3)). When a model-fitted predicted
value differs greatly from an actual (observed) value, an abnormal slope occurs or if the
first or last observed values deviate from the model-predicted value by three standard
deviations during model initialization, the point will be identified as a breakpoint.

x)
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The CCDC algorithm divides the time series of images into a limited number of
segments according to the breakpoints in the time series. Each segment has three kinds of
coefficients: the harmonic model’s fitting coefficients, the spectral phase coefficients, and
the interval indicator coefficients (Table 2). The spectral phase coefficients that characterize
their seasonal changes are different for different landcover types.

Table 2. Segment coefficients.

Coefficients Options Description
Harmonic coefficients Sin, Cos, Sin2, Cos2, Sin3, Cos3, Slope, Intercept Parameters of the harmonic model
Derivati fficient AMPLITUDE, PHASE, AMPLITUDE2, PHASE2, Seasonal metrics extracted from the
erivatives coethicients AMPLITUDE3, PHASE3, RMSE, Magnitude harmonic model
Interval coefficients tStart, tBreak, tEnd Segment indicators

2.3.3. Landcover Classification by Feature Subset Optimization

The features that can be applied to landcover classification in this study can be divided
into three categories (Table 3). (1) Band features, which mainly include seven bands:
blue, green, red, Nir, Swirl, Swir2, and temperature; (2) index features, which are mainly
two normalized indexes (NDVI, NBR) and three indexes (greenness, brightness, wetness)
derived from tasseled hat transformation, NDFI, and four endmembers, including shade,
soil, GV and NPV (3) auxiliary data features (elevation, aspect, DEM, rainfall, tree cover).
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Except for the auxiliary data features, the other features all have the time series parameter
features shown in Table 2 after being segmented by the harmonic model. To improve the
classification accuracy as much as possible, the wrapper feature selection method is applied
to the above features to select the optimal feature subsets. The feature subsets with the
highest classification accuracy are screened out.

Table 3. All classification features used for subset selection.

Index Features Auxillary Features

Blue, Green, Red, Nir, Swirl, NDFI, NDVI, NBR, Greenness, Brightness, Wetness, Elevation, Aspect, DEM, Rainfall,

Swir2, Temperature

GV, NPV, Shade, Soil Tree cover

The CCDC algorithm requires stable ground sampling points as a training data set for
land cover classification. Using the 30 m forest mask, 30 m GlobeLand 30 products, and
high-definition images of Nanning City from Google Earth, sampling points were obtained:
a total of 540 for forest land, 147 for water bodies, and 402 for other land types (including
bare land, cultivated land, grassland, shrubland, wetland, artificial surface, etc.). Land type
sampling points were all from areas with stable land cover.

In this study, wrapped feature selection indicates that when the blue, green, red, Nir,
Swirl, Swir2, temperature bands, NDFI, NDVI, and NBR are selected, the classification
accuracy of the random forest classifier is the highest. When GV, NPV, shade, soil, green-
ness, brightness, wetness, etc., are added, the accuracy of land classification is no longer
improved but is, in fact, decreased. Among the auxiliary data features, the rainfall (Rainfall)
feature contributes the most to classification accuracy, while terrain factors (elevation, as-
pect, DEM (digital elevation model)) and tree cover make extremely limited improvements
to classification accuracy. Finally, seven band features (blue, green, red, Nir, Swirl, Swir2,
temperature), two normalized index features (NDVI and NBR), terrain factor features
(elevation, aspect, DEM), rainfall (rainfall), and tree cover are selected as the inputs of the
random forest classifier. The corresponding timing parameters of the bands and indexes

7oas a7 v Zan s

features are “intercept”, “slope”, “rmse”, “phase”, “amplitude”, “phase2”, “amplitude2”,

“ AN/}

cos”, “sin”, “cos2”, and “sin2”.

2.3.4. Forest Disturbance Detection Based on Spectral Trajectory Breakpoint Recognition

There are two forest disturbance types: (1) forest degradation caused by natural or
human factors (such as fire, artificial selective logging, etc.) and (2) severe disturbance,
which usually refers to deforestation, forest burned by fire, and transformation into bare
land or construction areas.

