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Abstract: Southwest China faces harsh environmental pollution challenges and rapid development.
Against this backdrop, exploring the impact mechanism of the urban network on carbon emissions
in rapidly developing regions is of great significance to the balance between regional development
and carbon emissions reduction, as well as regional sustainable development. The objective of
this study is to quantify the relationship between carbon emissions and the urban network, using
panel data analysis for 47 cities in southwest China from 2010 to 2019. Therefore, several urban
network indices were selected and quantitatively studied by using the spatial Durbin model to
reveal the impact mechanism of the urban network on carbon emissions in rapidly developing
regions. The results show that: (1) the growth of carbon emissions in a city has a significant positive
spatial spillover effect on the surrounding areas; (2) the temporal and spatial distribution of carbon
emissions is highly coincident with the urban network; (3) the urban network has a two-sided impact
mechanism of promoting and inhibiting carbon emissions; and (4) the effect of the impact mechanism
is affected by regional development conditions, and the promotion effect plays the main role in
rapidly developing regions.

Keywords: carbon emissions; urban network; spillover effect; two-sided impact mechanism

1. Introduction

Global carbon emissions increased by 3.5% from 2017 to 2019 [1]. Although in 2020
global carbon emissions were significantly reduced because of COVID-19 [2], they have
once again aroused widespread concern globally. At the 75th General Assembly of the
United Nations in 2020, China proposed for the first time achieving a carbon peak by 2030
and carbon neutralization by 2060. Meanwhile, China put forward the “double control”
system to control the carbon emissions intensity, which essentially controls total carbon
emissions intensity [3]. Subsequently, Bosch, Pepsi, IKEA and other world-famous enter-
prises proposed carbon reduction targets. Based on the data from the economic industry,
environmental protection, and land use [4–6], scholars worldwide have quantitatively
studied climate change and carbon emissions through mathematical models and sensitivity
analysis [7–10]. Then, specific studies on various factors that influence carbon emissions
have been developed [11–14].

As major carriers of energy consumption and carbon emissions, cities are important
research objects for exploring the factors affecting carbon emissions. The literature high-
lighted three important aspects. First, different types of urban land were found to have
different effects on carbon emissions: an increase in residential, industrial and commercial
areas significantly increases carbon emissions [15,16]. The increase in land-use intensity
and mixed degree reduces carbon emissions by improving the utilization efficiency of
public resources and reducing traffic volume [17,18]. Second, urbanization is another im-
portant factor affecting carbon emissions. Urbanization can accelerate the growth of carbon
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emissions through the influence of population and GDP [19–21]. However, some scholars
found that upgrading the industrial structure and improving the production level cause
carbon emissions to decline when urbanization develops to a certain stage, and an inverted
“U” relationship eventually forms between urbanization and carbon emissions [14,22,23].
Third, the urban spatial form is closely related to carbon emissions [24]. Larger urban
areas and more complex forms reduce carbon emission efficiency [25,26]. In contrast, more
compact cities have improved carbon emission efficiency [27–29]. At present, research on
the relationship between cities and carbon emissions only focused on the city-level aspects,
such as the economy, industry, and space, but ignored the interaction between cities. This
interaction can affect the degree of development of regions and cities through regional
cooperation and competition [30–32], and then affects carbon emissions through the urban
scale, economic production, transportation, and other forms. Therefore, by discussing the
interactions between cities on a regional scale, this study provides a theoretical basis for
urban carbon reduction and serves as a reference for scientific urban layouts.

The compression of time and space brought about by the transportation and informa-
tion revolution has significantly changed the development process of the urban systems.
Consequently, the connection between cities has broken through the boundary limit of
traditional planning theory and has formed a cross-regional network connection [33,34].
Urban network theory is based on the complementary regional functions and a specialized
division of labor, and the research focus has shifted to the relationship between cities
from the traditional urban hierarchy and spatial distribution [35,36]. At present, urban
network theory primarily analyzes the interaction between cities from the perspectives of
traffic flow, information flow, and enterprise organization, and reveals their effects [37–39].
Zhang et al. (2021) and Lao et al. (2016) used air passenger flow to verify the diamond
structure of China’s urban network and found that the transportation network promoted
balanced regional development [40,41]. Xia et al. (2019) concluded that the bi-directional
flow between cities has a significant impact on the city and urbanization levels by analyzing
the flow of people and information among the megacities in the middle reaches of the
Yangtze River [42]. Cheng and Zhao (2015) found that the urban network promoted the
regional division of labor and specialized production to a certain extent on the basis of
the headquarters–branch relationship [43]. The development of cities, the change in the
regional division of labor, and the flow of resources have brought about changes in carbon
emissions, indicating that urban networks affect carbon emissions.

