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Abstract: Obtaining accurate, precise and timely spatial information on the distribution and dynamics
of urban green space is crucial in understanding livability of the cities and urban dwellers. Inspired
from the importance of spatial information in planning urban lives, and availability of state-of-
the-art remote sensing data and technologies in open access forms, in this work, we develop a
simple three-level hierarchical mapping of urban green space with multiple usability to various
stakeholders. We utilize the established Normalized Difference Vegetation Index (NDVI) threshold
on Sentinel-2A Earth Observation image data to classify the urban vegetation of each Victorian Local
Government Area (LGA). Firstly, we categorize each LGA region into two broad classes as vegetation
and non-vegetation; secondly, we further categorize the vegetation regions of each LGA into two sub-
classes as shrub (including grassland) and trees; thirdly, for both shrub and trees classes, we further
classify them as stressed and healthy. We not only map the urban vegetation in hierarchy but also
develop Urban Green Space Index (UGSI) and Per Capita Green Space (PCGS) for the Victorian Local
Government Areas (LGAs) to provide insights on the association of demography with urban green
infrastructure using urban spatial analytics. To show the efficacy of the applied method, we evaluate
our results using a Google Earth Engine (GEE) platform across different NDVI threshold ranges.
The evaluation result shows that our method produces excellent performance metrics such as mean
precision, recall, f-score and accuracy. In addition to this, we also prepare a recent Sentinel-2A dataset
and derived products of urban green space coverage of the Victorian LGAs that are useful for multiple
stakeholders ranging from bushfire modellers to biodiversity conservationists in contributing to
sustainable and resilient urban lives.

Keywords: land cover classification; LGA; NDVI; Sentinel-2A; spatial information; sustainability;
urban green; Victoria; vegetation

1. Introduction

Remote sensing images are widely used to study and analyze the landscapes such as
vegetation cover, which covers around 70% of the earth surface [1]. The remote sensing
images are available from several dedicated sources, platforms and repositories, such as
NASA, ESA, Google Earth [2], Copernicus Open Access Hub [3] , EO Browser [4], United
States Geological Survey (USGS) [5], and so on. Among them, Copernicus Open Access Hub
is one of the popular open-source repositories to access Sentinel-2A product in analyzing
vegetation. The urban vegetation/green space analysis is very important to achieve the
goals of sustainable urbanization [6]. It is recognized that vegetation information provides
adaptable resources for handling (controlling and moderating) the varieties of problems
on the urbanization issues [7]. Furthermore, the biophysical processes of urbanization are
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influenced by the spatial distribution of urban green space [8]. Urban vegetation can be
considered as a foundation element of greenprinting, which is the process of developing a
conservation strategy. Greenprinting documents the environmental, economic and social
benefits that trees, parks, and other types of green space provide to urban communities
and urban dwellers.

Furthermore, the urban vegetation information can be an invaluable resource in land
use and land cover (LULC) classification. Vegetation information can be extracted using a
spectral signature, which is the graphical representation showing the relationship between
wavelengths and reflectance values in a different spectrum. Urban spatial analytics is an
emerging analytical capability to leverage data science in addressing major issues cities
continue to face. Issues and processes on air filtration, water run off, land pollution, carbon
emissions and eventually liveability are directly related to the density and abundance of
urban green space.

A Normalized Difference Vegetation Index (NDVI) is a very important and simple
measure that has been used in the literature for the land use land cover (LULC) classification
in varieties of landscapes [9–11]. Ghaderpour et al. [9] highlighted that NDVI changes with
the surface temperature in a Tunisian context. Furthermore, Abdullah et al. [10] carried
out the study of spatio-temporal pattern changes in Bangladesh, which utilized NDVI for
the training data generation. Similarly, Kwan et al. [11] carried out the vegetation and non-
vegetation classification using a machine learning classifier, called Support Vector Machine
(SVM), in reporting the efficacy of NDVI values for the classification. These works, overall,
highlight the applications of NDVI for land cover classification and changes via urban-
ization, deforestation, drought, etc. However, previous works in the literature [12–32] for
LULC classification reveal that there are no universal methods and tools that work equally
well in LULC classification for all countries and regions on the earth. That is, the analysis
of such images is landscape-specific. This is because of the geographical variability of the
real world in space and time. In such a case, we need to develop models for transferability
where possible by capturing geographical elements such as topography, density, abundance
and phenology of vegetation of local territories and importantly develop workflows.

Multi-level hierarchical LULC classification helps understand the categorization of
different urban green regions. Thus, our goal is to classify vegetation regions into finer
level of categories from the lens of application such that the derived data and products
can work as a basis for further research applications in environmental sustainability and
infrastructure design. In this work, we use the NDVI for LULC classification at three
levels to identify different urban vegetation regions. We used this technique to analyse the
distribution of vegetation at the Local Government Area (LGA)-level of the state of Victoria
in Australia. We first create a database of remote sensing images (Sentinel-2A) for each
LGA1. In doing this, firstly, we accessed and collected the images from the open-source
repository. Secondly, to identify and classify different regions in the remote sensing images,
we utilise the specific NDVI threshold ranges at three different levels of classification
hierarchy for the study area. We further develop the relationship of vegetation abundance
and their association with demography. We compute Urban Green Space Index (UGSI)
and Per Capita Green Space (PCGS) for all Local Government Areas (LGAs). This index-
based information will contribute to further developing policy insights in the domain of
sustainability and resilience research agendas of the cities.

The main contributions of this paper are as follows:

1. Utilisation of high quality and publicly available low cost remote sensing data for
mapping and monitoring of urban green vegetation abundance.

2. Utilisation of mainstream image visualisation platform Google Earth Engine (GEE) [2]
and open source GIS software—QGIS [33] for hierarchical mapping of urban vegetation.

3. Evaluation and selection of NDVI threshold ranges using a quantitative iterative
optimal approach.

4. Development of indices and insights on the association of demography with urban
green infrastructure.
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The paper is organized as follows. In Section 2, we discuss related works followed
by study materials (the study area, data sets used, NDVI utilization, Urban Green Space
and Per Capita Green Space conceptualisation) used in Section 3. Similarly, in Section 4,
we discuss our proposed method in a step-wise manner. Section 5 presents the results
and discussion. Finally, in Section 6, we conclude our work with the recommended
future works.