Forest disturbance events can be detected based on landcover classification results,
which cannot obtain an accurate mutation time (precisely capture the change time at a
month scale), such as the global forest change (GFC) product. Therefore, this paper adopted
the breakpoint recognition method based on the harmonic fitting segments to detect the
accurate change time. For breakpoint identification, when the average difference between
the first or last observation and the predicted value of the k bands on the segmented time
series is greater than three standard deviations or when the average slope of the k bands is
>1 (Equation (5)), the point will be identified as a breakpoint. A breakpoint changing from
high to low corresponds to a forest-loss event. To acquire the breakpoint with the highest
confidence, confidence was defined to measure the magnitude of change of the breakpoint.
The magnitude of the breakpoint can be defined as the mean of the five observations made
after the mutation event minus the mean of the five observations made before the mutation
when the forest-loss event occurred. Magnitude can be recorded as Mag, and the confidence
can be represented as Equation (4).

Mag — RMSE

Confldence - W

(4)
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This paper calculates the sum of the confidence values of the three indices, NDFI,
NDVI, and NBR, to evaluate the forest disturbance intensity. In addition, for every year, we
define the breakpoint with the highest sum confidence value as the disturbance to improve
the detection accuracy. Because the identified disturbance still has some noises, combined
with the morphological pixel processing method, the morphological closing operation is
performed on the breakpoint detection result, and some patches are repaired. Finally, the
unsupervised clustering method is used to cluster the morphologically processed images
to eliminate salt and pepper noise, and forest-loss disturbance maps are produced for each
year from 1987 to 2020.

2.3.5. Verification and Comparison of Forest Disturbance Detection

Sampling polygons from high-definition Google Earth images were collected to verify
the accuracy of the forest disturbance map. A total of 20,875 sampling points of forest
loss have been collected from Google Earth. The accuracy of the disturbance results is
evaluated based on the number of changed pixels detected on the disturbance map and the
total number of pixels in the polygon. The overall accuracy can be defined as the ratio of the
number of changed pixels detected to the total number of pixels in the polygon (Equation (6)).

changed pixels

overall accuracy = fotal pixels

(6)

The existing global forest change product can provide the latest time node of forest-loss
events. A forest disturbance map of GFC products from 2016 to 2020 was extracted and
compared with the forest disturbance map for the same period. The sampling points are
used to evaluate the accuracy.

3. Results
3.1. Landcover Classification Results

For sampling points used for landcover classification, the divisions of the test set
and training set are dependent on a random factor. A total of 100 groups of test and
training sets were obtained after dividing them by 100 different random factors. The overall
accuracy and kappa coefficient of the classification were evaluated for each of the 100 groups
and averaged separately to evaluate the classification results. The average overall land
classification accuracy reached 95.99%, and the average kappa coefficient reached 0.93
(Table 4). Using a random factor of 29, the overall classification accuracy reached 95.16%.
A confusion matrix of the landcover classification is shown in Table 4. In this case, there
was no misclassification of forest landcover and no misclassification of other landcover
types as forest land. Classification confusion mainly occurred between water and other
land types. Finally, this study used the trained random forest model to classify the Landsat
segment stage-by-stage. According to the stage-by-stage classification results, a landcover
classification map of any year could be obtained.

Table 4. Confusion matrix of CCDC land cover classification.

Overall Accuracy = (167 + 39 + 109)/(167 + 39+9 + 7 + 109) = 95.16% Kappa Coefficient = 0.93

Class Forest Water Other Total User’s Accuracy
Forest 167 0 0 167 100%
Water 0 39 7 46 81.25%
Other 0 9 109 118 93.97%
Total 167 48 116 331