According to the Northan Curve of urban development research, when the urbaniza-
tion rate is between 30% and 70%, the city is in a period of rapid development. Compared
with developed regions, rapidly developing regions face more severe carbon emissions
problems because of urban expansion, population growth, and industrial agglomeration.
However, most existing studies focused on developed regions, and insufficient attention
was paid to rapidly developing regions.

Southwest China is in a period of rapid urban development, with the urbanization
rate increasing from 39.76% to 56.50% from 2010 to 2020 [44]. This increased rate was
accompanied by a surge in carbon emissions, making the carbon emissions situation
increasingly critical. Therefore, this study was conducted in southwest China, including
47 cities and states distributed in Sichuan, Yunnan, and Guizhou. This study investigates
the relationship between the urban network and carbon emissions through a social network
analysis and the spatial Durbin model and reveals the urban network mechanism on carbon
emissions in rapidly developing regions.

On the one hand, this paper innovates the research perspective of the influencing
factors on carbon emissions, which is conducive to reducing carbon emissions during rapid
development. On the other hand, this paper explores how to balance the relationship
between rapid regional development and carbon emissions through the two-sided impact
of the urban network. The conclusions of this study are helpful to provide guidance for
the low-carbon development of southwest China and provide action references for other
fast-growing regions.
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2. Materials and Methods
2.1. Research Area

In this study, southwest China refers to three provinces and one municipality, Sichuan,
Yunnan, Guizhou, and Chongqing, and includes 47 cities (Figure 1). The seventh national
census in 2021 showed that the region’s total population has reached 201.5 million, and
the region has a total area of 1.14 million square kilometers [45]. In recent years, Chengdu–
Chongqing Urban Agglomeration and Central Yunnan Urban Agglomeration—important
economic growth poles in western China providing important support for the “Belt and
Road” strategy and the “Yangtze River Economic Belt” strategy—have brought unprece-
dented opportunities for development in southwest China [46,47]. From 2010 to 2019,
southwest China has achieved a GDP growth of 1.92 times and an urbanization rate incre-
ment of 14.01%, becoming one of the typical regions with the fastest economic growth in
China [44]. However, southwest China is restricted by geographical conditions and still
has large gaps in regional development levels and low overall development. This situation
shows that the driving role of Chengdu, Chongqing, Kunming, and other central cities to
the remote areas is not noticeable, and regional production cooperation and the economic
radiation effect are insufficient [48]. From the urban network perspective, these problems
are caused by the fact that the efficient circulation of a variety of resources between central
cities and remote areas is unachievable, because of the immature urban network and the
geographical and distance barriers.

Figure 1. Research area.

The urban network plays a significant role in promoting the overall development of
a region. However, it also affects the figure and spatial distribution of carbon emissions
through industrial agglomeration, regional division of labor, and population flow. From
2010 to 2019, the environment in southwest China continued to deteriorate during the rapid
development process, with carbon emissions increasing by 23.4%. Given rapid economic
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and carbon emissions growth, exploring the impact mechanism of the urban network on
carbon emissions is of significant importance to maintaining the balance between regional
development and carbon emissions reduction, and promoting the realization of carbon
peak in southwest China. In addition, this exploration provides a salutary lesson for other
rapidly developing regions.

2.2. Data Sources

The data on 2010–2019 railway trains and stations used in this study are from the
China Railway [49]. The data on the GDP, population and energy balance sheet of each city
and state are from the statistical yearbooks (2011–2020) of Chongqing, Sichuan, Guizhou,
and Yunnan [44,50–52].

2.3. Research Methods

First, this study measures the urban network and carbon emissions of southwest China
during several years through social network analysis and carbon emissions calculation
formula. The data were used to realize the visualization expression of the spatial-temporal
distribution of the urban network and carbon emissions with the assistance of urban
geographic information and ArcGIS, to intuitively analyze their evolutionary characteristics.
Then, this study uses the spatial Durbin model to reveal and quantify the impact, and its
mechanism, of the urban network on carbon emissions. The main research methods are
as follows.

2.3.1. Social Network Analysis

Social network analysis is a method used to analyze the status of a node, the corre-
lations between nodes, and the entire network. This method is a common approach in
fields such as economics and management. In addition, this method has been widely used
in recent years in spatial structure research on urban agglomeration [53]. By using social
network analysis to measure the centrality, network density, network efficiency, and other
indicators of the urban network in southwest China, this study discusses the evolutionary
characteristics of the urban network.