2. Related Works

Application of remote sensing research utilizing multi-sensor, multi-resolution and
multiple platform satellite images such as Landsat-8, Sentinel-2A/2B products, Moderate
Resolution Imaging Spectroradiometer (MODIS), LiDAR (Light Detection and Ranging),
Unmanned Aerial Vehicle (UAV) images, etc. contributed significantly for the land use and
land cover (LULC) classification. To capture the breadth of LULC classification methods,
within the scope of NDVI, these are grouped into two broad categories: Section 2.1 index-
based classification and Section 2.2 machine learning-based classification.

2.1. Index-Based Classification

In index-based classification [12–15], classification is performed using a threshold of
NDVI value for each pixel in the image. For instance, Montandon et al. [12] utilized an
NDVI threshold for the LULC classification. They also performed change detection for
different regions. Furthermore, Sahebjalal et al. [13] used an NDVI value to perform the
change detection using Landsat images. Similarly, Gascon et al. [14] used NDVI value as
a marker of surrounding of plants for the epidemiological studies in Spain. Furthermore,
recently Da Silva et al. [15] utilized five vegetation indices, including NDVI to classify the
land covers in Brazil.

2.2. Machine Learning-Based Classification

In machine learning-based methods [16–30], classification is performed by using two
approaches: unsupervised and supervised approach. In the unsupervised approach, class
labels are not provided and classification is performed using pattern recognition on the
fly, whereas, in the supervised approach, pre-defined class labels are provided. Further-
more, machine learning-based methods can be broadly subdivided into two categories:
Section 2.2.1 traditional machine learning-based methods and Section 2.2.2 deep learning-
based methods.

2.2.1. Traditional Machine Learning-Based Classification

Traditional machine learning-based methods [16–22,31,32] are basically based on pop-
ular algorithms, such as Random Forest (RF) [34], Support Vector Machine (SVM) [35], Max-
imum Likelihood Algorithm (MLA) [36], etc., whereas recent deep learning-based methods
use recent advances of deep learning models, such as Convolution Neural Networks
(CNNs), Auto Encoders (AEs), etc. For example, Kocev et al. [31] employed an ensemble
of decision trees to perform land cover classification of Victoria, Australia. Their method
used Landsat 7 images in the experiment. Sheffield et al. [32] adopted C4.5 and C5.0 algo-
rithms on the MODIS dataset to classify the land use and land cover of Victoria, Australia.
Similarly, Zhang et al. [20] evaluated different bands of Sentinel-2A image and compared
index-based classification with the SVM algorithm for the classification of different regions
in such images into four categories (crop, tree, water, and road). Liu et al. [21] employed
Sentinel-1A, Topographic Mission Digital Elevation (DEM), Landsat-8, and Sentinel-2A
image for the forest type identification using an RF algorithm. Mensah et al. [16] applied
four different kinds of remote sensing images (Landsat-4, Landsat-7, Sentinel-2A, and
Worldview-3) and classified using MLA for the change detection in Ghana. Similarly,
Daryaei et al. [17] utilized an RF algorithm for fine-scale detection of vegetation on UAV
images and Sentinel-2A images. Abutaleb et al. [18] also used an RF algorithm in addition
to NDVI value to identify the affluent and poor suburb of Johannesburg. Cai et al. [19]
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utilized mixture models, such as fully constrained least squares (FCLS), SVM, and k-nearest
neighborhood (KNN) for the urban fractional vegetation cover using Sentinel-2A images.
Vasilakos et al. [22] combined the results of multiple machine learning algorithms (Decision
Tree, Discriminant, SVM, KNN, RF, Artificial Neural Network (ANN)) using voting meth-
ods on multi-temporal Sentinel-2A datasets for the LULC classification. Recent research [37]
also shows that SVM outperforms other popular algorithms, such as RF, XGBoost [38], etc.
in LULC classification

2.2.2. Deep Learning-Based Classification

Recently, researchers used several state-of-the-art (SOTA) deep learning models [24–30].
Ghorbanzadeh et al. [24] applied CNN models in addition to other traditional machine
learning methods for landslide mapping and evaluated the applied methods using various
quantitative metrics. From their works, it is recommended that CNN is still in its infancy,
yet it has immense potential if we can perform proper data augmentation and architecture
tuning. Timilsina et al. [25] adopted CNNs for urban tree cover changes in Tasmania,
Australia using the LiDAR dataset. Li et al. [26] employed a Stacked Autoencoder (SAE)
for remote sensing image classification. Their result shows that SAE outperforms other
algorithms, such as RF, SVM, and ANN. Similarly, Liang et al. [27] also used Stacked
Denoising Auto Encoder (SDAE) for remote sensing image classification, which has shown
that SDAE outperforms SVM and ANN. Tong et al. [28] exploited a pre-trained CNN model
(ResNet-50 [39]) for the land cover classification using different types of remote sensing
images, such as Gaofen-2, Gaofen-1, Jilin-1, Ziyuan-3, Sentinel-2A, and Google Earth plat-
form data. Brahme et al. [29] employed pre-trained deep learning models (VGG-Net [40]
and Inception-V3 [41]) to extract the built-up areas from Sentinel-2A images. Luo et al. [30]
proposed a hybrid convolution neural network (H-ConvNet) to improve the performance
of urban land cover mapping using Sentinel-2A images.

The above section on related works (Section 2) showcases the breadth and importance
of urban green space mapping utilising evolving computational technologies. However,
a simple and powerful application is needed for the replicability and understanding of
the mapping of basic foundational spatial layers of urban green space that are useable in
the local setting by the decision makers in planning the cities. Therefore, these maps/data
sets can be used as a basis for other research and decision support systems without having
difficulties in the replication of the work.