Producer accuracy 100% 84.78% 92.37%
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Figure 4 shows forest and water distribution maps of Nanning in eight periods: 1987,
1990, 1995, 2000, 2005, 2010, 2015, and 2020. The spatial distribution maps show that forests
were mainly distributed in the north, northwest, and central parts of Nanning but rarely
in the south, while there were more water bodies in the south, which is closely related
to the abundant rainfall of Nanning. In general, the overall forest distribution pattern in
Nanning is very stable. Over nearly three decades, urban change, urban construction, and
urban planning in Nanning have not affected the forest distribution pattern, and the forest
coverage and area have been increasing (Figures 5 and 6), from 45.5% in 1987 to about 49%
in 2020. From 1987 to 2005, Nanning’s forest coverage showed slow linear growth with an
average annual growth rate of 0.074%. After 2005, Nanning's forest coverage showed more
significant growth, with a linear growth rate of about 0.214%. Over the whole period from
1987 to 2020, Nanning’s forest coverage increased significantly, with an average annual
growth rate of 0.123%.

107.5°E_ 108.0°E_ 108.5°E  109.0°E__ 109.5°E 107.5°E_ 108.0°E__ 108.5°E _ 109.0°E__ 109.5°E

© o o ko
> Eac >
-4 z z 4
8 8o s
‘] s % ]
= 4 4 z
N RO ko
B BB 8
=3 < = <
-4 z z z
S o 8N .o B
& s L. &
2 1 L. 1 z

p— 5 0 20 40 60 km — 5

Ll L1 =

107.5°E

107.5°E

108.0°E

108.0°E

108.5°E

1995

108.5°E

109.0°E  109.5°E

109.0°E__109.5°E

107.5°E

107.5°E

108.0°E

108.0°E

108.5°E

2000

108.5°E

109.0°E  109.5°E

109.0°E_ 109.5°E

b

NoS' €T No0'vT

No0'€T

o
8§
¥

NoS'TT

Nof

0 20 40 60 km

Ll 1]

NoS'€T

NoS'TCT

No0'€C

. o
[ H
. 2

km

107.5°E

107.5°E

108.0°E

108.0°E

108.5°E

2005

108.5°E

109.0°E  109.5°E

109.0°E___109.5°E

107.5°E

107.5°E

108.0°E

108.0°E

108.5°E

2010

108.5°E

109.0°E  109.5°E

109.0°

NoS'€T  No0'+T

No0'€T

¥
I |
I 2

NoS'ZC

0 20 40 60 km

L1l 11

NoO'€CT  NoS€T  No0'PT

NoS'TT

. o
!
-

0 20 40 60 km

No0'€T  NoS'€T  No0'+T

No§'TT

No0'€T  NoS€T  NoO'PT

NoS'TT

107.5°E

107.5°E

108.0°E

108.0°E

108.5°E

2015

108.5°E

109.0°E  109.5°E

109.0°E__ 109.5°E

107.5°E

107.5°E

108.0°E

108.0°E

108.5°E

2020

108.5°E

109.0°E  109.5°E

109. S°E

v

No0'#T

NoS'€T

No0'€T

. o
1
P

No$'TT

Nof

No0'#T

NoS'€CT

No0'€T

0 40 60 km
L1 11

NoS'TT

No0'€T  NoS'€T

NoS'TT

o
f 1
-

No0'+T

No§'€T

No0'€T

0 40 60 km

No$'TT

L1 11

107.5°E

Figure 4. Landcover classification maps of Nanning in eight years between 1987 and 2020.
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Figure 5. Forest coverage changes in Nanning from 1987 to 2020.

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

year
Figure 6. Changes in forest cover area in Nanning from 1987 to 2020.

The changes in forest coverage are closely related to the Nanning government’s policies
of improving forest quality and planning and regulating forest tree species and planting
patterns. Since 2008, the Nanning government has implemented forest protection and
transformation projects with the goal of creating a national forest city and building a forest
ecosystem around the city [34]. These policies have had significant impacts on the growth
of forest areas in Nanning.

