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Abstract: Land use and land cover (LULC) change analysis is a systematic technique that aids in the
comprehension of physical and non-physical interaction with the natural habitat and the pursuit of
environmental sustainability. Research regarding LULC’s spatiotemporal changing patterns and the
simulation of future scenarios offers a complete view of present and future development possibilities.
To simulate the spatiotemporal change transition potential and future LULC simulation, we utilized
multi-temporal remotely sensed big data from 1990 to 2020 with a 10-year interval. Independent
variables (DEM, slope, and distance from roads) and an integrated CA-ANN methodology within
the MOLUSCE plugin of QGIS were utilized. The findings reveal that physical and socioeconomic
driving variables have a substantial effect on the patterns of the terrain. In the last three decades, the
study area had a significant rise in impervious surface from 10.48% to 26.91%, as well as a minor
increase in water from 1.30% to 1.67%. As a result, forest cover decreased from 12.60% to 8.74%,
green space decreased from 26.34% to 16.57%, and barren land decreased from 49.28% to 46.11%.
Additionally, the predictions (2030–2050) support the increasing trend towards impervious surface at
the expense of significant quantities of forest and green space.

Keywords: LULC change; remote sensing; big data; QGIS; impervious surface; prediction; Linyi

1. Introduction

There is growing use of the term “big data” to characterize the various new data
formats being generated by our increasingly digitized, linked, and GNSS-enabled lifestyles.
There are enormous and frequently noisy collections of observations that are becoming
increasingly geographic and time referenced, and changing the character of data analysis.
From a time when all data were spatial, we are moving toward a time-and-space-collected
era of spatial-temporal data. GIS research is centered on spatial–temporal relationships [1].
While the importance of closeness in geographical processes is widely established, its rele-
vance in temporal processes is far more ambiguous. Numerous processes, however, exhibit
distinct periodicities that require synchronization between the phase of the process being
viewed and the time of observations, rather than just temporal proximity [2]. Identifying
temporal patterns needs an informed treatment of time series to guarantee that the phase
of observation (data) corresponds to the process’s frequency. Remote sensing data are
enormous, with a significant deal of variety in addition to volume, from what is captured
by sensors to how data are presented to users, with variations in pixel size, sampled spectral
regions, revisit rate, and so on. Due to huge volume and variety, remote sensing data are
considered “remote sensing big data” [3–5]. New analytical methodologies for large remote
sensing data sets have been advocated, in part to address the pervasive challenge and need
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for real-time processing [6]. Thus, remote sensing big data are “modular” and ensure that a
particular pixel depicts the same geographical ground location across time, allowing for
the capturing of changes in environment [7]. Variations at the pixel level can be tied to
temporal steps in order to quantify activities occurring within and between years (e.g.,
wildfire, harvesting, urban expansion, and other disasters), as well as seasonal processes
(e.g., snowfall, foliage) [8]. Medium- to long-term processes (e.g., climate change, soil
deterioration, and chemical deposition) can also present themselves as a shifting trend in
the value of a particular attribute over time.

Changes in the external environment and sociodemographic characteristics contribute
to the process of landscape transformation [9]. The fast pace of economic expansion
and rising population results in substantial urbanization and land use and land cover
(LULC) changes [10]. These shifts have a major effect on the dynamics of LULC, as well
as on the cycle and structure of the ecosystem [11]. Human influence on landscapes is a
major driver of regional LULC change mechanisms [12]. Human utilization of the natural
habitat, such as urbanization, agricultural land segmentation, and the loss of green space,
profoundly disrupts the local ecology [13]. Among these activities, increased urbanization
is believed to be the primary driver of farmland and green space loss, which can have a
significant impact on climate change and human existence. Urbanization processes and
industrial development have resulted in a dramatic increase in built-up areas in peri-urban
areas [14]. Increased impervious surfaces have had an effect on the urban environment [15].
To better understand complex LULC processes, long time series of satellite imagery are
used. Short- and long-term patterns can be recognized, allowing for the investigation of
periodic functions and feedback, so improving our understanding of the factors ranging
from climate change to economic pressures [16]. Studying trends in such data enables the
modeling and extrapolation of future prospects or processes, as well as large-scale scenario
simulations over extended time periods, with attendant issues of geographical organization
in prediction [17–19]. Globally, urbanization is expected to exceed 55%, and therefore
more than the majority of the global population will reside in cities by 2050; this figure is
expected to increase to about 70% by the end of 2050 [20,21]. However, urbanization is
growing at a rate twice that of the worldwide population. In industrialized countries, the
urbanization trend is more integrated, and the majority of these countries have stabilized
their urbanization levels. Developing economies are either experiencing excessive or
insufficient urbanization. Urban development and economic growth are inextricably
linked, as socioeconomic growth serves as a catalyst for urbanization [22]. Nearly 80% of
world GDP is created in cities, and economic expansion activities encourage migration,
which is one of the primary drivers of urbanization [23]. Additionally, the world’s urban
poverty is expanding, owing largely to increased migration (www.unfpa.org/urbanization,
accessed on 17 July 2021). As a result of rapid urban and industrial expansion, and
population growth, LULC changes occur, which may have environmental implications
such as significant erosion, air pollution, global warming, and deterioration of water
sources. Additionally, rapid urbanization and socioeconomic growth have increased the
strain on resources, habitats, and agricultural land dispersion, resulting in substantial
environmental disturbances, food security concerns, and adverse health effects around the
world [24].