3. Materials
3.1. Study Area

All local government areas (LGAs) except Bass Coast Shire of Victoria, Australia, were
considered in our study. We accessed publicly available polygons data in GeoJSON file for-
mat from the Victorian government’s website [42]. The location of our study area (Victorian
LGAs) is presented in Figure 1. Victoria has several native vegetation types, including Tall
Greenhood (Pterostylis melagramma), Common Plait-moss (Hypnum cupressiforme), Slender
Dodder-laurel (Cassytha glabella), Lysiana exocarpi (Harlequin Mistletoe), etc. [43]. This na-
tive vegetation is characterized by seven broad factors: (i) diversity of species, (ii) structural
complexity, (iii) ages, (iv) fallen timber, lichen, etc. (v) fungi and others, (vi) weeds, and
(vii) associations with other vegetation [44]. Victoria has mostly pleasant temperatures
except some hot days in summer. In summer, the average maximum temperature lies in
between 40 to 43 degrees, whereas the average minimum temperature lies in between 9 to
15 degrees. In winter, the average maximum temperature lies in between 13 to 16 degrees,
whereas the average minimum temperature lies below 10 degrees. Overall, the climate of
Victoria is generally favourable to plant growth because of the balance of adequate rainfall
and warmth in most parts of the LGAs [45].
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Figure 1. Victorian LGAs mapped in World Geodetic System (WGS) 84 coordinate reference system.
These individual LGAs are used in mapping urban green space abundance, developing Urban Green
Space Index (UGSI) and Per Capita Green Space (PCGS) employing demographic data.

3.2. Satellite Images: Sentinel-2A

In developing the experimental design, we used Sentinel-2A satellite images for each
LGA, which were secured from the Copernicus Open Access Hub [3]. The Sentinel Level-
2A products were radiometrically, atmospherically, and geometrically corrected, which
provides the Bottom Of Atmosphere (BOA) reflectance under Universal Transverse Merca-
tor (UTM)/WGS84 projection [46–48]. Sentinel-2A comes with three spatial resolutions,
including 10 m, 20 m, and 60 m, with 13 spectral bands in total [49]. We derived the surface
reflectance value from the Sentinel-2A BOA product. The detail description of Sentinel-2A
product is presented in Table 1.

Table 1. Description of Sentinel-2A satellite image providing band details, corresponding Central
Wavelength in (nm) and Spatial Resolution (m) in three columns, respectively.

Band CW (nm) SR (m)

Band 1—Coastal aerosol 443 60
Band 2—Blue 490 10
Band 3—Green 560 10
Band 4—Red 665 10
Band 5—Vegetation red edge 705 20
Band 6—Vegetation red edge 740 20
Band 7—Vegetation red edge 783 20
Band 8—Near infrared (NIR) 842 10
Band 8A—Narrow near infrared (NIR) 865 20
Band 9—Water vapour 945 60
Band 10—Shortwave infrared (SWIR)-Cirrus 1375 60
Band 11—Shortwave infrared (SWIR) 1610 20
Band 12—Shortwave infrared (SWIR) 2190 20
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3.3. Normalized Difference Vegetation Index

The normalized difference vegetation index (NDVI) [50] is one of the popular indica-
tors of vegetation presence in the landscape. The range of NDVI index lies between −1
and +1. A higher NDVI index value indicates a higher concentration of vegetation on the
ground. Generally, the negative NDVI index value indicates non-green regions such as:
barren, sea, river and built-up, whereas the positive value represents green regions [10].
In addition, the NDVI value can be used to identify the health of the plants/vegetation
communities. This is because of the fact that healthy plants/vegetation communities are
expected to have a higher NDVI values than unhealthy plants.

The NDVI is calculated as in Equation (1):

NDVI =
NIR [Band 8] − RED [Band 4]
NIR [Band 8] + RED [Band 4]

(1)

where NIR [Band 8] and RED [Band 4] represent the near-infrared and the red band of
Sentinel-2A image product, respectively. We present the sample NDVI map for different
regions of the City of Melbourne in Figure 2.

(a) (b)

Figure 2. The NDVI map (a) and histogram of NDVI values showing their distribution (b) of City of
Melbourne, Victoria, Australia.

3.4. Urban Green Space Index and per Capita Green Space

Urban Green Space Index (UGSI) [51] is adopted to calculate the urban green space in
the particular area. Furthermore, this identifies the amount of green space in the particular
regions of study. Mathematically, it is shown in Equation (2):

UGSIi =
Gi
Ai

, (2)

where UGSIi, Gi and Ai denote UGSI of ith unit, green space area in ith spatial unit, and
the area of ith unit, respectively. For the calculation of UGSI for each LGA, we utilize
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three sub-vegetation regions: low vegetation, medium vegetation, and high vegetation. In
addition, note that we mention UGSI of the non-vegetation region as None in our work.

Furthermore, Per Capita Green Space (PCGS) [51] provides the average allocation of
green space per person in a particular region (refer to Equation (3)):

PCGSi =
Gi

PNi
, (3)

where PCGSi, Gi, and PNi denote PCGS in i, green space in i, and population of i, respec-
tively. To calculate PCGS in our work for each LGA, we consider total green space area (Gi)
and total population (PNi) of the corresponding LGA. Note that the population of each
LGA we used in this work is for the year of 2019, which is the latest information available
in the Australian Bureau of Statistics [52].

4. Methods

Our proposed method comprises the following steps: Section 4.1 Acquisition and
pre-processing of Sentinel-2A images, Section 4.2 Level-1 classification, Section 4.3 Level-2
classification, and Section 4.4 Level-3 classification. Finally, Section 4.5 Accuracy assessment
is used to evaluate our method. Detailed workflow of our work is presented in Figure 3.

Figure 3. High level workflow of our method, which shows the hierarchical classification at three
levels (Level-1, Level-2, Level-3) based on hard NDVI threshold ranges. Note that, in Level-1,
we differentiate regions into Non-vegetation and Vegetation regions. Similarly, in Level-2, we
differentiate regions into Shrub and Trees regions. Finally, in Level-3, both Shrub and Trees regions
are differentiated into Stressed and Healthy regions each.