Based on annual forest distribution maps of Nanning City from 1987 to 2020, the
annual forest coverage areas were calculated. From 1987 to 2020, the forest coverage area
continued to rise and peaked in 2020 at 10,946 km?Z. In 1987, the forest coverage area was
the lowest. From 1988 to 2008, the forest coverage area increased steadily and slowly, with
an average annual growth rate of 0.169% and an average annual growth area of 1600 ha.
After 2008, forest coverage increased rapidly. The yearly growth rate was significantly
higher than before, with an average annual growth rate of 0.4% and an average annual
growth area of 3929 ha.
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3.2. Validation and Comparison of Forest Disturbance Detection Results

This study compared the forest disturbance results with the existing GFC products.
Since GFC products only record the latest forest-loss time, this study extracted Nanning
forest-loss products from GFC products for 2016 to 2020 (Figure 7). Combined with the
forest-loss map created in this study (Figure 8), a total of 61 polygons were collected for
change detection accuracy validation. These 61 polygons were forest-loss samples with a
total of 20,875 pixels, including 18,031 loss pixels detected in this study and 12,566 loss pixels
detected in GFC products. Overall, the detection accuracy of the breakpoint algorithm
based on Landsat segments was 86.4%, while the accuracy of GFC forest change products
was about 60%. Apparently, the disturbance result from the CCDC-STBR approach has
higher accuracy than the GFC product. In the forest-loss maps, the spots detected by this
study were more concentrated than those of GFC products. Still, on the whole, the regional
loss distributions of the two are consistent are mainly concentrated in the middle and
northwestern areas of Nanning.
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Figure 7. Global forest-loss maps of Nanning, 2016-2020.
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3.3. Forest Disturbance Results

The breakpoint change factor can measure the intensity of forest disturbance. In this
paper, the sum of the NDFI, NBR, and NDVI confidences is defined as sum_confidence.
The sum_confidence from 1987 to 2020 was calculated, and all the confidence values in
Nanning are shown in the histogram (Figure 9). The histogram shows that most breakpoint
confidence values are >1 and are mainly 0.8-2.8. A value of 1 means that two of the three
index factors (NDFI, NBR, NDVI) are very likely to indicate that the point is a breakpoint.
When the magnitude of a single index is three times that of the RMSE, its corresponding
confidence value is exactly 0.5.

1.0x108
9.5x10°%
9.0x10°
8.5x10°%4

3 2 R 0 1 2 3
Sum Confidence

Figure 9. Histogram of sum_confidence in Nanning.
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The center of the probability density curve fitted to the histogram of confidence values
is at 1.5; that is, almost three index factors determine that the landcover type changed
abruptly. The distribution of the breakpoint degree factor shows that there was relatively
severe forest disturbance in Nanning from 1987 to 2020. This is directly related to the
repeated rotations of plantation forest harvesting in Nanning, which is an intense type of
forest disturbance.

First, breakpoints with the greatest sum confidence value of NBR, NDVI, and NDFI
from Landsat segments were selected year by year; however, there was still salt and pepper
noise in the breakpoint. Therefore, the existing morphological closed operation and post-
processing algorithms, such as object-oriented connectivity detection and unsupervised
clustering, were combined to filter out the noise of the breakpoints and make annual
forest disturbance maps. This study also statistics the forest disturbance area from 1987
to 2020 (Figure 10). From the statistical results, intermittent deforestation is common in
Nanning. Analysis of the annual forest-loss area shows that the forest disturbance area has
increased and decreased intermittently, with periodic logging occurring every 2-8 years.
In the monitored disturbance area, there were strong forest disturbances in 2002, 2005,
and 2011, and each forest disturbance area was >200 ha. This intermittent large-scale
forest disturbance is closely related to Nanning’s main industry, timber plantations. In
Nanning, fast-growing commercial forests have always been regarded as an important
industry. Therefore, intermittent large-scale forest disturbance due to harvesting is normal.
To further determine the spatial distribution of forest disturbance in Nanning, this study
made annual forest disturbance maps (Figure 11).

Regionl, Region2, and Region3 were selected, which had relatively concentrated
forest-loss events. According to the map of forest disturbance from 1987 to 2020 (Figure 11),
disturbed areas were mainly distributed in the central, eastern, and northwestern regions
of Nanning. Disturbed areas were relatively concentrated and had obvious patchiness. The
distributions of forest disturbance are also very regular in time and space. That is, a large
area within the scope of every five years, different regions have different disturbance years,
which is related to the planting and periodic harvesting of timber plantations.