Rapid urbanization in China increased from 17.9% in 1978 to 56.7% in 2016, with an
increment of 500 million residents in urban areas between 1980 and 2011. By 2050, urbaniza-
tion is anticipated to rise to 70%, adding 255 million urban residents [25]. China’s farmland
area has changed unevenly during the past four decades. While the fast expansion of
built-up land has benefited the economic growth, it has also raised serious problems about
meeting sustainable development goals. As a result, investigating and comprehending
the complex link between internal environment and external environment requires a clear
understanding of the LULC change process [26,27]. China has experienced tremendous
urbanization since its economic reforms, leading to the loss of significant agricultural areas
and greenery [28]. The Chinese government has implemented a number of land administra-
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tion regulations aimed at minimizing fragmentation of agricultural land and greenery, but
given that urbanization is the primary determinant of economic development, enforcing the
policy without jeopardizing economic growth is difficult [29]. Additionally, urbanization
has an effect on air pressure, precipitation, thermal diffusivity, and ultraviolet output,
altering the surface temperature parameters dramatically [30]. As a result, man-made
disasters tend to cause a greater degree of environmental deterioration than the adjacent
LULC categories. All of these factors combine to make LULC change analysis a critical
component of environmental sustainability [31]. It is critical in the study and management
of natural resources, the ecosystem, and urbanization. Numerous studies [32–37] have
demonstrated that LULC changes, particularly urbanization, forest and resource depletion,
cropland segmentation, degraded aquatic environments, increasing carbon output, and
heat, all contribute significantly to the exploitation of the environment. Thus, surveillance
and recognizing LULC change trends over time, particularly under the impact of urban and
environmental variables and their impact on local landscapes, is crucial for the ecosystem’s
maintenance and integration, as well as for environmental sustainability [38,39].

Techniques for studying LULC mechanisms have advanced fast in terms of spatial
analysis, simulation, and changing transition potentials. Effective and reproducible sim-
ulation models can be used to examine the determinants of past, present, and future
projections and their importance in different contexts. Numerous spatially distributed mod-
els, including Dinamica [40], Markov-FLUS [41], SLEUTH cellular automata [42], artificial
neural network-Markov chain [43], CA-ANN [44], and CLUE-S [45] have been proposed
by researchers for analyzing and projecting LULC. Each model is unique in its approach to
tackling the complex challenges of LULC. Neural network models are a popular method for
simulating LULC because they accurately reflect nonlinear spatially probabilistic land-use
transformation [46]. CA are an effective way to comprehend land-use systems and their
underlying dynamics, particularly when combined with certain other tools, such as artifi-
cial neural networks. Because the CA-ANN is based on “what-if” scenarios, it is applicable
to development and land change simulation studies [47–49]. Starting with transitions and
change detection mechanisms, conventional methods for determining the spatial extent of
a LULC change are used. Areal imaging and historic records have been utilized in tandem
with geospatial technology and remote sensing big data to define landscape patterns and
produce valid scientific findings and policy initiatives that have assisted authorities and
planners in advancing sustainable development, particularly in fast expanding metropoli-
tan contexts [50–52]. As a result, the methodologies of transitional potential modeling
and anticipating potential LULC change under the effect of geographical variables aim
to pinpoint the locations of changes that have occurred and may occur in the future. The
majority of such models examine LULC transitions using temporal land-use data, which
when combined with geographical characteristics can forecast future LULC situations [53].

Linyi is among China’s fastest growing cities and has developed into the industrial
and technological heart of Shandong province [54]. Linyi city underwent a metamorphosis
as a result of the recent regional socioeconomic and urban development, having a pro-
found effect on the spatial structure of LULC alterations. We modeled the spatiotemporal
transitioning prospects and future scenario of LULC in this work using the Modules for
Land-Use Change Simulation (MOLUSCE) plugin underneath QGIS [55,56]. The MO-
LUSCE plugin is an open-source model for QGIS 2.0 and above, developed by Asia Air
Survey to analyze, model, and simulate land use/cover changes (Asia Air Survey). The
plugin incorporates a number of well-known algorithms, such as utility modules, cross
tabulation techniques, and algorithmic modules, e.g., artificial neural networks (ANNs),
multi-criteria evaluation (MCE), weights of evidence (WoE), logistic regression (LR), and
Monte Carlo cellular automata (CA) models. To simulate spatiotemporal transitioning
possibilities and future LULC predictions for 2030, 2040, and 2050, we used the CA-ANN
technique with remotely sensed big data from 1990 to 2020 with a ten-year interval, along
with spatial attributes, digital elevation model (DEM), slope, and closeness to roads. After
simulating and forecasting the LULC, we supplemented it with indicators to estimate the
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annual rate of change in LULC classes. Taking all of these factors into consideration, we
structured our research with the following specific objectives:

• Analyzing the degree and change of spatiotemporal LULC trends over the previous
four decades by modeling.