1. Degree Centrality (DC)

DC measures a certain city’s connection ability, importance, and level in the network.
Improvements in connection ability can promote the local economy, and production activi-
ties, and the overall development of the regional economy by strengthening the division
of labor and cooperation among regions, thus having a stronger impact on carbon emis-
sions. The larger the degree centrality, the closer the connection between the city and
other cities in the network, and the higher the city’s level in the urban network [54]. For a
directed urban network, the DC of one city includes two parts: in-degree centrality and
out-degree centrality.

DCi = IDCi + ODCi (1)

IDCi = ∑k
j=1 Tij (2)

ODCi = ∑k
j=1 Tji (3)

where DCi, IDCi, and ODCi are the degree centrality, in-degree centrality and out-degree
centrality of city i; k is the number of urban network nodes; Tij and Tji are the contact times
of in-degree and out-degree between city i and j.

2. Closeness Centrality (CC)

CC measures the sum of the shortest distances between one city and all other cities
to express the contact degree between the node and other nodes. A larger CC means that
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reaching other cities is easier. The expectation is that less traffic carbon emissions can be
generated in the contact network [54].

Di = ∑n
j=1 dij , i 6= j (4)

where dij is the shortest distance between city i and j.

3. Network Density (ND)

ND indicates the development degree of the urban network. A larger ND indicates a
closer relationship between cities and a more mature urban network [55].

ND =
T

k(k− 1)
(5)

where k is the number of urban network nodes; T is the actual number of contacts in the
city network.

4. Network Centralization (NC)

NC indicates the centrality of the entire urban network [56]. An NC closer to 1 indicates
a concentrated urban network distribution. An NC closer to 0 indicates a more balanced
urban network distribution.

NC =
∑k

i=1 (Cmax − Ci)

max ∑k
i=1 (Cmax − Ci)

(6)

where k is the number of urban network nodes; Cmax is the maximum DC of the network;
Ci is the DC of city i.

5. Eff Size (ES)

ES measures the non-redundant factor in the network [57].

ESi = ∑j

(
1−∑q piqmjq

)
, q 6= i, j (7)

where j is all cities connected to city i; q is the other cities except i and j; piqmjq is the
redundancy between city i and city j.

6. Constra (CST)

CST indicates the degree to which one city directly or indirectly depends on other
cities, which is the control ability and pivotal role of one city in the network connection [57].
A stronger pivotal role of the city results in a more frequent flow of various resources and
economic activities that affects carbon emissions.

CSTij =
(

pij + ∑q piq pqi

)2
(8)

where j is all cities connected to city i; pij is the proportion of the connection between city i
and j in all the connections of city; i, piq, pqi is the indirect connection between city i and j
through another city q.

7. Node Connection Efficiency (NCE)

NCE represents the connection efficiency and speed of one city in the network given
the ratio of the number of high-speed trains in one city to all trains. A higher NCE results
in a lower time cost of inter-city connections and a higher production efficiency, which
further influence carbon emissions.

NCEi =
Tih
Ti

(9)
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where Tih is the number of high-speed trains passing through city i; Ti is the number of all
trains passing through city i.

8. Node Symmetry (NS)

NS represents the strength of the siphon effect of one city in the network by the ratio
of arriving trains to all trains. The enhancement of the siphon effect brings about the
agglomeration of population and industry, which is expected to lead to an increment in
carbon emissions.

NSi =
Tia
Ti

(10)

where Tia is the number of arriving trains in city i; Ti is the number of all trains passing
through city i.

2.3.2. Calculation of City-Level Carbon Emissions

Because city-level carbon emissions cannot be directly obtained from the public data,
these data are calculated indirectly. The calculation method is common and is based
on the energy consumption per unit of GDP and the GDP of the secondary and tertiary
industries [58]. In this study, the energy consumption of each city is calculated according to
the GDP ratio of primary, secondary, and tertiary industries and the permanent resident
population in the entire province. Finally, the carbon emissions of each city and state are
obtained by multiplying the carbon emission coefficient of standard coal. The calculation
formula is as follows:

CEi = CE f ×
FGDPi
FGDP

+ CEs ×
SGDPi
SGDP

+ CEt ×
TGDPi
TGDP

+ CEl ×
POPi
POP

× k (11)

where CE f , CEs, CEt, and CEl , respectively, refer to the energy consumption of the primary,
secondary, and tertiary industries and the domestic consumption of the entire province
(unit: 10,000 tons of standard coal); FGDP, SGDP, TGDP, POP, and FGDPi, SGDPi,
TGDPi, POPi, respectively, refer to the GDP of the primary, secondary, and tertiary indus-
tries (unit: 100 million yuan) and the permanent resident population (unit: 10,000 people)
of the entire province and city i; k is the carbon emission coefficient of standard coal.