To further detect the frequency of forest loss in Nanning City, the disturbance frequency
was calculated from 1987 to 2020 (Figure 12). Frequency forest-loss events mainly occurred
in the central, northern, and southwestern parts of Nanning. The frequency of forest
disturbance in the forest hinterland of southwest China was the highest. In this region,
the forest-loss event times had a dense spatial distribution. In addition, from 1987 to 2020,
there were generally fewer than five forest-loss events in Nanning. That is, the average
rotation period of plantation harvesting in Nanning was generally more than seven years.
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-
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<
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Figure 10. Forest-loss area in Nanning from 1987 to 2020.
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One of the advantages of the CCDC-STBR algorithm used in this study is that this
algorithm can acquire accurate annual durations of forest disturbance. The annual forest
disturbance time from 1987 to 2020 was analyzed (Figure 13). The forest disturbance months
in Nanning were mainly concentrated from July to December. September to December
is the peak period of forest disturbance in Nanning, while the fewest disturbance events
occur in January. From July, the frequency of forest disturbance events increases and peaks
in November, which corresponds to plantation harvesting. Guangxi Province has abundant
water, heat, and energy, and November is the peak period of plantation growth.
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1000000 1+ 1o bt deecforefoiedeon i dc i)
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Count
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Figure 13. Forest-loss months from 1987 to 2020.

4. Discussion
The CCDC-STBR algorithm also has the advantages of the CCDC algorithm:

1. A harmonic model is used to fit the time-series change characteristics of each band,
which can reduce the time-phased noise caused by periodic changes [35,36];

2. The algorithm is fully automated, and no empirical or global thresholds need to be
specified in the detection process;

3. The algorithm can diagnose both interannual and intra-annual trends.

However, this algorithm also has some deficiencies. Its advantages and defects are
discussed from the two aspects of land cover classification and disturbance detection.

4.1. Forest Distribution Classification

The feature subset optimization method used in this study can maximize land cover
classification accuracy. Using seven bands of Landsat imagery (NIR, red, green, blue, Swirl,
Swir2, temp), three indices (NBR, NDVI, NDFI), and auxiliary data (such as elevation,
aspect, DEM, rainfall, tree cover), the classification algorithm can achieve a classification
accuracy of up to 95.16%, which is higher than using other combinations of classification
features. The classification accuracy of forest landcover is very high, which proves that
multi-dimensional spectral-temporal change information is useful for distinguishing subtle
differences between landcover types [37]. It also showed that the CCDC algorithm has
the potential to overcome the low frequency of Landsat observations by using every
observation on a per-pixel basis to build stable season-trend models; thus, it is suitable for
forest monitoring in regions such as Nanning, which has cloudy and rainy climates.

Although the accuracy of forest cover classification based on the CCDC algorithm
is high, there are still some deficiencies. The CCDC Landsat segment classification uses
stable landcover as training samples, which increases the sampling selection complexity.
In addition, the CCDC algorithm needs sufficient cloud-free observations to initialize the
harmonic model, and some pixels will be missed if the number of observations in a year
is less than the minimum observations set for the harmonic model [26]. The classifica-
tion result for Nanning in 1987 had an unusually low forest coverage area because of
insufficient observations.
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4.2. Forest Disturbance Detection Based on CCDC-STBR Algorithm

This study uses the spectral trajectory breakpoint recognition algorithm to monitor
the forest disturbance in Nanning year by year based on a harmonic model. Compared
with LandTrendr, VCT, Verdet, and other change detection algorithms, this method can
monitor the real-time forest disturbance to forest within a year on a monthly scale.