• Forecasting future LULC using socioeconomic and environmental parameters
as predictors.

• Determining the magnitude of LULC change and its possible effects on the geographi-
cal pattern.

• Determining the future LULC intensity scenario.

2. Materials and Methods
2.1. Study Area

Linyi is the biggest prefecture-level city in Shandong Province, China, stretching
from 34◦22′–36◦13′ N and 117◦24′–119◦11′ E in the country’s southern region, near to the
Yellow Sea (Figure 1), with a total area of 17,191.2 square kilometers [57]. The rate of
urbanization is 52.75%. The Yi and Shu Rivers create the central axis of the terrain, which is
flanked by Meng Shan Mountain to the west and other small ridges to the north and east,
producing a fan-shaped alluvial plain to the south. Mountains, hills, and plains have an
area ratio of 1:2:2. As of 2011, it is the province’s largest city, both in terms of land area and
population [58]. According to the 2020 census, the population was 11,018,365, with an urban
population of 3,651,868. Linyi city administers twelve county divisions, consisting of three
districts and nine counties. Moreover, Linyi’s economy is based on wholesale marketplaces
and is China’s third largest wholesale market, with an annual trading volume of 40 billion
RMB (US$5 billion) [59]. In the Linyi prefecture, over 1500 specialized villages and almost
800 industrialized agriculture firms have been established. In 2014, the prefecture’s GDP
was 369 billion RMB [60].

Figure 1. Study area.
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2.2. Data Collection

The administrative boundaries were downloaded from GADM. The LULC data for
Linyi city were acquired from the Chinese Academy of Sciences’ Resources and Environ-
ment Science Data Center (RESDC) between 1990 and 2020 [61]. China’s remotely sensed
land use monitoring database is a multi-temporal satellite land use database that spans
the entire country. The data are obtained from temporal Landsat (MSS/TM/ETM+/OLI)
images that have been artificially interpreted. Six major and twenty-three secondary land-
use classes are included in the data, including arable land, wooded land, grassland, water,
residential, and barren land, with a spatial resolution of 30 m. They use random sample
methods, GPS field surveys, and kappa coefficient testing to ensure the LULC catego-
rization remains accurate. Socioeconomic data are derived using statistics for national
sub-counties and the multifactor weight distribution approach. The digital elevation model
(DEM) was obtained from WorldClim with a spatial resolution of 30 m and was derived
from SRTM elevation data [62]; the slope was estimated using the DEM, and proximity
factors such as distance to roads were estimated using the Euclidean distance method in
ArcGIS 10.4 (Table 1). The study area was trimmed and projected to WGS 1984 UTM Zone
49N following data collection. Figure 2 depicts the study’s methodological framework.

Table 1. Data sources.

Satellite Acquisition Date Path/Row Resolution

Landsat 5 TM
25 December 1990 121/35

30 m

25 December 1990 121/36

Landsat 7 ETM+
2 May 2000 121/35

16 April 2000 121/36

Landsat 8 OLI

24 December 2010 121/35
8 December 2010 121/36

15 April 2020 121/35
15 April 2020 121/36

Data Source

DEM https://worldclim.org, accessed on 21 March 2021
Slope Calculated from DEM
Roads SEDAC NASA

Distance from roads Calculated from road network
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2.3. Collection of Spatial Variables

Researchers focus on the physical and socioeconomic elements that cause LULC
alterations since their impact to the LULC change mechanism is greater. Landsat 5 TM
(1990), Landsat 7 ETM+ (2000 & 2010), and Landsat 8 OLI (2020) images, path/row 121/35
and 121/36, and cloud coverage less than 10% were used, which were downloaded from
the USGS official website. Physical variables such as geography and climate are seen to
be the most significant in encouraging human behavior. Proximity to roadways aids in
determining the driving forces behind the landscape design. We employed a variety of
physical and proximity considerations (Table 1).

The MOLUSCE plugin provides various well-known methods for evaluating the
correlation between LULC data and geographical variables, such as Pearson’s correlation
and Cramer’s coefficient. Cramer’s V is a numerical measure of association that varies from
0 to 1, with 1 representing a ‘perfect relationship’ between LULC and the spatial driver
and 0 representing ‘no association’. The numbers are not final, and they can only assist in
choosing whether to include transition potential modeling or not, although a value greater
than 0.1 is often deemed beneficial.