2.3.3. Spatial Durbin Model

Theoretical research and current situation analysis showed that spatial agglomera-
tion [59] and spatial spillover [60] are the two main characteristics of carbon emissions.
Therefore, a spatial Durbin model approach was used to perform the analysis. The spatial
Durbin model is one of the spatial econometric models, which take into account both spatial
lags of dependent and explanatory variables [61]. A major advantage of the spatial Durbin
model is that it can overcome the shortcoming that each variable is independent in the
traditional regression model, make up for its spatial limitations [62], and explore the impact
of the geographical proximity on variables, to quantify the urban network’s impact on
carbon emissions and its spatial spillover effect.

1. Variable selection

In this study, carbon emissions were selected as the explained variable; DC was the
core explanatory variable; and CC, NCE, NS, CST and ES were used as control variables.
To eliminate the influence of different variable dimensions on the regression analysis, all
variables were logarithmically processed. The descriptive statistics for each variable are
shown in Table 1.

2. Research method

The spatial spillover effect is the premise of the spatial Durbin model. Therefore,
the spatial autocorrelation analysis was used to detect the spatial spillover effect of car-
bon emissions in southwest China using the Global Moran’s I. The Global Moran’s I is
one of the most well-known tools for assessing the spatial agglomeration dependence of
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one phenomenon or attribute value in an entire region [63]. The calculation formula is
as follows:

I =
n ∑n

i=1 ∑n
j=1 Wij

(
Xa

i − Xa
)(

Xb
j − Xb

)
∑n

i=1 ∑n
j=1 Wij ∑n

i=1
(
Xa

i − Xa
)(

Xb
j − Xb

) (12)

where, n is the total number of cities in the research area; Wij is the spatial weight matrix; xa
i

and xb
j are the values of attribute a for city i and attribute b for city j, respectively; xa

and xb are the average values of attribute a and b, respectively. The value range of I is
[−1, 1]. When I > 0, the spatial correlation is positive; a larger I indicates a stronger positive
correlation. When I = 0, no spatial correlation exists. When I < 0, the spatial correlation is
negative; a smaller I indicates a stronger negative correlation.

Table 1. Descriptive statistical results of each variable.

Variable Obs Mean Std. Dev. Min Max

lnCE 470 16.57 0.911 14.21 19.22
lnDC 470 3.352 2.376 0 7.324
lnCC 470 2.292 0.549 1.448 2.724

lnNCE 470 −0.234 0.504 −2.681 0
lnNS 470 −0.501 0.311 −0.916 0
lnCST 470 −0.477 0.529 −1.737 0.632
lnES 470 1.266 1.083 0 3.197

The spatial Durbin model reflects the impact of carbon emissions from surrounding
cities through a spatial weight matrix. GeoDa software was used to generate contiguity
weights on the basis of rook contiguity. The calculation rule is as follows: if city i and city j
have the same edge, then Wij = 1; otherwise, Wij = 0, and the diagonal entry is 0. To avoid
the influence of regions on the results, the contiguity weight is standardized to make the
sum of the elements in each row equal to 1.

Based on the algorithm of the spatial Durbin model [61], the formula is set as follows:

lnCEit = ρWlnCEit + β1lnDCit + β2lnCCit + β3lnNCEit + β4lnNSit + β5lnCSTit + β6lnESit + θ1WlnDCit+
θ2WlnCCit + θ3WlnNCEit + θ4WlnNSit + θ5WlnCSTit + θ6WlnESit + ε

(13)

where ρ is the spatial autoregressive coefficient, βi is the regression coefficient of the
explanatory variables; θi is the regression coefficient of spatial lag term of explanatory
variables; ε is the residual term of the model; i refers to city i; t refers to year.

3. Results and Analysis
3.1. Evolutionary Characteristics of the Urban Network and Carbon Emissions

The urban ND, DC and carbon emissions of southwest China in 2010, 2015, and 2019
were divided into different grades by natural breaks. Visualization of the urban network
and carbon emissions was realized by combining the geographical information of each city.
To preliminarily judge whether the urban network affects carbon emissions, this section
analyzes the evolutionary characteristics of both.