4.1. Acquisition and Pre-Processing of the Sentinel-2A Dataset

First, we download the Sentinel-2A dataset from the Copernicus Open Access Hub
on the fly using a GeoJSON file [42]. However, cloud coverage is one of the hurdles we
face during the acquisition of the satellite images. For this, we limit the cloud coverage
range from 0 to 10 in our experiment. Meanwhile, we utilize a specific time range (14
November 2019 to 14 April 2020) to find a pristine day for cloud-free or lesser cloudy
satellite images. To download the images for the given range, we wrote our code in R
language [53] using the Sen2r package [54]. Similarly, for additional pre-processing during
accuracy assessment, we adopt the Google Earth Engine (GEE) and QGIS, which are open
source software platforms widely used in the remote sensing and spatial analysis domain.

We present RGB (Red, Green, and Blue) true color and false-color (NIR, Red, and
Green) Sentinel-2A image of City of Melbourne in Figure 4. For RGB true colour images,
we stack three different bands (band 4 for Red, band 3 for Green, and band 2 for Blue) and,
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for false colour, we replace Red with an NIR spectral band (Band 8) in addition to Green
and Blue colours. False-colour images display more vegetation information by using the
NIR band, which is one of two components for the calculation of NDVI value. Note that
each image used in our experiment is formed by combining the required spectral bands
such as R, G, B, etc. from the bottom-of-the-atmosphere (BOA) of the acquired dataset.

(a) (b)

Figure 4. Red Green Blue (RGB) Sentinel-2A image (a) and False Colour Sentinel-2A image (b) of the
City of Melbourne, Victoria, Australia.

4.2. Level-1 Classification

Second, we categorize the target image into vegetation (such as trees, bushes, etc.)
and non-vegetation (such as built up, water, etc.) categories for each LGA. For this, we
utilize the hard threshold of NDVI values as suggested by the previous studies and meth-
ods [1,12,55,56]. To this end, by using the NDVI threshold value on each pixel in the target
image, we segment the corresponding image into the two broad regions. As an example,
we have presented the Level-1 classification of the City of Melbourne, Victoria, in Figure 5.
In the figure, the non-vegetation such as built up, and water have NDVI value less than
0.19, whereas the vegetation region containing green cover such as ground, bush, trees,
etc. have a higher than 0.19 NDVI value (refer to Table 2). We set those values based on an
empirical study using a GEE platform.

Table 2. Level-1 classification of LGA into two broad regions: non-vegetation and vegetation.

Category Threshold

Vegetation 0.19 to 1.00
Non-vegetation −1.00 to 0.19

4.3. Level-2 Classification

Third, we further categorize the vegetation region into two sub classes: shrub (includ-
ing grassland) and trees class coverage. The sample visual output of Level-2 classification
is presented in Figure 5. As Level-2 classification, both regions are also segmented using a
hard threshold of NDVI value (see details in Table 3).



Land 2022, 11, 351 9 of 21

(a) (b)

(c) (d)

Figure 5. Three different classification levels for City of Melbourne ((a) Level-1 classification, (b) Level-
2 classification, (c) Level-3a classification, and (d) Level-3b classification). Note that level-3 contains
two classifications level-3a and level-3b for shrub and trees, respectively.

Table 3. Level-2 classification of vegetation region into shrub and trees regions.

Category Threshold

Shrub 0.19 to 0.50
Trees 0.50 to +1.00

4.4. Level-3 Classification

Fourth, we further divide regions extracted from Level-2 classification (shrub and
trees) into two sub-groups, namely stressed and healthy. The sample output of such
classification result is presented in Figure 5. Compared to healthy vegetation, stressed
vegetation is expected to have a lower NDVI value. We apply this idea on both shrub
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(Level-3a classification) and trees (Level-3b classification) class categories (see details in
Tables 4 and 5).

Table 4. Level-3a classification of shrub region into stressed and healthy regions.

Category Threshold

Healthy 0.40 to 0.50
Stressed 0.19 to 0.40

Table 5. Level-3b classification of trees region into stressed and healthy regions.

Category Threshold

Healthy 0.60 to +1.00
Stressed 0.50 to 0.60

4.5. Accuracy Assessment

To assess the accuracy, we use Google Earth Engine (GEE) [2] and QGIS [33]. First, we
identify the random ground truth points of the corresponding LGA using GEE and then set
markers based on them using visual inspection. Here, for each level of classification, we
randomly select 30 control points (e.g., 30 for vegetation and 30 for non-vegetation at level-
1) using human judgement at each level of the classification for four LGAs (see Table 6)
used in this study. Then, we tally such markers with our result using QGIS software. This
task results in a confusion matrix at each level. Based on such a confusion matrix, we
calculate precision (Equation (4)), recall (Equation (5)), f-score (Equation (6)), and accuracy
(Equation (7)) for each level. Note that we use four LGAs for the accuracy assessment (refer
to Table 6 for the details of such LGAs). Note the accuracy assessment results in each table
are the averaged values over four LGAs used in this study:

Precision =
TP

TP + FP
, (4)

Recall =
TP

TP + FN
, (5)

F-score = 2 × Recall × Precision
Recall + Precision

, (6)

Accuracy =
TN + TP

TN + TP + FN + FP
, (7)

where TP, TN, FP, and FN denotes true positive, true negative, false positive, and false
negative, respectively.

Table 6. Details of LGAs used in ablative study of thresholds.

LGA Area Approx. (sq. kms.) Type

Melbourne 36.90 Metropolitan
Port Phillip 19.90 Metropolitan
Yarra 19.30 Metropolitan
Swan Hill 6095.10 Rural

5. Results and Discussion

We present the results obtained for different LGAs of Victoria, discuss the involved
processes in achieving the results, provide the insights from the results and contrast them
with the previous related works from the literature.
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5.1. Results on Various NDVI Threshold Ranges