2.4. LULC Classification

After extraction and projection of the study area, we grouped the subtypes of land-use
data to obtain five categories: urban land, rural settlements, and other construction land as
built-up area; woodland and shrubs as forest; paddy fields, dry land, and cultivated land as
cropland; pasture, parks, and green spaces as grassland; and rivers, lakes, reservoirs, and
canals as water (Table 2), using the reclassifying tool in ArcGIS 10.4. Then, Google Earth
high-resolution images from 2000 were used to interpret and verify the LULC categories.
To use the data for transition potential modeling and prediction, we used resampling
techniques in ArcGIS to fix the spatial resolution differences between the LULC data and
spatial variables.

Table 2. LULC classification scheme.

LULC Type Description

Impervious surface Built-up area, residential, commercial, and other infrastructure
Forest All types of forest cover land

Green area Agricultural, farmland, parks, green spaces, and pasture
Barren land All types of barren land

Water Rivers, lakes, ponds, and dams

2.5. Change Analysis and Transition Potential Modeling

We utilized the Modules for Land-Use Change Simulation (MOLUSCE) plugin inside
QGIS to estimate spatiotemporal changes and compute the LULC transition between
the research intervals (1990–2000, 2000–2010, and 2010–2020), and generated three LULC
change maps. We created an area change and transition probability matrix using the LULC
data and contextual factors, which included rows and columns of landscape categories in
the start and end years. For transition potential modeling, we used the ANN multilayer
perceptron approach. As explanatory factors, the DEM, slope, and distance from highways
were used (Table 1). These variables are often utilized in LULC change analysis because they
give reproducible data on the physical and anthropogenic influences on LULC dynamics.

2.6. Prediction and Model Validation

Simulated models are used to reduce the dynamics of composite urban structures and
make them intelligible in a simple manner. We used the CA-ANN technique inside the
MOLUSCE plugin to model transition potentials and simulate the future, as many scholars
feel the CA-ANN approach is more effective than linear regression [63]. The MOLUSCE
plugin efficiently computes land use change analyses [64] and is well-suited for assessing
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spatiotemporal forest and land-use changes, predicting transition prospects, and simulating
future scenarios.

Based on the LULC data for 2000, 2010, explanatory variables, and transition matrices,
we projected the LULC for 2020. To validate the model and prediction accuracy, the
MOLUSCE plugin offers a kappa validation technique and comparison of actual and
projected LULC images. In the ANN learning process, 100 iterations and a neighborhood
value of 3 × 3 pixels, a learning rate of 0.001, 12 hidden layers, and 0.05 of momentum were
chosen to project the LULC for 2020. After obtaining satisfactory results from the model
validation, we employed LULC data from 2010 and 2020 to forecast the LULC in 2030, and
the LULC of 2000 and 2020 for 2040. The predicted data for 2030 and 2040 were used to
forecast LULC for 2050 (Figure 2).

2.7. Annual Rate of Change Analysis

To obtain the annual rate of change for each land use type, the difference between the
final year to initial year, which represents magnitude of change between corresponding
years, was divided by the initial year and time period. We used Equation (1) to assess the
spatiotemporal magnitude and rate of change in LULC categories:

ARC (%) =
Fy− Iy
Iy× t

× 100 (1)

where ARC is the annual rate of change in LULC categories. Iy and Fy are the initial and
final year areas, respectively, and t is the time interval.

3. Results
3.1. Spatiotemporal Change Analysis

The LULC maps, area statistics, and annual rate of change are shown in Figure 3 and
Table 3. During the study period, we observed an uneven shift in land use due to rapid
urban expansion (Figure 4), especially a continuous increase in impervious surface from
1815.98 km2 to 4612.60 km2, with an annual increase rate of 5.13%. There was a linear
decrease in forest from 2183.52 km2 to 1498.62 km2, with an annual decrease rate of−1.05%.
Similarly, green area decreased from 4563.49 km2 to 2841.12 km2, with an annual decrease
rate of −1.26%, and barren land from 8538.31 km2 to 7905.13 km2, with an annual decrease
rate of −0.25%. In contrast, water faced a linear increase from 224.84 km2 to 286.19 km2,
with an annual increase rate of 0.91%. Forest decreased (12.06–4.62%) during 1990–2000
and increased (4.62–8.74%) during 2000–2020. Green area increased (26.34–30.92%) during
1990–2000 and decreased (30.92–16.57%) during 2000–2020. However, impervious surface
faced a continuous increasing phenomenon (10.48–26.91%) during the whole study period
(1990–2020). Additionally, water decreased (1.30–0.76%) during 1990–2000, increased
(0.76–1.97%) during 2000–2010, and decreased (1.97–1.67%) during 2010–2020.

Table 3. LULC area from 1990–2020 (km2) and annual rate of change (ARC).