From 2010 to 2015, given the continuous improvement in urban ND in southwest
China, the connection between cities became closer and the network distribution became
more balanced. Simultaneously, carbon emissions increased. Both the urban network and
carbon emissions entered a rapidly increasing stage after 2015 (Table 2). In general, they
had the same developmental trend, which requires further analysis.

In 2010, the major contacts in southwest China were concentrated in Chengdu,
Chongqing, Kunming, Guiyang and their surrounding cities, whereas the inter-provincial
contact between regions was relatively weak (Figure 2a). The urban network had the
characteristics of a low-level connection, a small scale, and centralization, indicating that
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the urban network was still in its infancy. The urban hierarchical structure exhibited a low-
level flattening trend. The urban ties were loose for the urban network, and the radiation
capacity of cities was weak, resulting in few tertiary cities and many fourth-class cities in
remote areas (Figure 2a).

Table 2. Change in ND, NC and carbon emissions in southwest China.

Year 2010 2015 2019

ND 0.847 1.202 2.922
NC 29.9% 23.20% 21.64%

Carbon Emissions (104 tons) 103,498 114,684 127,694

Figure 2. (a) Urban networks in southwest China in 2010. (b) Carbon emissions in southwest China
in 2010.

The spatial distributions of the urban network and carbon emissions were highly
coincident (Figure 2b). Cities with high carbon emissions were identified in the urban
network. In addition, the higher-level cities in the urban network, such as Chengdu,
Chongqing, Kunming, Guiyang, and their surroundings, usually produced higher carbon
emissions.

In 2015, the dominant flows in southwest China broke the boundaries of the admin-
istrative regions. Chengdu, Chongqing, and its surrounding cities—Mianyang, Suining,
Guang’an and Dazhou—formed the Chengdu–Chongqing urban agglomeration, which
was the tightest urban network in the region. The urban network of the southeastern part
was further improved, forming the central Yunnan and central Guizhou urban agglom-
erations (Figure 3a). However, the topographic features in the central part of southwest
China significantly restricted the relationship between the cities, which led to a lack of close
network connections among the three major urban agglomerations in the south and north.
Consequently, the urban level in the central region obviously declined.

The spatial distribution of carbon emissions and the urban network significantly
overlapped (Figure 3b). Carbon emissions in central Yunnan have increased significantly
through further improvements in the urban network. In addition, the increase in carbon
emissions in the core cities of these three urban agglomerations also drove the growth
in carbon emissions in surrounding areas, such as Ziyang and Kaili, which indicated the
potential for carbon emissions to have a spatial spillover effect.
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Figure 3. (a) Urban networks in southwest China in 2015. (b) Carbon emissions in southwest China
in 2015.

With the opening of Chengdu–Guiyang high-speed railway, Chongqing–Guiyang
railway, Kunming–Guiyang high-speed railway, and other lines, the urban network in
southwest China entered a rapid development stage. At the regional level (Figure 4a):
Chengdu, Chongqing, Kunming and Guiyang constituted a C-shaped backbone network,
connecting the three major urban agglomerations in the northern and southern regions. The
connection between the three major urban agglomerations and other low-ranked cities was
significantly improved (Figure 4a). Therefore, an urban network has a significant feature
of area development. Since 2015, the gap among the central, regional central, tertiary, and
fourth-class cities in terms of their connection ability and status has gradually widened.
The prominent position of the four central cities was consolidated, and connection ability
was significantly improved, creating a large gap with other cities (Figure 5). This finding
indicates that the trend in urban hierarchy in southwest China was intensifying.

During 2015–2019, carbon emissions also grew rapidly, especially in the four central
cities, and the cities around the C-shaped backbone network, such as Qujing, Mianyang
and Zunyi, (Figure 4b). Furthermore, the carbon emissions of Zhaotong, Yibin, Yuxi,
Chuxiong, and other fourth-class cities increased significantly, whereas the connection
between low-ranked cities tightened in central Sichuan and southern Yunnan.

The strong consistency of the spatial and temporal distribution features between the
urban network and carbon emissions shows that the development of the urban network
directly or indirectly causes carbon emissions to increase, thus indicating spatial spillover
characteristics. These characteristics might result from the fact that close ties among
cities increase the carbon emissions of the transportation industry. From 2010 to 2019,
carbon emissions from the transportation and postal industries in southwest China have
increased by nearly 1.61 times (Figure 6). Moreover, the frequent exchange of people and
production among cities promotes regional economic activities and improves regional
economic development, resulting in increased carbon emissions and spatial spillover
effects [60]. However, this focused only on the skin-deep evolutionary characteristics of
the urban network and carbon emissions. Quantitatively exploring the effect of the key
factors of the urban network on carbon emissions and revealing their impact mechanisms
is necessary.