Omission errors exist in forest disturbance data; however, it is much better than that
of GFC products, and there are several causes that resulted in the omission errors. Firstly,
although the harmonic model greatly improves the continuity of time-series data, the cloudy
and rainy climate of Nanning reduces the number of Landsat time-series observations.
The low annual data acquisition rate and continuous pixel losses in the time series are
both great challenges for the harmonic model to generate spectral-temporal coefficients.
Secondly, the breakpoint detection method was adopted for change detection in this paper,
which is not affected by classification accuracy. However, it is unreasonable to use the
same statistical method to identify outliers of different indices because each index has
a different sensitivity to forest disturbance events such as fire [10,38]. Third, at least six
cloud-free observations are required to initialize the CCDC model in this paper. If the
observation situation is not ideal and there are fewer than six cloud-free observations in a
year, the omission error will increase. Apparently, there are quite a few areas in Nanning
where the annual average number of Landsat observations is less than 6 from 1987 to
1995, but for other years, the annual average number of Landsat observations is sufficient
(Figure 14). Fourth, some partial changes or observation noise can affect the initialization
of the harmonic model [39]. The last, although the super-pixel clustering algorithm based
on simple non-iterative clustering can eliminate some small pixel patches, partial changes
are easily ignored [40].
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Figure 14. Annual average number of Landsat observations in the certain year range.

To extend the CCDC-STBR algorithm to regional or global scales, improve the accuracy
and scope of its application to landcover classification, and to further improve the detection
accuracy of forest-loss events, the following improvements are planned: (1) To evaluate the
sensitivity of different combinations of forest change detection indices (such as different
combinations of the normalized combustion index, normalized vegetation index, NDFI,
and other indexes), statistical methods were used to detect and evaluate the breakpoint
sensitivity. The most sensitive index combination was selected as the detection index of the
timing breakpoint. (2) When using the post-processing algorithm, the breakpoint detection
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results can be further combined with the confidence threshold and superpixel clustering
algorithm to reduce the influence of salt and pepper noise and improve the accuracy of
change detection. (3) The existing CCDC-STBR algorithm still has room for improvement
in the statistical judgment of breakpoints, and different threshold standards can be set for
different indices.

The CCDC-STBR algorithm can also be applied to detect the causes of forest distur-
bance for its abundant spectral-temporal change information from the harmonic model,
such as fire, insects, and logging [41]. It also has the potential to be applied to detect
vegetation phenology and forest degradation [41,42].

5. Conclusions

The forest monitoring method in this paper is an integration of existing classification
comparison and trajectory tracking methods. Improvements for classification and spectral
trajectory tracking are proved to be effective. For the classification results, the high clas-
sification accuracy showed that the optima subset feature selection method is effective in
improving the classification accuracy. The result of optima selection shows that not the
more classification features, the higher classification accuracy.

The spectral trajectory breakpoint recognition approach has the following advantages
compared to the existing forest disturbance detection methods and the GFC product: (1) the
CCDC-STBR algorithm can accurately capture the specific disturbance time, and we draw
the conclusion that the forest disturbance time mainly concentrated in July to December;
(2) the CCDC-STBR algorithm is fully automated, with no empirical threshold requirement
and easy to be used on GEE; (3) the continuous trajectory breakpoint method has apparently
higher disturbance detection accuracy than the GFC product, with overall accuracy up to
86.4%. It is also suitable for high-resolution time-series data such as Sentinel. Although the
CCDC-STBR has a high requirement for computing resources, its integration with GEE is
beneficial for its use at a larger spatial scale.

The forest monitoring in Nanning represents that: (1) from 1987 to 2020, Nanning
continues to turn green [43], and the rate of this greening has increased rapidly since 2005,
which is related to a series of new policies issued by the Nanning municipal government,
such as closing mountains for afforestation, reasonable allocation of forest species, and
rocky desertification integrated rehabilitation [34]; (2) the intermittent harvesting strat-
egy affects the spatial and temporal distribution of forest disturbance, most forest areas
have a disturbance frequency of about 7 years, and disturbance years in Nanning are
spatially complementary. Nanning has abundant water and warm temperatures, and a
series of forest management and ecological governance policies by the Nanning municipal
government have contributed to the continuous development of local forestry and the
ecological environment.

Comprehensively, the CCDC-STBR forest monitoring algorithm has the potential to be
applied to global forest disturbance monitoring.
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