LULC Type
1990 2000 2010 2020

ARC %
km2 % km2 % km2 % km2 %

Forest 2183.52 12.60 800.51 4.62 1287.98 7.44 1498.62 8.74 −1.05%
Green area 4563.49 26.34 5356.22 30.92 3765.33 21.74 2841.12 16.57 −1.26%

Water 224.84 1.30 131.94 0.76 341.18 1.97 286.19 1.67% 0.91%
Barren land 8538.31 49.28 8753.52 50.53 9526.64 55.00 7905.13 46.11 −0.25%

Impervious surface 1815.98 10.48 2282.77 13.18 2400.99 13.86 4612.60 26.91 5.13%
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The LULC change analysis explores the spatial dynamic variations in the LULC
pattern during the study period. The results from 1990 to 2020 show a notable expansion in
impervious surface and a shrinking phenomenon in the forest, green area, and barren land.
Figure 5 and Table 4 show the spatiotemporal area and percentage change in all LULC
categories. Forest, green area, water, and barren land contributed 5.72%, 21.24%, 0.44%,
and 19.45% to the impervious surface, respectively. Figure 6 and Table 5 represent the
inter-transition and contribution of LULC categories to changing phenomena from 1990 to
2020. Green area was the largest contributor to the change from 1990–2020, with 21.24%
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to impervious surface and 9.61% to barren land, while barren land contributed 19.45% to
impervious surface, 9.04% to forest, and 5.50% to green area during 1990–2020. However,
the contribution of water is very small for the change.
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Table 4. Temporal changes 1990–2020.

LULC Category
1990–2000 2000–2010 2010–2020

km2 % km2 % km2 %

Forest −1434.55 0.84 487.13 2.81 213.52 1.23
Green area 804.36 −0.28 −1577.50 −9.11 −895.12 −5.18

Water −94.21 −1.34 209.96 1.21 −52.55 −0.30
Barren land 279.51 0.20 781.56 4.51 −1515.85 −8.76

Impervious surface 444.89 0.58 98.85 0.57 2250.00 13.01

Table 5. Contribution of LULC categories to change 1990–2020 (%).

LULC Category Forest Green Area Water Barren Land Impervious Surface

Forest 0.00 2.50 0.10 12.05 5.72
Green area 0.78 0.00 0.09 9.61 21.24

Water 0.07 0.06 0.00 0.26 0.44
Barren land 9.04 5.50 1.18 0.00 19.45

Impervious surface 1.34 2.75 0.26 7.57 0.00
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Figure 6. LULC transition in 1990–2020: (a) transition to barren land, (b) transition to forest, (c) tran-
sition to green area, (d) transition to impervious surface, and (e) transition to water.
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3.2. LULC Transition Analysis

The transition matrix plays an essential role in analyzing temporal changes within a
set of LULC categories. The matrix represents the proportions of pixels changing from one
land use category to another. The rows of the matrix table represent the categories in the
initial year, while the columns show the same order of LULC categories in the final year.
The diagonal entries show the size of class stability, and each off-diagonal entry represents
the size of the transition from one class to different classes. Values close to 1 in diagonal
entries represent the stability of a category. Researchers mostly use transition matrices to
compare the temporal changes in different regions [65]. To show how each LULC type was
projected to change in our study area, we calculated the transition potential matrix with
the help of the MOLUSCE plugin during the periods 1990–2000, 2000–2010, and 2010–2020
based on the existing LULC conditions and explanatory variables.

Table 6 shows the transition potential matrix during 1990–2000, in which barren
land and green area were the most stable categories with probabilities of 0.765 and 0.763,
respectively, and contributed 0.095 and 0.124 to impervious surface, while water and forest
decreased with transition probabilities of 0.642 and 0.204, respectively, and contributed
0.093 and 0.094, respectively, to built-up land. During 2000–2010 (Table 7), the transition
values of impervious surface and forest were 0.437 and 0.572, respectively, those of green
area and barren land were 0.544 and 0.790, respectively, and that of water was 0.898. Green
area and barren land contributed 0.121 and 0.082 to the impervious surface, respectively.
Accordingly, during 2010–2020 (Table 8), the transition values of impervious surface and
forest were 0.732 and 0.512, respectively, those of green area and barren land were 0.568
and 0.692, respectively, and that of water was 0.657. Green area, barren land, and water
contributed 0.279, 0.182, and 0.175 to the impervious surface, respectively. Here, forest
contributed 0.094 of the transition to impervious surface. During the study period, only
water and forest were stable because of the conservation, afforestation, and reforestation
policy of the Chinese government, but significant pressure was on green area and barren
land, which donated the largest share to other LULC categories.