Land 2022, 11, 458 10 of 19

Figure 4. (a) Urban networks in southwest China in 2019. (b) Carbon emissions in southwest China
in 2019.

Figure 5. Evolution of urban centrality in southwest China (2010, 2015, 2019).

Figure 6. Carbon emissions from transportation and postal services.
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3.2. Influence of the Urban Network Factors on Carbon Emissions

This paper applied the spatial Durbin model to quantitatively explore the impact of
the urban network on carbon emissions and the spatial spillover effect of carbon emissions.
From 2010 to 2019, the global Moran’s I index of carbon emissions of 47 cities in southwest
China was positive and passed the spatial autocorrelation test under the 1% significance
(Table 3). This finding shows that a significant positive spatial dependence of carbon
emissions exists among the 47 cities.

Table 3. Moran’s I Index of carbon emissions in southwest China from 2010 to 2019.

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

I-value 0.311 0.304 0.301 0.292 0.286 0.273 0.251 0.239 0.220 0.216
Z-value 3.601 3.529 3.495 3.402 3.338 3.205 2.976 2.844 2.639 2.574
P-value 0.000 0.000 0.000 0.001 0.001 0.001 0.003 0.004 0.008 0.010

The Lagrange multiplier test on panel data showed that the spatial error effect and
spatial lag effect of panel data are significant at the 1% level; therefore, the mixed ordinary
least squares regression model should be rejected and the spatial panel regression model
should be adopted. The Hausman test was negative, which indicated that the asymptotic
hypothesis of the basic hypothesis of the random effects model could not be satisfied, and
the fixed effects model should be used. The likelihood ratio test was then used to determine
the specific form of the fixed effect. Tests using time-, space-, and double-fixed models
found that the double-fixed model was better. Furthermore, the likelihood ratio and Wald
tests were used to test the robustness of the model. All of the test values were 0.00, which
indicated that the spatial Durbin model could not degenerate into a spatial autoregressive
model or a spatial error model. Therefore, this study chose the spatial Durbin model under
the double-fixed effects of time and space. Table 4 presents the results.

According to the estimation results of the spatial Durbin model (Table 4), the spatial
lag coefficient of carbon emissions, ρ, was 0.4108 and significant at the 1% level, indicating
that carbon emissions had a significant positive spatial spillover effect. In other words, the
increase in carbon emissions in this region significantly enhanced the carbon emissions
in the surrounding areas, which confirmed the previous conclusion. In addition, all five
variables passed the significance test at the 1%, 5% or 10% levels.

This result is somewhat counterintuitive. In contrast to evolutionary characteristics
previously analyzed, the evolution results show that DC did not significantly promote
carbon emissions but had a significant negative spatial spillover effect on carbon emissions.
Generally, an increase in inter-city ties promotes the exchange of labor and capital elements,
increases economic and production activities, and causes local carbon emissions to increase.
However, under the rapid improvement of the urban network, the quick flow of labor and
capital elements promotes division of labor and cooperation among regions, the degree
of specialized production, and the increase in production efficiency, and thus accelerating
industrial upgrading to a certain extent (Figure 7). Along with the secondary industry with
high energy consumption and low efficiency being replaced by the tertiary industry with
low energy consumption and high efficiency, carbon emissions have decreased. Therefore,
under the interaction of these two aspects, an increase in the DC does not lead to an
increase in carbon emissions. The improvement in DC in surrounding areas does not
directly increase the economic activities of the local region but benefits the realization
of the industrial upgrading during the process of regional cooperation and specialized
production, thereby significantly reducing carbon emissions of the local region.
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Table 4. Spatial Durbin model test and estimation results.