We analyze different threshold ranges to classify the regions of LGAs at three different
levels. We choose four different LGAs, including three LGAs in Melbourne metropolitan
area and one rural LGA. This includes LGAs from both rural and metro regions of Victoria.
While selecting the candidate LGAs for the ablative study of thresholds, we include both
LGAs with higher vegetation regions than non-vegetation regions (City of Port Phillip and
City of Yarra) and LGAs with lower vegetation regions than non-vegetation regions (City
of Melbourne and Rural City of Swan Hill). Further details of such candidate LGAs used in
the ablative study are enlisted in Table 6. To perform this ablative study, for each of four
LGAs at each level, we randomly extracted 30 ground truth pixels from the GEE platform
and constructed the confusion metrics by comparing such ground truth pixels with our
results based on different threshold ranges. To ascertain the optimal range, we have tested
our experiment with four different threshold ranges. This provided us confidence on the
map production process and robustness in its validation. Out of the four threshold ranges,
we used the fourth threshold range to produce and validate the maps in different levels.
These results are provided in supplementary File S1. Based on the confusion metrics
for all of four LGAs, we calculate and tabulate the mean precision, recall, f-score, and
accuracy in the corresponding table of each level. The boldface indicates the best result
in the tables. We enlist the results of different threshold ranges used in our method in
four different tables: Table 7 for Level-1 classification, Table 8 for Level-2 classification,
Table 9 for Level-3a classification, and Table 10 for Level-3b classification. Furthermore, we
incorporate Level-3a classification and Level-3b classification under Level-3 classification
for shrub and trees, respectively.

Table 7. Accuracy assessment for different threshold ranges at Level-1 classification for vegetation
and non-vegetation regions. Note that each row represents the averaged metrics (Precision, Recall,
F-score, and Accuracy) of four LGAs under Level-1 classification. The boldface represents the optimal
threshold range and resulting best values.

Non-Vegetation Vegetation Precision Recall F-Score Acc.

−1 to 0.19 0.19 to 1 1.00 1.00 1.00 1.00
−1.00 to 0 0 to 1.00 1.00 0.67 0.75 0.70
−1.00 to 0.20 0.20 to 1.00 0.95 1.00 0.95 0.97
−1.00 to 0.30 0.30 to 1.00 0.87 1.00 0.90 0.90

Table 8. Accuracy assessment using different threshold ranges at level-2 classification for shrub and
trees regions. Note that each row represents the averaged metrics (Precision, Recall, F-score, and
Accuracy) of four LGAs under Level-2 classification. The boldface represents the optimal threshold
range and resulting best values.

Shrub Trees Precision Recall F-Score Acc.

0.19 to 0.20 0.20 to 1.00 0.05 0.35 0.05 0.52
0.19 to 0.30 0.30 to 1.00 0.35 0.87 0.30 0.57
0.19 to 0.40 0.40 to 1.00 0.55 0.90 0.55 0.67
0.19 to 0.50 0.50 to 1.00 0.75 0.90 0.72 0.77

5.2. Result of Classified Outputs

We present the consolidated results containing the occupied areas of four different
LGAs achieved at three different classification levels. Note that our results are based
on 10 × 10 square meter-sized pixels on the Sentinel-2A satellite images. The results are
presented in Figure 6. Four LGAs of inner Melbourne namely City of Melbourne, City of
Port Phillip, City of Stonnington and City of Yarra are presented in the form of a chord
diagram to showcase the 3-level of urban green classification. We also present four sub-
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green regions (non-green, low, middle, and high vegetation) percentages and corresponding
per capita green space indexes under vegetation region of all 78 LGAs in three Tables 11–13.
Since we present only four LGAs for classification for readability in the paper, we include
additional detailed results of remaining LGAs in the supplementary Figure S2.

Table 9. Accuracy assessment using different threshold ranges at Level-3a classification for stressed
and healthy regions. Note that each row represents the averaged metrics (Precision, Recall, F-score,
and Accuracy) of four LGAs under Level-3a classification. The boldface represents the optimal
threshold range and resulting best values.

Stressed Healthy Precision Recall F-Score Acc.

0.19 to 0.40 0.40 to 0.50 0.94 0.98 0.96 0.96
0.19 to 0.30 0.30 to 0.50 0.65 0.99 0.76 0.82
0.19 to 0.20 0.20 to 0.50 0.08 1.00 0.14 0.53
0.19 to 0.35 0.35 to 0.50 0.86 0.99 0.91 0.95

Table 10. Accuracy assessment using different threshold ranges at Level-3b classification for stressed
and healthy regions. Note that each row represents the averaged metrics (Precision, Recall, F-score,
and Accuracy) of four LGAs under Level-3b classification. The boldface represents the optimal
threshold range and resulting best values.

Stressed Healthy Precision Recall F-Score Acc.

0.50 to 0.60 0.60 to 1.00 0.82 0.86 0.86 0.85
0.50 to 0.65 0.65 to 1.00 0.83 0.76 0.79 0.78
0.50 to 0.70 0.70 to 1.00 0.86 0.68 0.75 0.71
0.50 to 0.75 0.75 to 1.00 0.87 0.55 0.66 0.62

5.3. Analysis of Threshold Ranges

Through Table 7, we notice that non-vegetation regions mostly fall below a 0.19 NDVI
value, whereas vegetation falls above it in the context of Victorian LGAs. This finding
supports the existing work [12], assuring that the vegetation region normally has a higher
NDVI values compared to non-vegetation regions. Furthermore, while observing Table 8,
we notice that the range 0.19 to 0.50 within the vegetation is appropriate for shrub and
the range (0.50 to 1.00) is for trees class. This statement supports the fact that, as we
go higher in the NDVI ranges, trees basically impart a higher NDVI value than shrubs,
which is in line with the existing work [57]. Furthermore, Tables 9 and 10 show that the
healthy shrub/trees have higher NDVI values than stressed shrub/trees, which is also in
line with the existing work [58]. This NDVI trend justifies that healthy vegetation has a
higher amount of chlorophyll than stressed vegetation. Given all of these discussions, we
underline that NDVI value ranges could be one of the simple but stronger indicators of the
LULC classification at different levels.