Moreover, as we used LULC data from 2000–2020 along with spatial factors for the
prediction of 2050 and the transition probability matrix, the transition matrix between 2000
and 2020 (Table 9) showed that water was still stable with a value of 0.816, while forest,
green area, barren land, and impervious surface had fragmentation values of 0.598, 0.405,
0.693 and 0.595, respectively. During 2020–2030, forest, green area, and barren land will
still experience a decreasing phenomenon (Table 10), while water shows comparatively
stable behavior. During 2030–2040, forest and barren land will still experience a decreasing
phenomenon (Table 11), while other classes will show comparatively stable behavior.
Table 12 represents the transition probability matrix during 2040–2050. Here, we observed
that forest and water were the most stable categories, while cropland will experience rapid
fragmentation. Table 13 and Figure 7 elaborate the gained and lost areas of each category
over each time interval.

Table 6. Transition matrix from 1990–2000.

Year 2000

1990

LULC Category Forest Green Area Water Barren Land Impervious Surface

Forest 0.204 0.306 0.001 0.395 0.094
Green area 0.010 0.763 0.000 0.103 0.124

Water 0.015 0.126 0.462 0.304 0.093
Barren land 0.033 0.105 0.002 0.765 0.095

Impervious surface 0.015 0.148 0.004 0.452 0.381
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Table 7. Transition matrix from 2000–2010.

Year 2010

2000

LULC Category Forest Green Area Water Barren Land Impervious Surface

Forest 0.572 0.044 0.014 0.334 0.036
Green area 0.042 0.544 0.006 0.287 0.121

Water 0.004 0.001 0.898 0.029 0.068
Barren land 0.064 0.049 0.015 0.790 0.082

Impervious surface 0.021 0.172 0.021 0.348 0.437

Table 8. Transition matrix from 2010–2020.

Year 2020

2010

LULC Category Forest Green Area Water Barren Land Impervious Surface

Forest 0.512 0.055 0.001 0.338 0.094
Green area 0.007 0.568 0.001 0.145 0.279

Water 0.050 0.011 0.657 0.100 0.182
Barren land 0.080 0.051 0.003 0.692 0.175

Impervious surface 0.019 0.073 0.014 0.163 0.732

Table 9. Transition matrix from 2000–2020.

Year 2020

2000

LULC Category Forest Green Area Water Barren Land Impervious Surface

Forest 0.598 0.049 0.004 0.270 0.079
Green area 0.020 0.405 0.006 0.218 0.351

Water 0.009 0.008 0.816 0.054 0.114
Barren land 0.102 0.040 0.012 0.693 0.153

Impervious surface 0.013 0.137 0.018 0.236 0.595
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Table 10. Transition matrix from 2020–2030.

Year 2030

2020

LULC Category Forest Green Area Water Barren Land Impervious Surface

Forest 0.994 0.000 0.000 0.002 0.003
Green area 0.000 0.932 0.000 0.063 0.006

Water 0.000 0.000 0.998 0.000 0.002
Barren land 0.054 0.003 0.000 0.895 0.048

Impervious surface 0.025 0.158 0.004 0.098 0.714

Table 11. Transition matrix from 2030–2040.

Year 2040

2030

LULC Category Forest Green Area Water Barren Land Impervious Surface

Forest 0.969 0.000 0.000 0.021 0.010
Green area 0.000 0.543 0.000 0.040 0.418

Water 0.000 0.000 0.952 0.014 0.034
Barren land 0.034 0.000 0.000 0.918 0.048

Impervious surface 0.021 0.308 0.004 0.152 0.792

Table 12. Transition matrix from 2040–2050.

Year 2050

2040

LULC Category Forest Green Area Water Barren Land Impervious Surface

Forest 0.998 0.001 0.000 0.000 0.001
Green area 0.001 0.928 0.000 0.006 0.065

Water 0.013 0.000 0.970 0.008 0.008
Barren land 0.054 0.000 0.000 0.929 0.018

Impervious surface 0.015 0.001 0.000 0.132 0.852

Table 13. Gains and losses of each category (km2).

LULC Category 1990–2000 2000–2010 2010–2020

Forest −1383.01 487.47 210.64
Green area 792.73 −1590.89 −924.21

Water −92.90 209.25 −54.99
Barren land 215.21 773.12 −1621.51

Impervious surface 466.79 118.22 2211.60

3.3. Selection of Spatial Variables

According to transition matrix analysis, we observed that the significant growth in
impervious surface was mainly due to green area and barren land fragmentation. All these
transitions were based on physical and socioeconomic driving factors. Researchers mostly
use these spatial factors to investigate LULC dynamics.

Table 14 shows the prospective Cramer’s V value of each spatial variable. The Cramer’s
V value suggests that the variables are ideal for transition potential modeling, as their values
are more significant. According to the values, the selection of physical and socioeconomic
explanatory variables is more effectual, i.e., DEM: 0.37; slope: 0.22; and distance from road:
0.09. Figure 8 shows the spatial variables used in this study.
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Table 14. Cramer’s V value of spatial variables.