Main Effect Spillover Effect

lnDC 0.0178 *
(1.81)

−0.0612 ***
(−3.35)

lnCC −0.2065 ***
(−3.78)

−0.0460
(−0.44)

lnNCE 0.0288 **
(2.23)

−0.1082 ***
(−3.81)

lnNS −0.1853 ***
(−2.56)

−0.4231 ***
(−2.79)

lnCST −0.1979 ***
(−3.77)

0.1394
(1.34)

lnES −0.0302
(−1.11)

0.0822
(1.54)

ρ
0.4108 ***

(7.97)

R2 0.3983

Log-likelihood 533.9948

LM_ spatial error 6.296 **

LM_ spatial lag 25.361 ***

Hausman test −131.65

Wald_ spatial_error 27.16 ***

Wald_ spatial_lag 35.34 ***

LR_ spatial_ error 28.05 ***

LR_ spatial_lag 35.60 ***
Notes: The t-statistic is in parenthesis. *, ** and *** indicate the significance levels at 10%, 5% and 1%, respectively.

Figure 7. Proportion of GDP of the second and tertiary industries in Southwest China.

NCE had a weak positive effect and a significant negative spatial spillover effect
on carbon emissions. The promotion of NCE reduces the time cost and improves the
performance of inter-city connections, which is similar to the effect and mechanism of DC
on carbon emissions.

CC had a significant negative effect on carbon emissions. This is because cities with
higher CC have shorter commuting distances in the contact network, resulting in lower
traffic carbon emissions. This advantage has been further magnified in the context of
increasingly close ties among cities, thereby reducing carbon emissions.

NS had a significant inhibitory effect and negative spatial spillover effect on carbon
emissions, which means that the enhanced siphoning effect of one city notably reduces its
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carbon emissions and those of surrounding cities. The loss of population, industry, and
other resources in surrounding cities affected by the siphon effect significantly reduces the
carbon emissions of daily life and secondary and tertiary industries. The massive inflow
of people, industry, and other resources in cities with a relatively strong siphon effect
increases carbon emissions. However, industrial agglomeration reduces the transportation
energy consumption and public resource consumption between upstream and downstream
industries. In addition, enterprises continue to improve production efficiency in the compet-
itive relationships, thereby reducing carbon emissions. Furthermore, population gathering
promotes the mixing of urban functions and the utilization efficiency of public service
facilities, which is beneficial for carbon emissions reduction [64]. Through these two effects,
NS finally showed an inhibitory effect on carbon emissions, but the inhibition intensity was
lower than the negative spatial spillover effect.

CST had a significant negative effect on carbon emissions. The greater the degree
of restriction of city nodes, the more marginal they are in the urban network. In these
circumstances, the city development and economic activities face stronger restrictions,
resulting in lower carbon emissions.

3.3. Influence Mechanism of the Urban Network Factors on Carbon Emissions

To further examine this finding, we constructed a linear regression model between
carbon emissions and GDP (Figure 8). The results indicate that the carbon emissions per
unit of GDP of southwest China decreased from 2010 to 2019, showing that the carbon
emissions efficiency of southwest China increased. However, no significant reduction in the
total amount of carbon emissions was found with an improvement in efficiency; in contrast,
it increased. In addition, as shown in Figure 8, cities with relatively low carbon emission
efficiency (above the regression line) were mostly those with higher connection levels and
rank in the urban network. These phenomena show that, given rapid development, the
urban network in southwest China played a stronger role in promoting economic and
transportation activities than in improving the efficiency of carbon emissions. In other
words, at this stage, the urban network promoted carbon emissions under the two-sided
impact mechanism.

This finding seems to contrast with the previous results that most factors play in-
hibitory roles. However, the urban network is only one of the factors affecting carbon
emissions. Similar to the situation in most rapidly developing regions, the analysis indicates
that the tertiary industry in southwest China is mainly the catering and transportation
industry with higher carbon emissions, whereas a high-tech industry with lower carbon
emissions, such as finance and IT, is eliminated. The inefficient internal structure of the
tertiary industry leads to the rapid growth of carbon emissions (Figure 9), which breaks
the carbon reduction effect of industrial upgrading. In addition, numerous cities in rapidly
developing regions are still dominated by resource- and labor-intensive secondary indus-
tries. Problems such as backward industrial structure, insufficient industrial agglomeration
and inefficient resource utilization, are difficult to polish up in the short term, which means
that time is still needed to achieve the negative impacts [65]. Furthermore, the lack of
regional central cities with driving effects on the surroundings in rapidly developing re-
gions results in the slow development of marginal areas. Too many medium-sized and
small cities weaken the agglomeration effect. Last but not least, at present, the new energy
vehicles have not been widely popularized. The rapid increase in inter-city links in rapidly
developing regions leads to a quick and substantial increase in the consumption of energy
and fossil fuels for the transportation industry, further aggravating the promotional effect
on carbon emissions (Figure 6).
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Figure 8. (a) Carbon emission efficiency of cities in southwest China (2010). (b) Carbon emission
efficiency of cities in southwest China (2015). (c) Carbon emission efficiency of cities in southwest
China (2019).