5.4. Analysis of Vegetation Distribution

Through chord diagram, Figure 6, we identify that there is an imbalance of vegetation
and non-vegetation regions in the City of Melbourne, LGA in the level-1 classification
(Figure 6a), which has, as a result, affected both per capita green space (90) and urban
green space index (19.78 + 17.0 + 6.9 = 43.68 green against 56.3 none-green (Table 12).
Furthermore, the majority of vegetation regions covered by shrubs shows that there is still
some work that needs to be done to balance both shrub and trees under the vegetation class.
Furthermore, a higher portion of stressed shrub than healthy shrub attracts the attention
of people to focus towards increasing the number of healthy shrubs. Because of a higher
number of healthy trees than their stressed counterparts in candidate LGAs (Figure 6),
urban planners could focus on shrub categories for balanced vegetation types.
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Table 11. Urban Green Space Index (UGSI) and Per Capita Green Space (PCGS) calculation of different
LGAs of Victoria, Australia. Note that the unit of PCGS is m2/person.

Area
Population

N-Veg Veg UGSI (%)
PCGSLGA

(km2) (km2) (km2) None Low Med. High

Alpine 4787 12,814 52 4735 0.01 13.53 39.66 46.80 369,518
Ararat 4208 11,845 1794 2414 43.00 39.13 15.49 2.38 203,799
Ballarat 738 109,505 145 593 19.63 55.06 18.67 6.64 5415
Banyule 62 131,631 6 56 10.03 37.98 45.66 6.33 425
Baw Baw 4023 53,396 51 3972 1.27 5.22 29.55 63.96 74,388
Bayside 36 106,862 5 31 13.62 36.60 42.82 6.96 290
Benalla 2348 14,037 932 1416 39.66 27.42 24.19 8.73 100,876
Boroondara 60 183,199 6 54 10.51 35.36 49.58 4.55 295
Brimbank 121 209,523 23 98 19.18 28.12 41.62 11.08 468
Buloke 7944 6124 7779 165 97.90 2.08 0.01 0.01 26,943
Campaspe 4517 37,622 2965 1552 65.62 23.21 9.70 1.47 41,252
Cardinia 1270 112,159 36 1234 2.85 21.50 56.69 18.96 11,002
Casey 401 353,872 39 362 9.70 39.10 46.39 4.81 1023
C. Goldfields 1533 13,186 647 886 42.56 31.52 25.91 0.01 67,192
Colac-Otway 3368 21,564 111 3257 3.29 31.04 20.10 45.57 151,039
Corangamite 4403 16,020 551 3852 12.52 39.51 30.43 17.54 240,449
Darebin 53 164,184 12 41 23.44 42.44 31.03 3.09 250
E. Gippsland 19,640 47,316 341 19,299 1.73 7.48 53.11 37.68 407,875
Frankston 128 142,643 12 116 9.73 22.44 48.94 18.89 813
Gannawarra 3734 10,472 2879 855 77.10 18.41 4.13 0.36 81,646
Glen Eira 38 156,511 7 31 18.23 50.71 28.96 2.10 198
Glenelg 6211 19,674 160 6051 2.56 37.70 33.69 26.05 307,563
Golden Plains 2703 23,722 300 2403 11.09 61.59 24.36 2.96 101,298
G. Bendigo 2999 118,093 1157 1842 38.58 38.53 22.61 0.28 15,598
G. Dandenong 127 168,201 37 90 29.22 43.25 25.83 1.70 535
G. Geelong 1244 258,934 282 962 22.64 59.46 16.70 1.20 3715

Through three Tables 11–13, we identify that Buloke, which has the least vegetation
regions in all three aspects (low, medium, and high), is the poorest green space abundance
LGA with respect to its total area. Thus, it is important to increase the green spaces in
the LGA to balance with the non-green spaces for its sustainability. Furthermore, we
underscore that Melbourne, which is located in the central city area of Melbourne, needs
to increase more green spaces in the region to improve PCGS compared to other LGAs in
Victoria, Australia. Such increment of green spaces in the region not only helps improve
attachment of people with the nature but also helps balance the risks engendered by
widespread over-urbanization. To this end, we can say that there are several LGAs in
Victoria including Buloke (S), which have a lower UGSI and PCGS metrics and such results
impose an alarming situation to maintain the eco-friendly urbanization and healthy lifestyle
of urban dwellers.

Shekhar and Aryal [51] calculated UGSI and PCGS for the Kalaburagi city of Karnataka,
India with the high-resolution remote sensing data and object-based approach. Their
result shows that the average green space and per capita green space is 21.3% and 25 m2,
respectively. Furthermore, Wustemann et al. [59] carried out research to calculate the UGSI
of different cities of Germany. Their result shows that there is a range of UGSI from 36 m2

to 2.5 m2, which reveals that there is uneven distribution of green space across different
cities. Similarly, Beiranvand et al. [60] conducted a study to see the changes in per capita
green space index in Khorramabad city of Iran. Their result reveals that per capita green
space index of such city remains 5.27, 4.2, 7.73, and 6.88 square meters in 1956, 1974, 1994
and 2006, respectively. Furthermore, Franco et al. [61] carried out a study to observe the
per capita urban green space index in Bogota, Colombia. Their results show that Bogota
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has the per capita green space index of 4 m2. Recently, Huang et al. [62] conducted a
study to find the urban green spaces of 1039 cities of the world using Landsat and Google
Earth images. Their result shows that high-income cities have a higher urban green space
index than low-income cities in the world. In this study, our result shows the maximum
high urban green space index and per capita green space index as 67.62% (Yarra Ranges)
and 1,589,430 m2/person (West Wimmera) in Victoria, Australia, respectively. This result
suggests the comparatively better urban green space index and per capita green space
index in comparison with other cities in the world. While comparing our approach with
others, our method exploits the normal NDVI measure at the pixel-level to calculate such
measures, which is shown to be prominent in the Australian context.

Table 12. Urban Green Space Index (UGSI) and Per Capita Green Space (PCGS) calculation of different
LGAs of Victoria, Australia. Note that the unit of PCGS is m2/person.