Spatial Variables Cramer’s V

DEM 0.37
Slope 0.22

Distance from roads 0.09
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3.4. Transition Potential Modeling and Model Validation

The MOLUSCE plugin integrates some well-known algorithms for transition potential
modeling, such as the ANN (multilayer perceptron), weights of evidence, multicriteria
evaluation, logistic regression, and CA algorithm, for future simulation. The spatial
variables for model calibration were chosen based on their relatively strong association
with LULC, as measured by Cramer’s coefficient.

We used the CA-ANN approach for transition potential modeling and prediction. We
employed LULC data from 2000–2010 along with spatial variables to project LULC for
2020 and obtained a validation kappa value of 0.97. After obtaining the projected LULC,
we compared the actual LULC of 2020 with the projected data and obtained an overall
accuracy of 65.80% and an overall kappa value of 0.48. Figure 9 and Table 15 show the
actual and forecasted maps and statistics for 2020.

Land 2022, 11, x FOR PEER REVIEW 19 of 27 
 

3.4. Transition Potential Modeling and Model Validation 
The MOLUSCE plugin integrates some well-known algorithms for transition poten-

tial modeling, such as the ANN (multilayer perceptron), weights of evidence, multicriteria 
evaluation, logistic regression, and CA algorithm, for future simulation. The spatial vari-
ables for model calibration were chosen based on their relatively strong association with 
LULC, as measured by Cramer’s coefficient. 

We used the CA-ANN approach for transition potential modeling and prediction. 
We employed LULC data from 2000–2010 along with spatial variables to project LULC for 
2020 and obtained a validation kappa value of 0.97. After obtaining the projected LULC, 
we compared the actual LULC of 2020 with the projected data and obtained an overall 
accuracy of 65.80% and an overall kappa value of 0.48. Figure 9 and Table 15 show the 
actual and forecasted maps and statistics for 2020. 

 
Figure 9. Actual and projected LULC 2020. 

Table 15. Actual and projected LULC of 2020. 

LULC Category 
Actual Projected 

Accuracy 
Kappa Value 

km2 % km2 % ANN Validation 
Forest 1498.62 8.74 1301.08 7.51 

65.80 0.97 0.48 
Green area 2841.12 16.57 3486.9 20.13 

Water 286.19 1.67 302.7 1.75 
Barren land 7905.13 46.11 9819.37 56.68 

Impervious surface 4612.60 26.91 2415.36 13.94 
  

Figure 9. Actual and projected LULC 2020.

Table 15. Actual and projected LULC of 2020.

LULC Category
Actual Projected

Accuracy
Kappa Value

km2 % km2 % ANN Validation

Forest 1498.62 8.74 1301.08 7.51

65.80 0.97 0.48
Green area 2841.12 16.57 3486.9 20.13

Water 286.19 1.67 302.7 1.75
Barren land 7905.13 46.11 9819.37 56.68

Impervious surface 4612.60 26.91 2415.36 13.94
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3.5. Prediction of LULC

After obtaining satisfactory results from model validation, we predicted the LULC for
2030, 2040, and 2050. We employed the temporal LULC data from 2010 and 2020, the spatial
variables, and the transition probability matrix (Table 9) to predict the LULC for 2030 and
obtained a kappa value of 0.61. Furthermore, the LULC of 2000 and 2020, including the
explanatory variables and transition matrix (Table 10), were used for the prediction of 2040,
and we obtained a kappa value of 0.51. Finally, we predicted the LULC for 2050 based
on the projected data for 2030–2040 and the transition matrix (Table 11) and obtained a
kappa value of 0.51. Figure 10 and Table 16 represent the map, area statistics, and overall
validation kappa of the predicted LULC of 2030, 2040, and 2050.
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Table 16. Predicted area statistics (2030, 2040, and 2050).

LULC Category
2030 2040 2050

km2 % Kappa km2 % Kappa km2 % Kappa

Forest 934.37 5.39

0.61

1308.94 7.56

0.51

1854.33 10.71

0.51
Green area 2042.66 11.79 1292.32 7.46 1208.12 6.97

Water 260.86 1.51 271.91 1.57 263.95 1.52
Barren land 8131.22 46.94 8472.75 48.91 8668.5 50.04

Impervious surface 5952.50 34.36 5975.67 34.50 5326.71 30.75

3.6. Prediction of Change

The LULC change analysis explores the spatial dynamic variations in the LULC
pattern during the study period. The results from 2020 to 2050 show a notable expansion
in impervious surface and a shrinking phenomenon in the green area and barren land.
Figure 11 and Table 17 show the spatiotemporal area and percentage change in all LULC
categories. Green area and water contributed 5.19 and 1.69 to the impervious surface,
respectively. Table 18 represents the inter-transition and contribution of LULC categories to
changing phenomena from 2020 to 2050. Green area is the largest contributor to the change
from 2020–2050, with 5.19% to impervious surface and 0.56% to barren land, while barren
land contributed 1.69% to impervious surface and 3.95% to forest.