Figure 9. Composition of carbon emissions in southwest China.
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4. Discussion

Minimizing carbon emissions along with rapid economic development has been an
ongoing goal of researchers in recent years. An increasing number of studies showed that
the urban spatial structure might have a relationship with carbon emissions [32,66–69].
Most existing studies focused on urban morphology and less on urban networks, for which
this study provides further empirical support.

Our study shows that carbon emissions are positively correlated with the degree of
urban network development in rapidly developing regions. For example, the high-value
areas of carbon dioxide emissions in southwest China are mainly concentrated in the urban
clusters of Chengdu–Chongqing, central Guizhou, and central Yunnan, in which the urban
networks are more closely connected. Additionally, carbon emissions have a significant
positive spatial spillover effect, indicating that an increase in carbon emissions in this region
leads to an increase in carbon emissions in the surrounding areas. This finding is consistent
with those of previous studies [70,71], which poses a stronger requirement for policymakers
to consider overall carbon reduction from a regional perspective rather than targeting only
a single city.

Through an in-depth study of the various factors of the urban network, we find that the
urban network has both promoting and inhibiting effects on carbon emissions (Figure 10).
On the one hand, the development of the urban network promotes the economic activities
and transportation energy consumption [72], thus increasing carbon emissions. On the other
hand, the urban network improves the efficiency of carbon emissions by traffic accessibility
improvement, production efficiency promotion, industrial upgrading and agglomeration
effects [32], leading to a reduction in carbon emissions. Therefore, the two-sided impact
mechanism of the urban network can be influenced by the development of different regions,
which coincides with the results of other studies that showed that a dynamic perspective
should be adopted for regions with different development situations when developing
carbon reduction policies that use the intrinsic characteristics of the regions in which they
are located [55,73]. Currently, in the rapidly developing areas, the development of the urban
network has clearly promoted carbon emissions. Therefore, we believe that policymakers
should improve the spatial layout of urban networks to enhance the radiation-driving
effect of the city network in peripheral areas. Such an approach enables small and medium-
sized cities to realize intra-regional divisions of labor and specialized production through
the urban network to improve the problems of backward industrial structures and low
production efficiency, and to give full play to the inhibiting effect of carbon emissions, thus
achieving a balance between development and carbon reduction.

Figure 10. Diagram of two-sided impact mechanism of urban network.
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5. Conclusions

Based on the panel data of 47 cities, this study has analyzed the evolutionary char-
acteristics of the urban network and carbon emissions in southwest China since 2010,
determined the urban network factors, and revealed the impact mechanisms of the urban
network on carbon emissions in rapidly developing regions. The main conclusions are as
follows. The spatial and temporal distribution features of the urban network and carbon
emissions are highly consistent in rapidly developing regions, and carbon emissions also
have a significant positive spatial spillover effect. Additionally, the urban network has a
two-sided impact on carbon emissions that is restricted by regional development conditions.
In rapidly developing regions, the urban network shows a stronger promoting effect.

The findings pose higher requirements for rapidly developing regions, and maximiz-
ing the inhibitory effect of the urban network on carbon emissions is a key point to which
those rapidly developing regions need to pay attention. In general, the spatial layout of
an urban network must be improved to enhance the radiation-driving effect of the urban
network in peripheral areas. Specifically, in terms of functions, the division of functions
should be reasonably adjusted. Secondary industries with high energy consumption and
carbon emissions in central cities should be decentralized, and high-tech industries such
as IT and finance should be cultivated to optimize the structure of tertiary industries. The
division of labor and specialized production in small- and medium-sized cities should be
realized to improve the problems of a backward industrial structure and low production
efficiency. In terms of linkages, direct links between central cities should be strengthened,
and an efficient network of trunk cities should be built to reduce carbon emissions from
transportation while improving the efficiency of economic activities and boosting the
development of backward areas along the route.

This study provides direction for analyzing urban networks under the major demand
of carbon reduction, and the results can be used as a reference for decision makers in
urban development in fast-growing regions. However, given the limitations of the data
acquisition, this study is still limited to fast-growing regions represented by southwest
China, with no comparison for other regions with different levels of development. Further
studies are needed to compare and analyze the differences in the impact mechanisms
of urban networks with different development processes on carbon emissions and to
seek emission reduction measures adapted to different regions from the perspective of
spatial optimization.
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