Area
Population

N-Veg Veg UGSI (%)
PCGSLGA

(km2) (km2) (km2) None Low Med. High

G. Shepparton 2418 66,498 1441 977 59.59 29.99 9.40 1.02 14,692
Hepburn 1473 15,975 272 1201 18.44 31.78 32.03 17.75 75,180
Hindmarsh 7501 5588 4714 2787 62.84 37.13 0.02 0.01 498,747
Hobsons Bay 62 97,751 19 43 30.54 34.91 31.25 3.30 440
Horsham 4253 19,921 2474 1779 58.17 30.17 11.53 0.13 89,303
Hume 497 233,471 73 314 14.68 63.32 21.14 0.86 1345
Indigo 1937 16,701 536 1401 27.66 34.97 29.70 7.67 83,887
Kingston 90 165,782 24 66 27.30 40.87 29.13 2.70 398
Knox 113 164,538 14 99 12.50 32.57 49.38 5.55 602
Latrobe 1418 75,561 44 1374 3.11 5.00 30.38 61.51 18,184
Loddon 6699 7504 4745 1954 70.82 20.79 8.11 0.28 260,394
M. Ranges 1745 50,231 121 1624 6.94 55.79 25.74 11.53 32,331
Manningham 113 127,573 6 107 5.15 25.96 59.84 9.05 839
Mansfield 3839 9176 129 3710 3.35 17.31 32.84 46.50 404,316
Maribyrnong 30 93,448 11 19 34.92 34.78 25.81 4.49 203
Maroondah 61 118,558 7 54 11.88 28.28 49.14 10.70 455
Melbourne 37 178,955 21 16 56.33 19.78 17.00 6.89 89
Melton 527 164,895 161 366 30.51 60.73 8.36 0.40 2220
Mildura 22,042 55,777 13,432 8610 60.93 38.54 0.52 0.01 154,365
Mitchell 2859 46,082 308 2551 10.76 53.77 28.27 7.20 55,358
Moira 4018 29,925 2277 1741 56.67 29.34 11.81 2.18 58,179
Monash 81 202,847 14 67 17.35 43.65 36.75 2.25 330
Moonee Valley 43 130,294 10 33 23.77 53.63 21.74 0.86 253
Moorabool 2110 35,049 224 1886 10.63 39.04 29.59 20.74 53,810
Moreland 51 185,767 13 38 25.87 51.78 20.75 1.60 205
M. Peninsula 722 167,636 24 698 3.30 7.91 49.26 39.53 4164
Mt. Alexander 1530 19,754 286 1244 18.68 51.05 29.65 0.62 62,975

5.5. Implication of Our Database in Greenprinting

Our database can be used in different domains, such as biodiversity conservation,
bushfire modelling, land management, urban planning tasks, agriculture monitoring,
water resource management, and, most importantly, greenprinting versus blueprint in
developing sustainable urban (green/non-green) infrastructure. The Sentinel-2A dataset
and derived prodcuts are useful to learn the properties of different objects or regions
present on the landscape (Figure 7). For example, the Near infrared (NIR) bands are useful
to extract several vegetation information on different hierarchical scale such as landscape
and streetscape level in urban settings. The information like reflectance, chlorophyll
concentration, etc. will help in identifying the present scenario of green regions and their
future prospects. Furthermore, using the classified vegetation maps and demographic data,
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we are able to study the Victorian population and their association with urban greenness.
With the numbers revealed from Urban Green Space Index (UGSI) and Per Capita Green
Space (PCGS) index, the density of population attached to the green space helps to further
develop greenprinting. The spatial analysis units that are compatible to local government
areas and corresponding statistics and developed urban green space maps are the key first
hand information in developing knowledge for policy makers towards greenprinting.

Table 13. Urban Green Space Index (UGSI) and Per Capita Green Space (PCGS) calculation of different
LGAs of Victoria, Australia. Note that the unit of PCGS is m2/person.

Area
Population

N-Veg Veg UGSI (%)
PCGSLGA

(km2) (km2) (km2) None Low Med. High

Moyne 5476 16,953 498 4978 9.08 64.88 20.68 5.36 293,635
Murrindindi 3876 14,570 125 3751 3.24 31.61 33.27 31.88 257,447
Nillumbik 431 65,094 11 420 2.55 25.97 59.32 12.16 6452
N. Grampians 5723 11,402 2752 2971 48.08 29.45 20.53 1.94 260,568
Port Phillip 20 115,601 8 12 42.28 31.46 21.14 5.12 104
Pyrenees 3434 7472 1134 2300 33.00 41.39 23.03 2.58 307,816
Queenscliffe 8 2940 1 7 10.60 58.16 31.23 0.01 2381
S. Gippsland 3257 29,914 36 3221 1.09 6.60 41.07 51.24 107,675
S. Grampians 6653 16,100 821 5832 12.33 60.85 23.80 3.02 362,236
Stonnington 26 117,768 6 20 22.54 38.43 35.05 3.98 170
Strathbogie 3302 10,781 1437 1865 43.52 39.25 16.96 0.27 172,990
Surf Coast 1551 33,456 73 1478 4.70 17.49 42.83 34.98 44,177
Swan Hill 6095 20,649 5132 963 84.20 11.59 4.20 0.01 46,637
Towong 6664 6040 164 6500 2.46 26.25 42.32 28.97 1,076,159
Wangaratta 3586 29,187 939 2647 26.17 24.88 33.90 15.05 90,691
Warrnambool 120 35,181 8 112 6.46 54.68 29.77 9.09 3184
Wellington 10,513 44,380 609 9904 6.46 26.79 48.33 18.42 223,164
W. Wimmera 9100 3841 2995 6105 32.91 48.31 17.89 0.89 1,589,430
Whitehorse 64 178,739 8 56 12.26 37.86 47.24 2.64 313
Whittlesea 487 230,238 47 440 9.56 51.85 27.68 10.91 1911
Wodonga 433 42,083 150 283 34.58 44.04 19.98 1.40 6725
Wyndham 540 270,487 173 367 32.14 58.98 7.68 1.20 1357
Yarra 19 101,495 9 11 44.32 27.08 23.58 5.02 108
Yarra Ranges 2466 159,462 32 2434 1.31 6.29 24.78 67.62 15,264
Yarriambiack 7320 6639 6728 592 91.90 8.08 0.01 0.01 89,170
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(a) (b)

(c) (d)

Figure 6. Chord diagram of classification result (in sq. km) of four LGAs of Victoria, Australia, at
three levels, namely, (a) Level-1 classification; (b) Level-2 classification; (c) Level-3a classification; and
(d) Level-3b classification. Note that CY = City of Yarra; CS = City of Stonnington; CPP = City of Port
Phillip; and CM = City of Melbourne.