Table 17. Temporal changes 2030–2050.

LULC Category
2020–2030 2030–2040 2040–2050

km2 % km2 % km2 %

Forest 213.52 1.23 700.08 4.05 −732.65 −4.24
Green area −895.12 −5.18 −2473.28 −14.30 −1668.89 −9.65

Water −52.55 −0.30 157.43 0.91 63.33 0.37
Barren land −1515.85 −8.76 −736.12 −4.26 −455.56 −2.63

Impervious surface 2250.00 13.01 2351.89 13.60 2793.77 16.15

Table 18. Contribution of LULC categories to change 2030–2050 (%).

LULC Category Forest Green Area Water Barren Land Impervious
Surface

Forest 0.00 0.00 0.00 0.09 0.05
Green area 0.01 0.00 0.00 0.56 5.19

Water 0.01 0.00 0.00 0.03 0.06
Barren land 3.95 0.00 0.01 0.00 1.69
Impervious

surface 1.47 0.95 0.12 8.06 0.00
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4. Discussion

Globally, and particularly in the 21st century, enormous urbanization processes have
altered the natural habitat and landscape layout. Urbanization is primarily driven by phys-
ical and socioeconomic reasons such as geography, demography, and economic expansion.
Socioeconomic development, however, has a higher impact on the urban expansion than
overpopulation. The size and speed with which cities are expanding and fragmenting
landscape patterns has raised worries about climate change, food security, and natural
resource shortages.

Changes in LULC are inextricably tied to geography and development policies. Follow-
ing China’s late 1970s ‘opening up’ strategy, economic reforms resulted in huge movement,
immigration, and urban expansion. We examined the shift from 1990 to 2020 using spa-
tiotemporal LULC data and physical and socioeconomic driving factors, and produced a
transition probability matrix for each interval using the MOLUSCE plugin within QGIS
software. Additionally, we predicted the LULC for 2030, 2040, and 2050 using the CA-ANN
multilayer perceptron technique included in the MOLUSCE plugin.

Our findings suggest that during the research period, physical and socioeconomic
factors had a substantial impact on landscape patterns. In general, locations with lower
elevations have more rapid LULC changes, as their geography is more conducive to hu-
man activity. The greatest modifications happened in Linyi’s plain sections, particularly
along the Yi River, where the slope is relatively lower than in other parts. The north-
ern, eastern, and western regions, which are mountainous and hilly, do not suffer from
rapid fragmentation.

Linyi’s vision of a trade gateway encapsulates broader objectives of market-oriented
reforms and cooperation in the socioeconomic sector, education, innovation, international
business, and technical advancement. Numerous studies have demonstrated that pop-
ulation increase and economic development are the primary factors driving built-up ex-
pansion [66,67]. The growing urban area has a detrimental influence on the environment,
aquatic habitat, and biodiversity. According to our findings, Linyi’s LULC has undergone
a remarkable transformation over the last three decades due to rapid urbanization, most
notably in the rapid conversion of green space and barren land to impervious surface
during the last decade. From 1990 to 2020, the impervious surface increased from 10.48
to 26.91%, and forest contributed 5.72%, green area contributed 21.24%, barren land con-
tributed 19.45%, and water contributed 0.44%. Additionally, the future simulation results
show that impervious surface will continue to increase from 2030 to 2040 with percentages
of 34.36% to 34.50%, and decrease from 2040–2050 with percentages of 34.50% to 30.75%.
However, the green area will continue to decrease from 2030–2050 with percentages of
11.79% to 6.97%.

Ultimately, dramatic changes in LULC, particularly urban growth and fragmentation
of green space, could jeopardize natural resources, the environment, and food security.
Thus, the spatiotemporal and prospective LULC simulation results will aid policymakers
in analyzing the change in LULC intensity and the socioeconomic elements that influ-
ence it, as well as in promoting environmental conservation and sustainable development
policies. Additionally, we modeled and predicted LULC using solely physical and socioe-
conomic characteristics. However, future research can incorporate development policies
and climate variables.

5. Conclusions

In this study, we analyzed spatiotemporal LULC changes based on temporal Landsat
data, and projected future scenarios based on driving factors in Linyi city, China. Linyi city
faces the challenge of agricultural land, environmental deterioration, and water quality
depletion as a result of fast urban growth and fragmentation of forest and green areas.
These factors exacerbate the difficulties associated with sustaining regional development
and environmental conservation. We modeled and predicted landscape patterns using
solely physical and socioeconomic elements in this study, although development policies,
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migration, immigration, and climatic conditions may all have an effect on landscape
patterns. Additionally, agriculture and development policies can be linked to promote
sustainable urbanization. It is advised that future studies use more factors and data to
investigate their effects on landscape patterns.
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