5.6. Key Contributions of This Study

This study is an applied research with potentials of replicability, reproducibility and in-
terpretability by the researchers as well as practitioners. The applied researchers in the field
of land management, urban planning, biodiversity conservation, water run-off modelling
and infrastructure design would greatly benefit from the outcome of this research. Further-
more, practitioners working in the various governmental/non-governmental organisation—
for example, city councils, planning departments, nature-inspired city planning, land
management, and bureau of statistics would benefit not only from urban green space
abundance but also from the information on share of green space to per capita. In summary,
the key contributions of this research can be framed into the following four points:
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1. Integration of publicly available remote sensing image database for each LGA of Victo-
ria (a total of 78 LGAs in our work) based on the Sentinel-2A products. Our database
platform is readily useful for different tasks such as systematic urban spatial planning.

2. Hierarchical mapping of urban vegetation into three levels. At the first level (Level-1),
we categorise each LGA region into two classes: vegetation and non-vegetation (land).
Next, at Level-2, we further categorise the vegetation regions into two sub-classes:
shrub and trees. Lastly, at Level-3, both shrub and trees are further categorised into
two finer groups: stressed and healthy. The classification maps of three different
levels have multiple usability for different stakeholders—for example, biodiversity
conservationists, urban planners, bushfire modellers, ecological modellers, and urban
agriculture monitoring activities, among many others.

3. Design of experiment based on quantitative iterative optimal approach in ascertaining
the NDVI threshold ranges. In doing this, we derive statistical measures such as mean
precision, recall, f-score, and accuracy for evaluation purposes. In addition, then,
using such metrics, we adopt the best threshold range for each hierarchy.

4. Modelling of association between demography and urban green abundance. In doing
this, we compute Urban Green Space Index (UGSI) and Per Capita Green Space (PCGS)
for each Local Government Area (LGA), which will eventually help in sustainability
and resilience research of the cities.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Polygons with place markers ((a) Non-vegetation; (b) Vegetation; (c) Shrub; (d) Trees;
(e) Stressed shrub; (f) Healthy shrub; (g) Stressed trees and (h) Healthy trees) that are plotted using
Google Earth Engine (GEE) [2] in different regions of City of Melbourne, Victoria, Australia. In our
paper, shrub represents grasslands and bushes, whereas trees represent the vegetation except shrub.

5.7. Limitations of This Study and Future Potential

Our method has two main limitations considering the precision of the obtained re-
sults and further derivatives. First, simply using NDVI value alone may not provide
precise information on landscapes and their coverage. Given that NDVI is the ratio of
reflectances, the real world objects having similar reflectances might be classified into the
same class/categories. However, we acknowledge that calculating green coverage from
NDVI suffices for the purpose of mapping greenness for greenprinting. The derived prod-
ucts from NDVI alone may not be useful in studying vegetation dynamics where methods
like radiative transfer modelling having more botanical emphasis would be recommended.
Second, NDVI value may be higher for shrubs than trees depending on the crown density
and corresponding chlorophyll content alongside healthy and stressed types. Therefore,
the classification of regions using NDVI value alone may be erroneous in some cases. To
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overcome such problems, we may need to incorporate NDVI value with other widely
used spectral indices, such as Enhanced Vegetation Index (EVI), which adopts three bands
and imparts other complementary information, namely, canopy structural variations and
canopy types based on geometries, etc. NDVI, although an effective vegetation index, is
not enough for classification and delineation of land cover types.The thresholds derived in
this study may not be useful for other territories or jurisdictions as we have not considered
the seasonal variations or phenological changes in this study.To consider these aspects,
hyperspectral imagery and periodic 3D-vegetation structure data could greatly improve
the resolution and precision of the land cover classification [63].

In the future, we would like to address these limitations and work towards three main
directions: (1) use of machine learning and deep learning approaches, both supervised
and unsupervised, for more precise classification of urban green space in Victorian LGAs;
(2) use of multiple spectral indices in addition to NDVI for the better representation of
regions requiring multiple information; and (3) use of machine learning techniques to
perform change detection over an extended period of time using time-series products of
satellite images in LGAs of Victoria, Australia.

6. Conclusions

In this study, we have developed urban green space map in three different classification
levels (Level-1, Level-2, and, Level-3a and Level-3b) for Victoria, Australia using a low
cost approach utilizing publicly available Sentinel-2A products and open source platforms
Google Earth Engine (GEE) and Geographic Information System software—QGIS. For
this, we have tested different NDVI threshold value ranges (e.g., 0.19 to 0.50 for shrub,
0.50 to 1.00 for trees, etc.) in relation to Victoria, Australia, which will be easy to replicate
in the future. We relate the urban dwellers population with the urban green space by
developing indices on Urban green space and per capita green space in providing first
hand information to land managers and policy makers to help increase the greenness of the
LGAs. We also prepared a Sentinel-2A dataset of Victorian LGAs, which could be used for
other research directions such as crop monitoring, sustainable urban planning, observation
of coastal zones, environment monitoring, inland water monitoring, and most importantly
on greenprinting. In addition, the combination of our datasets with other kinds of datasets
such as weather and non-image datasets could help build the multimodal approach for
better classification. Our results suggest that even a simple use of NDVI can produce a
green coverage map for the wider application in greenprinting.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land11030351/s1. The supplementary File S1 contains the fol-
lowing information: (1) A table containing four different threshold ranges at three different levels.
(2) Corresponding output maps based on the threshold values as presented in Table above. The
supplementary File S2 contains the following information: (1) Sentinel-2A image (RGB) of each LGA
of Victoria, Australia. (2) Visual area coverage of each LGA of Victoria, Australia. (3) Classified
output images at three different classification levels (Level-1, Level-2, Level-3a, and Level-3b) of each
LGA of Victoria, Australia. Here, we have added the larger-sized output maps for three LGAs.
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Note
1 We exclude Bass Coast Shire in our work because Copernicus Open Access Hub did not allow us download the Sentinel-2A image.
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